57
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Interactions of barley α-amylase isozymes with Ca2 + , substrates and proteinaceous inhibitors

, , , , , , , , , , , , & show all
Pages 83-93 | Received 19 May 2005, Published online: 11 Jul 2009

References

  • Abe J, Sidenius U, Svensson B. Arginine is essential for the α-amylase inhibitory activity of the α-amylase/subtilisin inhibitor (BASI) from barley seeds. Biochem J 1993; 293: 151–155
  • Ajandouz EH, Abe J, Svensson B, Marchis-Mouren G. Barley malt α-amylase. Purification, action pattern and subsite mapping of isozyme 1 and two members of the isozyme 2 subfamily using p-nitrophenylated maltooligosaccharide substrates. Biochim Biophys Acta 1992; 1159: 193–202
  • Bak-Jensen KS, André G, Gottschalk TE, Paës G, Tran V, Svensson B. Tyrosine 105 and threonine 212 at outermost substrate binding subsites −6 and +4 control substrate specificity, oligosaccharide cleavage patterns, and mkultiple binding modes of barley α-amylase 1. J Biol Chem 2004; 279: 10093–10102
  • Bønsager BC, Prætorius-Ibba M, Nielsen PK, Svensson B. Purification and characterization of the β-trefoil fold protein barley α-amylase/subtilisin inhibitor overexpressed in Escherichia coli. Protein Express Purif 2003; 30: 185–193
  • Bønsager BC, Nielsen PK, Abou Hachem M, Prætorius-Ibba M, Svensson B. Mutational analysis of the β-trefoil fold protein barley α-amylase/subtilisin inhibitor probes hot spots for the interaction with barley α-amylase. J Biol Chem 2005; 280: 14855–14864
  • Bozonnet S, Kim T-J, Bønsager BC, Kramhøft B, Nielsen PK, Bak-Jensen KS, Svensson B. Engineering of barley α-amylase. Biocatal Biotrans 2003; 21: 209–214
  • Brzozowski AM, Lawson DM, Turkenberg JP, Bisgård-Frantzen H, Svendsen A, Borchert TV, Dauter Z, Wilson KS, Davies G. Structural analysis of a chimeric bacterial alpha-amylase. High-resolution analysis of native and ligand complexes. Biochemistry 2000; 39: 9099–9107
  • Bush DA, Sticher L, Van Huystee RB, Wagner D, Jones RL. The calcium requirement for stability and enzymatic activity of two isoforms of barley α-amylase. J Biol Chem 1989; 264: 19392–19398
  • Conrad B, Hoang V, Polley A, Hofemeister J. Hybrid Bacillus amyloliquefaciens X Bacillus licheniformis α-amylases: construction, properties and sequence determinants. Eur J Biochem 1995; 230: 481–490
  • Crameri A, Raillard SA, Bermudez E, Stemmer WP. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 1998; 391: 288–291
  • Dauter Z, Dauter M, Brzozowski AM, Christensen S, Borchert TV, Beier L, Wilson KS, Davies GJ. X-ray structure of Novamyl, the five-domain “maltogenic” alpha-amylase from Bacillus stearothermophilus: maltose and acarbose complexes at 1.7A resolution. Biochemistry 1999; 38: 8385–8392
  • Fitter J, Haber-Pohlmeier S. Structural stability and unfolding properties of thermostable bacterial alpha-amylases: a comparative study of homologous enzymes. Biochemistry 2004; 43: 9589–9599
  • Franco OL, Rigden DJ, Melo FR, Grossi-de-Sà MF. Plant α-amylase inhibitors and their interaction with insect α-amylases. Structure, function and potential for crop protection. Eur J Biochem 2002; 269: 397–412
  • Fukuda, K, Jensen, MH, Aghajari, N, Haser, R, Svensson, B. (2005). Biased mutagenesis in the N-terminal region by degenerate oligonucleotide gene shuffling enhances secretory expression of barley α-amylase 2 in yeast. Protein Eng Des Sel, 18:515–526.
  • Giardina T, Gunning AP, Juge N, Faulds CB, Furniss CSM, Svensson B, Morris VJ, Williamson G. Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. J Mol Biol 2001; 313: 1149–1159
  • Gibson RM, Svensson B. Identification of tryptophanyl residues involved in binding of carbohydrate ligands to barley α-amylase 2. Carlsberg Res Commun 1987; 52: 373–379
  • Gottschalk TE, Tull D, Aghajari N, Haser R, Svensson B. Specificity modulation of barley α-amylase through biased random mutagenesis involving a conserved tripeptide in β→α loop 7 of the catalytic (β/α)8-barrel domain. Biochemistry 2001; 40: 12844–12854
  • Janecek S, Svensson B, MacGregor EA. Relation between domain evolution, specificity, and taxonomy of the α-amylase family members containing a C-terminal starch-binding domain. Eur J Biochem 2003; 270: 635–645
  • Jensen MT, Gottschalk TE, Svensson B. Differences in conformational stability of barley α-amylase isozymes 1 and 2. Role of charged groups and isozyme 2 specific salt-bridges. J Cereal Sci 2003; 38: 289–300
  • Jiao J-A, Yee BC, Wong JH, Kobrehel K, Buchanan BB. Thioredoxin-linked changes in regulatory properties of barley α-amylase/subtilisin inhibitor protein. Plant Physiol Biochem 1993; 31: 799–804
  • Juge N, Andersen JS, Tull D, Roepstorff P, Svensson B. Overexpression, purification, and characterization of recombinant barley α-amylase 1 and 2 secreted by the methylotrophic yeast Pichia pastoris. Protein Expr Purif 1996; 8: 204–214
  • Juge N, Le Gal-Goëffet M-F, Furniss CSM, Gunning AP, Kramhøft B, Morris VJ, Williamson G, Svensson B. The starch binding domain of glucoamylase from Aspergillus niger: overview of its structure, function, and role in raw-starch degradation. Biologia 2002; 57/Suppl. 11: 239–245
  • Juge N, Rodenburg KW, Guo X-J, Chaix J-C, Svensson B. Isozyme-hybrids within the protruding third loop domain of the barley α-amylase (β/α)8-barrel: implication for BASI sensitivity and substrate affinity. FEBS Lett 1995; 363: 299–303
  • Juge N, Søgaard M, Chaix J-C, Martin-Eauclaire M-F, Svensson B, Marchis-Mouren G, Guo X-J. Comparison of barley malt α-amylase isozyme 1 and 2: Construction of cDNA hybrids by in vivo recombination, characterization and expression in yeast. Gene 1993; 130: 159–166
  • Kadziola A, Abe J, Svensson B, Haser R. Crystal and molecular structure of barley α-amylase. J Mol Biol 1994; 239: 104–121
  • Kadziola A, Søgaard M, Svensson B, Haser R. Molecular structure of a barley α-amylase-inhibitor complex: implications for starch binding and catalysis. J Mol Biol 1998; 278: 205–217
  • Kandra L, Gyemant G, Remenyik J, Hovanszki G, Liptak A. Action pattern and subsite mapping of Bacillus licheniformis alpha-amylase (BLA) with modified maltooligosaccharide substrates. FEBS Lett 2002; 518: 79–82
  • Kim, T-J, Bozonnet, S, Nielsen, PK, Svensson, B. 2003. Changes in enzymatic properties of barley α-amylase isozymes by chimerization. Proceedings 2003 Agricultural Biotechnology Symposium “Carbohydrate: Enzymes and Food Functionality” Seoul National University) pp 9–17.
  • Kramhøft B, Bak-Jensen KS, Mori H, Juge N, Nøhr J, Svensson B. Multiple attack, kinetic parameters, and product profiles in amylose hydrolysis by barley α-amylase 1 variants. Biochemistry 2005; 44: 1824–1832
  • Larson SB, Greenwood A, Cascio D, Day J, McPherson A. Refined molecular structure of pig pancreatic alpha-amylase at 2.1 A resolution. J Mol Biol 1994; 235: 1560–1584
  • MacGregor EA. The proteinaceous inhibitor of limit dextrinase in barley and malt. Biochim Biophys Acta 2004; 1696: 165–70
  • MacGregor EA, Janecek S, Svensson B. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta 2001; 1546: 1–20
  • Maeda, K, Finnie, C, Svensson, B. (2005). Identification of thioredoxin h-reducible disulphides in proteomes by differential labeling of cysteines: Insight into recognition of proteins in barley seeds by thioredoxin h. Proteomics, 5:1634–1644.
  • Matsui I, Svensson B. Improved activity and modulated action pattern obtained by random mutagenesis at the fourth β-α loop involved in substrate binding to the catalytic (β/α)8-barrel domain of barley α-amylase 1. J Biol Chem 1997; 272: 22456–22463
  • Mori H, Bak-Jensen KS, Gottschalk TE, Motawia MS, Damager I, Møller BL, Svensson B. Modulation of activity and substrate binding modes by single and double subsites +1/ + 2 and −5/ − 6 mutation of barley α-amylase 1. Eur J Biochem 2001; 268: 6545–6558
  • Mori H, Bak-Jensen KS, Svensson B. Barley α-amylase Met53 situated at the high-affinity subsite −2 belongs to a substrate binding motif in the β→α loop 2 of the catalytic (β/α)8-barrel and is critical for activity and substrate specificity Eur J Biochem 2002; 269: 5377–5390
  • Morris VJ, Gunning AP, Faulds CB, Williamson G, Svensson B. AFM images of complexes between amylose and Aspergillus niger glucoamylase mutants, native and mutant starch binding domains: a model for the action of glucoamylase. Starch 2005; 57: 1–7
  • Mundy J, Svendsen I, Hejgaard J. Barley α-amylase/subtilisin inhibitor. Isolation and characterization. Carlsberg Res Commun 1983; 48: 81–90
  • Nielsen AD, Fuglsang CC, Westh P. Effect of calcium ions on the irreversible denaturation of a recombinant Bacillus halmapalus alpha-amylase: a calorimetric investigation. Biochem J 2003a; 373: 337–343
  • Nielsen PK, Bønsager BC, Berland CR, Sigurskjold BW, Svensson B. Kinetics and energetics of the binding between barley α-amylase/subtilisin inhibitor and barley α-amylase 2 analyzed by surface plasmon resonance and isothermal titration calorimetry. Biochemistry 2003b; 42: 1478–1487
  • Ohdan K, Kuriki T, Takata H, Kaneko H, Okada S. Introduction of raw starch-binding domains into Bacillus subtilis α-amylase by fusion with the starch-binding domain of Bacillus cyclomaltodextrin glucanotransferase. Appl Environ Microbiol 2000; 66: 3058–3064
  • Penninga D, van der Veen BA, Knegtel RM, van Hijum SA, Rozeboom HJ, Kalk KH, Dijkstra BW, Dijkhuizen L. The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. J Biol Chem 1996; 271: 32777–32784
  • Robert X, Gottschalk TE, Haser R, Svensson B, Aghajari N. Expression, purification and preliminary crystallographic studies of α-amylase isozyme 1 from barley seeds. Acta Cryst. 2002a; D58: 683–686
  • Robert, X, Haser, R, Svensson, B, Aghajari, N. (2002b). Comparison of crystal structures of barley α-amylase 1 and 2: implications for isozyme differences in stability and activity. Biologia 57/Suppl. 11, 59–70.
  • Robert X, Haser R, Gottschalk TE, Ratajczak F, Driguez H, Svensson B, Aghajari N. The structure of barley α-amylase 1 reveals a novel role of domain C in substrate recognition and binding: “A pair of sugar tongs”. Structure 2003; 11: 973–984
  • Robyt JF, French D. Multiple attack hypothesis of α-amylase action: action of porcine pancreatic, human salivary, and Aspergillus oryzae α-amylase. Arch Biochem Biophys. 1967; 122: 8–16
  • Rodenburg KW, Juge N, Guo X-J, Søgaard M, Chaix J-C, Svensson B. Domain B protruding at the third β-strand of the α/β-barrel in barley α-amylase confers distinct isozyme-specific properties. Eur J Biochem 1994; 221: 277–284
  • Rodenburg KW, Vallée F, Juge N, Aghajari N, Guo X-J, Haser R, Svensson B. Specific inhibition of barley α-amylase 2 by barley α-amylase/subtilisin inhibitor depends on charge interactions and can be conferred to isozyme 1 by mutation. Eur J Biochem 2000; 267: 1019–1029
  • Savchenko A, Vieille C, Kang S, Zeikus JG. Pyrococcus furiosus α-amylase is stabilized by calcium and zinc. Biochemistry 2002; 41: 6193–6201
  • Sidenius U, Olsen K, Svensson B, Christensen U. Stopped-flow kinetics of the reaction of barley α-amylase/subtilisin inhibitor and the high pI barley α-amylase. FEBS Lett 1995; 361: 320–254
  • Skov LK, Mirza O, Sprogøe D, Dar I, Remaud-Simeon M, Albenne C, Monsan P, Gajhede M. Oligosaccharide and sucrose complexes of amylosucrase. Structural implications for the polymerase activity. J Biol Chem 2002; 277: 47741–47747
  • Søgaard M, Kadziola A, Haser R, Svensson B. Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley α-amylase 1. J Biol Chem 1993; 268: 22480–22484
  • Søgaard M, Svensson B. Expression of cDNAs encoding barley α-amylase 1 and 2 in yeast and characterization of the secreted proteins. Gene 1990; 94: 173–179
  • Sorimachi K, Le Gal-Coëffet M-F, Willamson G, Archer DB, Williamson MP. Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger bound to β-cyclodextrin. Structure 1997; 5: 647–661
  • Strokopytov B, Knegtel RM, Penninga D, Rozeboom HJ, Kalk KH, Dijkhuizen L, Dijkstra BW. Structure of cyclodextrin glycosyltransferase complexed with a maltononaose inhibitor at 2.6 angstrom resolution. Implications for product specificity. Biochemistry 1996; 35: 4241–4249
  • Svensson B, Fukuda K, Nielsen PK, Bønsager BC. Proteinaceous α-amylase inhibitors. Biochim Biophys Acta 2004; 1696: 145–156
  • Svensson B, Mundy J, Gibson RM, Svendsen I. Partial amino acid sequences of α-amylase isozymes from barley malt. Carlsberg Res Commun 1985; 50: 15–22
  • Tranier, S, Deville, K, Robert, X, Bozonnet, S, Haser, R, Svensson, B, Aghajari, N. 2005. Insights into the “pair of sugar tongs” surface binding site in barley α-amylase isozymes and crystallization of appropriate sugar tongs mutants. Biologia, in press.
  • Vallée F, Kadziola A, Bourne Y, Juy M, Rodenburg KW, Svensson B, Haser R. Barley α-amylase inhibitor bound to its endogenous protein inhibitor BASI: crystal structure of the complex at 1.9 Å resolution. Structure 1998; 6: 649–659
  • Yuuki T, Nomura T, Tezuka H, Tsuboi A, Yamagata H, Tsukagoshi N, Udaka S. Complete nucleotide sequence of a gene coding of heat- and pH-stable α-amylase of Bacillus licheniformis: comparison of the amino acid sequences. J Biochem (Tokyo) 1985; 98: 1147–1156

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.