99
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Molecular engineering of a thermostable carbohydrate-binding module

, , , &
Pages 31-37 | Received 13 May 2005, Published online: 11 Jul 2009

References

  • Abou Hachem M, Nordberg Karlsson E, Bartonek-Roxå E, Raghothama S, Simpson PJ, Gilbert HJ, Williamson MP, Holst O. Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: cloning, expression and binding studies. Biochem J 2000; 345(1)53–60
  • Boraston AB, McLean BW, Kosmos JM, Alam M, Gilkes NR, Haynes CA, Tomme P, Kilburn DG, Warren RAJ. Carbohydrate binding modules: Diversity of structure and function. Recent Advances in Carbohydrate Engineering, HJ Gilbert, GJ Davies, B Svensson, B Henrissat. Royal Society of Chemistry, Cambridge 1999; 202–211
  • Boraston AB, Nurizzo D, Notenboom V, Ducros V, Rose DR, Kilburn DG, Davies GJ. Differential oligosaccharide recognition by evolutionarily-related beta-1,4 and beta-1,3 glucan-binding modules. J Mol Biol 2002; 319(5)1143–1156
  • Boraston AB, Revett TJ, Boraston CM, Nurizzo D, Davies GJ. Structural and thermodynamic dissection of specific mannan recognition by a carbohydrate binding module, TmCBM27. Structure (Camb) 2003; 11(6)665–675
  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 2004; 382(3)769–781
  • Cicortas Gunnarsson L, Nordberg Karlsson E, Albrekt AS, Andersson M, Holst O, Ohlin M. A carbohydrate binding module as a diversity-carrying scaffold. Protein Eng Des Sel 2004; 17(3)213–221
  • Cicortas Gunnarsson L, Dexlin L, Nordberg Karlsson E, Holst O, Ohlin M. Evolution of a carbohydrate binding module into a protein-specific binder. Biomol Eng 2006; 23(2–3)111–117
  • Fernandez-Gacio A, Uguen M, Fastrez J. Phage display as a tool for the directed evolution of enzymes. Trends Biotechnol 2003; 21(9)408–414
  • Gilkes NR, Warren RA, Miller RC, Jr, Kilburn DG. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J Biol Chem 1988; 263(21)10401–10407
  • Hoogenboom HR, de Bruine AP, Hufton SE, Hoet RM, Arends JW, Roovers RC. Antibody phage display technology and its applications. Immunotechnology 1998; 4(1)1–20
  • Johansen LK, Albrechtsen B, Andersen HW, Engberg J. pFab: a new, efficient vector for expression of antibody Fab fragments displayed on phages. Protein Eng 1995; 8: 1063–1067
  • Jung S, Honegger A, Plückthun A. Selection for improved protein stability by phage display. J Mol Biol 1999; 294(1)163–180
  • Koide A, Bailey CW, Huang X, Koide S. The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol 1998; 284(4)1141–1151
  • Lehtiö J, Teeri TT, Nygren PÅ. Alpha-amylase inhibitors selected from a combinatorial library of a cellulose binding domain scaffold. Proteins 2000; 41(3)316–322
  • McLean BW, Bray MR, Boraston AB, Gilkes NR, Haynes CA, Kilburn DG. Analysis of binding of the family 2a carbohydrate-binding module from Cellulomonas fimi xylanase 10A to cellulose: specificity and identification of functionally important amino acid residues. Protein Eng 2000; 13(11)801–809
  • Nagy T, Simpson P, Williamson MP, Hazlewood GP, Gilbert HJ, Orosz L. All three surface tryptophans in Type IIa cellulose binding domains play a pivotal role in binding both soluble and insoluble ligands. FEBS Lett 1998; 429(3)312–316
  • Nord K, Gunneriusson E, Ringdahl J, Ståhl S, Uhlén M, Nygren PÅ. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat Biotechnol 1997; 15(8)772–777
  • Nygren PÅ, Skerra A. Binding proteins from alternative scaffolds. J Immunol Meth 2004; 290(1–2)3–28
  • Notenboom V, Boraston AB, Chiu P, Freelove AC, Kilburn DG, Rose DR. Recognition of cello-oligosaccharides by a family 17 carbohydrate-binding module: an X-ray crystallographic, thermodynamic and mutagenic study. J Mol Biol 2001; 314(4)797–806
  • Pell G, Williamson MP, Walters C, Du H, Gilbert HJ, Bolam DN. Importance of hydrophobic and polar residues in ligand binding in the family 15 carbohydrate-binding module from Cellvibrio japonicus Xyn10C. Biochemistry 2003; 42: 9316–9323
  • Ponyi T, Szabo L, Nagy T, Orosz L, Simpson PJ, Williamson MP, Gilbert HJ. Trp22, Trp24, and Tyr8 play a pivotal role in the binding of the family 10 cellulose-binding module from Pseudomonas xylanase A to insoluble ligands. Biochemistry 2000; 39(5)985–991
  • Simpson PJ, Jamieson SJ, Abou-Hachem M, Nordberg Karlsson EN, Gilbert HJ, Holst O, Williamson MP. The solution structure of the CBM4-2 carbohydrate binding module from a thermostable Rhodothermus marinus xylanase. Biochemistry 2002; 41(18)5712–5719
  • Skerra A. Lipocalins as a scaffold. Biochim Biophys Acta 2000; 1482(1–2)337–350
  • Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228(4705)1315–1317
  • Smith GP, Patel SU, Windass JD, Thornton JM, Winter G, Griffiths AD. Small binding proteins selected from a combinatorial repertoire of knottins displayed on phage. J Mol Biol 1998; 277(2)317–332
  • Söderlind E, Carlsson R, Borrebaeck CAK, Ohlin M. The immune diversity in a test tube – non-immunised antibody libraries and functional variability in defined protein scaffolds. Comb Chem High Throughput Screen. 2001; 4(5)409–416
  • Szabo L, Jamal S, Xie H, Charnock SJ, Bolam DN, Gilbert HJ, Davies GJ. Structure of a family 15 carbohydrate-binding module in complex with xylopentaose. Evidence that xylan binds in an approximate 3-fold helical conformation. J Biol Chem 2001; 276(52)49061–49065
  • Tomme P, Van Tilbeurgh H, Pettersson G, Van Damme J, Vandekerckhove J, Knowles J, Teeri T, Claeyssens M. Studies of the cellulolytic system of Trichoderma reesei QM 9414. Analysis of domain function in two cellobiohydrolases by limited proteolysis. Eur J Biochem 1988; 170(3)575–581
  • Van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhabhai R, Pettersson G. Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei: Separation of functional domains. FEBS Lett 1986; 204(2)223–227
  • Wiederstein M, Sippl MJ. Protein sequence randomization: efficient estimation of protein stability using knowledge-based potentials. J Mol Biol 2005; 345(5)1199–1212
  • Xie H, Gilbert HJ, Charnock SJ, Davies GJ, Williamson MP, Simpson PJ, Raghothama S, Fontes CM, Dias FM, Ferreira LM, et al. Clostridium thermocellum Xyn10B carbohydrate-binding module 22-2: the role of conserved amino acids in ligand binding. Biochemistry 2001; 40(31)9167–9176

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.