301
Views
24
CrossRef citations to date
0
Altmetric
Original

Development of new α-amylases for raw starch hydrolysis

, , &
Pages 121-127 | Received 23 May 2005, Published online: 11 Jul 2009

References

  • Abe A, Tonozuka T, Sakano Y, Kamitori S. Complex structures of Thermoactinomyces vulgaricus R-47 α-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch binding domain. J Biol Chem 2004; 335: 811–822
  • Beier L, Svendsen A, Andersen C, Frandsen TP, Borchert TV, Cherry JR. Conversion of the maltogenic α-amylase Novamyl into a CGTase. Protein Engineering 2000; 13: 509–513
  • Bernfield P. Amylases, α and β. Meth Enzymol 1955; 1: 149–158
  • Bertoldo C, Duffner F, Jørgensen P L, Antranikian G. Pullulanase type I from Fervidobacterium pennavorans Ven5: cloning, sequencing, and expression of the gene and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol 1999; 65: 2084–2091
  • Bisgaard-Frantzen H, Svendsen A, Norman B, Pedersen S, Kjærulff S, Outtrup H, Borchert TV. Development of industrially important α-amylases. J Appl Glycosci 1999; 46: 199–206
  • Coutinho, PM, Henrissat, B. 1999. Carbohydrate-Active Enzymes server at URL:, , http://afmb.cnrs-mrs.fr/CAZY/.
  • Gawande BN, Goel A, Patkar AY, Nene SN. Purification and properties of a novel raw starch degrading cyclomaltodextrin glucanotransferase from Bacillus firmus. Appl Microbiol Biotechnol 1999; 51: 504–509
  • Iefuji H, Chino M, Kato M, Iimura Y. Raw-starch-digesting and thermostable α-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Biochem J 1996; 318: 989–996
  • Jespersen HM, MacGregor EA, Sierks MR, Svensson B. Comparison of the domain-level organization of starch hydrolases and related enzymes. Biochem J 1991; 280: 51–55
  • Nagasaka Y, Kurosawa K, Yokota A, Tomita F. Purification and properties of the raw-starch-digesting glucoamylases from Corticium rolfsii. Appl Microbiol Biotechnol 1998; 50: 323–330
  • Norman BE. A novel debranching enzyme for application in the glucose syrup industry. Starch/Stärke 1982; 10: 340–346
  • Norman BE. Enzymic conversion of starch into D-glucose syrup using glucoamylase and pullulanase. Methods in Carbohydrate Chemistry X, JN Bemiller, DJ Manners, RJ Sturgeon. John Wiley & Sons, Hoboken 1994; 231
  • Norman BE, Pedersen S, Bisgaard-Frantzen H, Borchert TV. The development of a new heat-stable alpha-amylase for calcium free starch liquefaction. Starch/Stärke 1997; 49: 371–379
  • Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R, Utsumi S. Structure of the raw starch-digesting Bacillus cereus β-amylase complexed with maltose. Biochem 1999; 38: 7050–7061
  • Morris VJ, Gunning PA, Faulds CB, Williamson G, Svensson B. AFM images of complexes between amylose and Aspergillus niger glucoamylase mutants, native and mutant starch binding domains: A model for the action of glucoamylase. Starch/Stärke 2005; 57: 1–7
  • Penninga D, Strokopytov B, Rozeboom HJ, Lawson CL, Dijkstra BW, Bergsma J, Dijkhuizen L. Site-directed mutations in tyrosine 195 of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 affect activity and product specificity. Biochem 1995; 34: 3368–3376
  • Penninga D, van der Veen BA, Knegtel RMA, van Hijum SAFT, Rozeboom HJ, Kalk KH, Dijkstra BW, Dijkhuizen L. The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. J Biol Chem 1996; 271: 32777–32784
  • Rodríguez-Sanoja R, Ruiz B, Guyot JP, Sanchez S. Starch-binding domain affects catalysis in two Lactobacillus α-amylases. Appl Environ Microbiol 2005; 71: 297–302
  • Southall SM, Simpson PJ, Gilbert HJ, Williamson G, Williamson MP. The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett 1999; 447: 58–60
  • Starnes RL, Hoffman CL, Flint VM, Trackman PC, Duhart DJ, Katkocin DM. Starch liquefaction with a highly thermostable cyclodextrin glycosyl transferase from Thermoanaerobacter species. Enzymes in biomass conversion, CF Leatham, ME Himmel. American Chemical Society, ACS Symposium Series, Washington DC 1991; 384–939
  • Takahashi T, Kato K, Ikegami Y, Irie M. Different behavior towards raw starch of three forms of glucoamylase from a Rhizopus sp. J Biochem 1985; 98: 663–671
  • Takao S, Sasaki H, Kurosawa K, Tanida M, Kamagata Y. Production of a raw starch saccharifying enzyme by Corticium rolfsii. Agric Biol Chem 1986; 50: 1979–1987
  • Widner B, Thomas M, Sternberg D, Lammon D, Behr R, Sloma A. Development of marker-free strains of Bacillus subtilis capable of secreting high levels of industrial enzymes. J Ind Microbiol Biotechnol 2000; 25: 204–212
  • Wind RD, Liebl W, Buitelaar RM, Penninga D, Spreinat A, Dijkhuizen L, Bahl H. Cyclodextrin formation by the thermostable alpha-amylase of Thermoanaerobacterium thermosulfurigenes EM1 and reclassification of the enzyme as a cyclodextrin glycosyltransferase. Appl Environ Microbiol 1995; 61: 1257–1265

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.