196
Views
14
CrossRef citations to date
0
Altmetric
REVIEW

Xyloglucan and xyloglucan endo-transglycosylases (XET): Tools for ex vivo cellulose surface modification

, , , &
Pages 107-120 | Received 20 May 2005, Published online: 11 Jul 2009

References

  • Albersheim P. The primary cell wall. Plant Biochemistry, JE JB, Varner. Academic Press. 1976; 226–277
  • Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas A, Djerbi S, Nilsson P, Denman S, Amini B, Sterky F, Master E, Sandberg G, Mellerowicz E, Sundberg B, Henrissat B, Teeri TT. Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol 2005; 137: 983–997
  • Astley OM, Chanliaud E, Donald AM, Gidley MJ. Structure of Acetobacter cellulose composites in the hydrated state. Int J Biol Macromolec 2001; 29: 193–202
  • Baba K, Sone Y, Misaki A, Hayashi T. Localization of xyloglucan in the macromolecular complex composed of xyloglucan and cellulose in pea stems. Plant Cell Physiol 1994; 35: 439–444
  • Ball P. Material witness – In praise of wood. Nature Mater 2005; 4: 515–515
  • Baran R, Sulová Z, Stratilova E, Farkaš V. Ping-pong character of nasturtium-seed xyloglucan endotransglycosylase (XET) reaction. Gen Physiol Biophys 2000; 19: 427–440
  • Bismarck A, Mohanty AK, Aranberri-Askargorta I, Czapla S, Misra M, Hinrichsen G, Springer J. Surface characterization of natural fibres; surface properties and the water up-take behavior of modified sisal and coir fibres. Green Chem 2001; 3: 100–107
  • Bollok M, Henriksson H, Kallas Å, Jahic M, Teeri TT, Enfors SO. Production of poplar xyloglucan endotransglycosylase using the methylotrophic yeast Pichia pastoris. Appl Biochem Biotechnol 2005; 126: 61–77
  • Bourquin V, Nishikubo N, Abe H, Brumer H, Denman S, Eklund M, Christiernin M, Teeri TT, Sundberg B, Mellerowicz EJ. Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues. Plant Cell 2002; 14: 3073–3088
  • Braccini I, Dupenhoat CH, Michon V, Goldberg R, Clochard M, Jarvis MC, Huang ZH, Gage DA. Structural-analysis of cyclamen seed xyloglucan oligosaccharides using cellulase digestion and spectroscopic methods. Carbohydr Res 1995; 276: 167–181
  • Brumer H, Zhou Q, Baumann MJ, Carlsson K, Teeri TT. Activation of crystalline cellulose surfaces through the chemoenzymatic modification of xyloglucan. J Am Chem Soc 2004; 126: 5715–5721
  • Brummell DA, Harpster MH. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molec Biol 2001; 47: 311–340
  • Buckeridge MS, Crombie HJ, Mendes CJM, Reid JSG, Gidley MJ, Vieira CCJ. A new family of oligosaccharides from the xyloglucan of Hymenaea coubaril L. (Leguminosae) cotyledons. Carbohydr Res 1997; 303: 233–237
  • Buckeridge MS, dos Santos HP, Tine MAS. Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiol Biochem 2000; 38: 141–156
  • Campbell P, Braam J. Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci 1999; 4: 361–366
  • Carpita N, McCann M. The Cell Wall. Biochemistry and Molecular Biology of Plants, B Buchanan, W Gruissem, R Jones. John Wiley & Sons, Inc, Somerset, NJ 2000; 52–108
  • Chambat G, Karmous M, Costes M, Picard M, Joseleau JP. Variation of xyloglucan substitution pattern affects the sorption on celluloses with different degrees of crystallinity. Cellulose 2005; 12: 117–125
  • Chanliaud E, De Silva J, Strongitharm B, Jeronimidis G, Gidley MJ. Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites. Plant J 2004; 38: 27–37
  • Christiernin M, Henriksson G, Lindstrom ME, Brumer H, Teeri TT, Lindstrom T, Laine J. The effects of xyloglucan on the properties of paper made from bleached kraft pulp. Nordic Pulp Paper Res J 2003; 18: 182–187
  • Coessens V, Pintauer T, Matyjaszewski K. Functional polymers by atom transfer radical polymerization. Progr Polymer Sci 2001; 26: 337–377
  • Coutinho, PM, Henrissat, B. 2005. Carbohydrate-Active Enzymes server at URL, , http://afmb.cnrs-mrs.fr/CAZY/.
  • Darley CP, Forrester AM, McQueen-Mason SJ. The molecular basis of plant cell wall extension. Plant Molec Biol 2001; 47: 179–195
  • Davies G, Sinnott ML, Withers SG. Glycosyl transfer. Comprehensive Biol Catal, ML Sinnott. Academic Press, London 1997; I: 119–208
  • de Silva J, Jarman CD, Arrowsmith DA, Stronach MS, Chengappa S, Sidebottom C, Reid JSG. Molecular characterization of a xyloglucan-specific endo-(1-4)-beta-D-glucanase (xyloglucan endotransglycosylase) from nasturtium seeds. Plant J 1993; 3: 701–711
  • Edwards M, Dea ICM, Bulpin PV, Reid JSG. Purification and properties of a novel xyloglucan-specific endo-(1→4)-beta-D-glucanase from germinated nasturtium seeds (Tropaeolum majus L). J Biol Chem 1986; 261: 9489–9494
  • Fanutti C, Gidley MJ, Reid JSG. Action of a pure xyloglucan endo-transglycosylase (formerly called xyloglucan-specific endo-(1-4)-beta-D-glucanase) from the cotyledons of germinated nasturtium seeds. Plant J 1993; 3: 691–700
  • Feng D, Caulfield DF, Sanadi AR. Effect of compatibilizer on the structure-property relationships of Kenaf-fibre/polypropylene composites. Polym Comp 2001; 22: 506–517
  • Fry SC. The structure and functions of xyloglucan. J Exp Bot 1989; 40: 1–11
  • Fry SC. Novel ‘dot-blot’ assays for glycosyl transferases and glycosyl hydrolases: Optimization for xyloglucan endotransglycosylase (XET) activity. Plant J 1997; 11: 1141–1150
  • Fry SC. Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytol 2004; 161: 641–675
  • Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ. Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 1992; 282: 821–828
  • Fry SC, York WS, Albersheim P, Darvill A, Hayashi T, Joseleau JP, Kato Y, Lorences EP, Maclachlan GA, Mcneil M, Mort AJ, Reid JSG, Seitz HU, Selvendran RR, Voragen AGJ, White AR. An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiologia Plantarum 1993; 89: 1–3
  • Gidley MJ, Lillford PJ, Rowlands DW, Lang P, Dentini M, Crescenzi V, Edwards M, Fanutti C, Reid JSG. Structure and solution properties of tamarind-seed polysaccharide. Carbohydr Res 1991; 214: 299–314
  • Greffe L, Bessueille L, Bulone V, Brumer H. Synthesis, preliminary characterization, and application of novel surfactants from highly branched xyloglucan oligosaccharides. Glycobiol 2005; 15: 437–445
  • Gustavsson MT, Persson PV, Iversen T, Martinelle M, Hult K, Teeri TT, Brumer H. Modification of cellulose fibre surfaces by use of a lipase and a xyloglucan endotransglycosylase. Biomacromolec 2005; 6: 196–203
  • Hannuksela T, Holmbom B, Mortha G, Lachenal D. Effect of sorbed galactoglucomannans and galactomannans on pulp and paper handsheet properties, especially strength properties. Nordic Pulp Paper Res J 2004; 19: 237–244
  • Hawker CJ, Wooley KL. The convergence of synthetic organic and polymer chemistries. Science 2005; 309: 1200–1205
  • Hayashi T. Xyloglucans in the primary-cell wall. Ann Rev Plant Physiol Plant Molec Biol 1989; 40: 139–168
  • Hayashi T, Delmer DP. Xyloglucan in the cell-walls of cotton fibre. Carbohydr Res 1988; 181: 273–277
  • Hayashi T, Maclachlan G. Pea xyloglucan and cellulose .1. Macromolecular organization. Plant Physiol 1984; 75: 596–604
  • Hayashi T, Marsden MPF, Delmer DP. Pea xyloglucan and cellulose .5. Xyloglucan–cellulose interactions in vitro and in vivo. Plant Physiol 1987; 83: 384–389
  • Hayashi T, Ogawa K, Mitsuishi Y. Characterization of the adsorption of xyloglucan to cellulose. Plant Cell Physiol 1994a; 35: 1199–1205
  • Hayashi T, Takeda T. Compositional analysis of the oligosaccharide units of xyloglucans from suspension-cultured poplar cells. Biosci Biotechnol Biochem 1994; 58: 1707–1708
  • Hayashi T, Takeda T, Ogawa K, Mitsuishi Y. Effects of the degree of polymerization on the binding of xyloglucans to cellulose. Plant Cell Physiol 1994b; 35: 893–899
  • Henriksson H, Denman SE, Campuzano IDG, Ademark P, Master ER, Teeri TT, Brumer H. N-linked glycosylation of native and recombinant cauliflower xyloglucan endotransglycosylase 16A. Biochem J 2003; 375: 61–73
  • Henriksson Å, Gatenholm P. Controlled assembly of glucuronoxylans onto cellulose fibres. Holzforschung 2001; 55: 494–502
  • Henriksson Å, Gatenholm P. Surface properties of CTMP fibres modified with xylans. Cellulose 2002; 9: 55–64
  • Hensel A, Brummell DA, Hanna R, Maclachlan G. Auxin-dependent breakdown of xyloglucan in cotyledons of germinating nasturtium seeds. Planta 1991; 183: 321–326
  • Hisamatsu M, Impallomeni G, York WS, Albersheim P, Darvill AG. The structure of plant-cell walls .31. A new undecasaccharide subunit of xyloglucans with 2 alpha-L-fucosyl residues. Carbohydr Res 1991; 211: 117–129
  • Hisamatsu M, York WS, Darvill AG, Albersheim P. The structure of plant-cell walls .35. Characterization of 7 xyloglucan oligosaccharides containing from 17 to 20 glycosyl residues. Carbohydr Res 1992; 227: 45–71
  • Hoson T, Masuda Y. Effect of xyloglucan monosaccharide on cell elongation induced by 2,4-dichlorophenoxyacetic acid and indole-3-acetic-acid. Plant Cell Physiol 1991; 32: 777–782
  • Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Molec Graph 1996; 14: 33–38
  • Ikeda S, Nitta Y, Kim BS, Temsiripong T, Pongsawatmanit R, Nishinari K. Single-phase mixed gels of xyloglucan and gellan. Food Hydrocolloids 2004; 18: 669–675
  • Ito H, Nishitani K. Visualization of EXGT-mediated molecular grafting activity by means of a fluorescent-labeled xyloglucan oligomer. Plant Cell Physiol 1999; 40: 1172–1176
  • Johansson P, Brumer H, Baumann MJ, Kallas AM, Henriksson H, Denman SE, Teeri TT, Jones TA. Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. Plant Cell 2004; 16: 874–886
  • Kajiwara K, Mimura M. Conformation analysis of oligosaccharides. Cellulose Commun 1996; 3: 18–22
  • Kallas ÅM, Piens K, Denman SE, Henriksson H, Faldt J, Johansson P, Brumer III H, Teeri TT. Enzymatic properties of native and deglycosylated hybrid aspen xyloglucan endotransglycosylase 16A expressed in Pichia pastoris. Biochem J 2005; 390: 105–113
  • Kalum, L. 1998. in PCT Int. Appl., pp. 25 (Novo Nordisk A/S, Den.), WO.
  • Kato Y, Ito S, Iki K, Matsuda K. Xyloglucan and beta-D-glucan in cell-walls of rice seedlings. Plant Cell Physiol 1982; 23: 351–364
  • Kato Y, Matsuda K. Xyloglucan in the cell-walls of suspension-cultured rice cells. Plant Cell Physiol 1985; 26: 437–445
  • Kiefer LL, York WS, Darvill AG, Albersheim P. Structure of plant-cell walls .27. Xyloglucan isolated from suspension-cultured sycamore cell-walls is o-acetylated. Phytochem 1989; 28: 2105–2107
  • Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie-International Edition 2005; 44: 3358–3393
  • Kooiman P. On the occurence of amyloids in plant seeds. Acta Bot Neerl 1960; 9: 208–219
  • Lang P, Kajiwara K. Investigations of the architecture of tamarind seed polysaccharide in aqueous-solution by different scattering techniques. J Biomater Sci-Polym Edition 1993; 4: 517–528
  • Levy S, Maclachlan G, Staehelin LA. Xyloglucan sidechains modulate binding to cellulose during in vitro binding assays as predicted by conformational dynamics simulations. Plant J 1997; 11: 373–386
  • Levy S, York WS, Stuikeprill R, Meyer B, Staehelin LA. Simulations of the static and dynamic molecular-conformations of xyloglucan – the role of the fucosylated side-chain in surface-specific side-chain folding. Plant J 1991; 1: 195–215
  • Lima DU, Buckeridge MS. Interaction between cellulose and storage xyloglucans: the influence of the degree of galactosylation. Carbohydr Polym 2001; 46: 157–163
  • Lima DU, Loh W, Buckeridge MS. Xyloglucan-cellulose interaction depends on the sidechains and molecular weight of xyloglucan. Plant Physiol Biochem 2004; 42: 389–394
  • Lima DU, Oliveira RC, Buckeridge MS. Seed storage hemicelluloses as wet-end additives in papermaking. Carbohydr Polym 2003; 52: 367–373
  • Linder A, Bergman R, Bodin A, Gatenholm P. Mechanism of assembly of xylan onto cellulose surfaces. Langmuir 2003; 19: 5072–5077
  • Lorences EP, Fry SC. Xyloglucan oligosaccharides with at least 2 alpha-D-xylose residues act as acceptor substrates for xyloglucan endotransglycosylase and promote the depolymerization of xyloglucan. Physiologia Plantarum 1993; 88: 105–112
  • Lu X, Zhang MQ, Rong MZ, Shi G, Yang GC. Self-reinforced melt processable composites of sisal. Composites Sci Technol 2003; 63: 177–186
  • Marathe RM, Annapure US, Singhal RS, Kulkarni PR. Gelling behaviour of polyose from tamarind kernel polysaccharide. Food Hydrocolloids 2002; 16: 423–426
  • Marry M, Cavalier DM, Schnurr JK, Netland J, Yang ZY, Pezeshk V, York WS, Pauly M, White AR. Structural characterization of chemically and enzymatically derived standard oligosaccharides isolated from partially purified tamarind xyloglucan. Carbohydr Polym 2003; 51: 347–356
  • Matsui A, Yokoyama R, Seki M, Ito T, Shinozaki K, Takahashi T, Komeda Y, Nishitani K. AtXTH27 plays an essential role in cell wall modification during the development of tracheary elements. Plant J 2005; 42: 525–534
  • McDougall GJ, Fry SC. Inhibition of auxin-stimulated growth of pea stem segments by a specific nonasaccharide of xyloglucan. Planta 1988; 175: 412–416
  • Michel G, Chantalat L, Duee E, Barbeyron T, Henrissat B, Kloareg B, Dideberg O. The kappa-carrageenase of P-carrageenovora features a tunnel-shaped active site: A novel insight in the evolution of clan-B glycoside hydrolases. Structure 2001; 9: 513–525
  • Millane RP. Molecular and crystal structures of polysaccharides with cellulosic backbones. Front Carbohydr Res 1992; 2: 168–90
  • Miyazaki S, Suisha F, Kawasaki N, Shirakawa M, Yamatoya K, Attwood D. Thermally reversible xyloglucan gels as vehicles for rectal drug delivery. J Controlled Release 1998; 56: 75–83
  • Morris S, Hanna S, Miles MJ. The self-assembly of plant cell wall components by single-molecule force spectroscopy and Monte Carlo modelling. Nanotechnol 2004; 15: 1296–1301
  • Nishitani K. A novel method for detection of endoxyloglucan transferase. Plant Cell Physiol 1992; 33: 1159–1164
  • Nishitani K, Masuda Y. Auxin-induced changes in the cell-wall xyloglucans – effects of auxin on the 2 different subfractions of xyloglucans in the epicotyl cell-wall of vigna-angularis. Plant Cell Physiol 1983; 24: 345–355
  • Nishitani K, Tominaga R. Endoxyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. J Biol Chem 1992; 267: 21058–21064
  • Nitta Y, Kim BS, Nishinari K. Synergistic gel formation of xyloglucan/gellan mixtures as studied by rheology, DSC, and circular dichroism. Biomacromolec 2003; 4: 1654–1660
  • Ogawa K, Hayashi T, Okamura K. Conformational-analysis of xyloglucans. Int J Biol Macromolec 1990; 12: 218–222
  • Ohsumi C, Hayashi T. The oligosaccharide units of the xyloglucans in the cell-walls of bulbs of onion, garlic and their hybrid. Plant Physiol 1994; 35: 963–967
  • Okazawa K, Sato Y, Nakagawa T, Asada K, Kato I, Tomita E, Nishitani K. Molecular cloning and cDNA sequencing of endoxyloglucan transferase, a novel class of glycosyltransferase that mediates molecular grafting between matrix polysaccharides in plant cell walls. J Biol Chem 1993; 268: 25364–25368
  • Patten TE, Matyjaszewski K. Atom transfer radical polymerization and the synthesis of polymeric materials. Adv Mater 1998; 10: 901–915
  • Pauly M, Albersheim P, Darvill A, York WS. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 1999; 20: 629–639
  • Pauly M, Qin Q, Greene H, Albersheim P, Darvill A, York WS. Changes in the structure of xyloglucan during cell elongation. Planta 2001; 212: 842–850
  • Picout DR, Ross-Murphy SB, Errington N, Harding SE. Pressure cell assisted solubilization of xyloglucans: Tamarind seed polysaccharide and detarium gum. Biomacromolec 2003; 4: 799–807
  • Popper ZA, Fry SC. Primary cell wall composition of bryophytes and charophytes. Ann Bot 2003; 91: 1–12
  • Priem B, Chambat G, Ruel K, Joseleau JP. Use of the avidin-biotin complex for specific immobilization of xyloglucan polysaccharides. J Carbohydr Chem 1997; 16: 625–633
  • Puhlmann J, Bucheli E, Swain MJ, Dunning N, Albersheim P, Darvill AG, Hahn MG. Generation of monoclonal-antibodies against plant cell-wall polysaccharides .1. Characterization of a monoclonal-antibody to a terminal alpha-(1-2)-linked fucosyl-containing epitope. Plant Physiol 1994; 104: 699–710
  • Rao PS, Srivastava HC. Tamarind. Industrial Gums-Polysaccharides and Their Derivatives, JN BeMiller. Academic Press, New York 1973; 369–411
  • Reid JSG. Cell-wall storage carbohydrates in seeds-biochemistry of the seed gums and hemicelluloses. Adv Botan Res Incorp Adv Plant Pathol 1985; 11: 125–155
  • Ren YL, Picout DR, Ellis PR, Ross-Murphy SB. Solution properties of the xyloglucan polymer from Afzelia africana. Biomacromolec 2004; 5: 2384–2391
  • Ring SG, Selvendran RR. An arabinogalactoxyloglucan from the cell-wall of Solanum-tuberosum. Phytochem 1981; 20: 2511–2519
  • Rose JKC, Bennett AB. Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci 1999; 4: 176–183
  • Rose JKC, Braam J, Fry SC, Nishitani K. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant Cell Physiol 2002; 43: 1421–1435
  • Salazar-Montoya JA, Ramos-Ramirez EG, Delgado-Reyes VA. Changes of the dynamic properties with different saccharose and of tamarind (Tamarindus indica) gel polysaccharide concentrations. Carbohydr Polym 2002; 49: 387–391
  • Schröder R, Atkinson RG, Langenkamper G, Redgwell RJ. Biochemical and molecular characterisation of xyloglucan endotransglycosylase from ripe kiwifruit. Planta 1998; 204: 242–251
  • Shankaracharya NB. Tamarind – chemistry, technology and uses – a critical appraisal. J Food Sci Technol 1998; 35: 193–208
  • Shipp DA. Living radical polymerization: Controlling molecular size and chemical functionality in vinyl polymers. J Macromolec Sci-Polym Rev 2005; C45: 171–194
  • Shirakawa M, Yamatoya K, Nishinari K. Tailoring of xyloglucan properties using an enzyme. Food Hydrocolloids 1998; 12: 25–28
  • Sims IM, Gane AM, Dunstan D, Allan GC, Boger DV, Melton LD, Bacic A. Rheological properties of xyloglucans from different plant species. Carbohydr Polym 1998; 37: 61–69
  • Sims IM, Munro SLA, Currie G, Craik D, Bacic A. Structural characterisation of xyloglucan secreted by suspension-cultured cells of Nicotiana plumbaginifolia. Carbohydr Res 1996; 293: 147–172
  • Spronk BA, Rademaker GJ, Haverkamp J, Thomas-Oates JE, Vincken JP, Voragen AGJ, Kamerling JP, Vliegenthart JFG. Dimers of a GFG hexasaccharide occur in apple fruit xyloglucan. Carbohydr Res 1997; 305: 233–242
  • Steele NM, Sulová Z, Campbell P, Braam J, Farkaš V, Fry SC. Ten isoenzymes of xyloglucan endotransglycosylase from plant cell walls select and cleave the donor substrate stochastically. Biochem J 2001; 355: 671–679
  • Sulová Z, Farkaš V. Kinetic evidence of the existence of a stable enzyme-glycosyl intermediary complex in the reaction catalyzed by endotransglycosylase. Gen Physiol Biophys 1998; 17: 133–142
  • Sulová Z, Takacova M, Steele NM, Fry SC, Farkaš V. Xyloglucan endotransglycosylase: evidence for the existence of a relatively stable glycosyl-enzyme intermediate. Biochem J 1998; 330: 1475–1480
  • Tabuchi A, Kamisaka S, Hoson T. Purification of xyloglucan hydrolase/endotransferase from cell walls of azuki bean epicotyls. Plant Cell Physiol 1997; 38: 653–658
  • Tabuchi A, Mori H, Kamisaka S, Hoson T. A new type of endo-xyloglucan transferase devoted to xyloglucan hydrolysis in the cell wall of azuki bean epicotyls. Plant Cell Physiol 2001; 42: 154–161
  • Taylor IEP, Atkins EDT. X-ray-diffraction studies on the xyloglucan from tamarind (Tamarindus-indica) seed. FEBS Lett 1985; 181: 300–302
  • Teeri TT, Brumer H. Discovery, characterisation and applications of enzymes from the wood-forming tissues of poplar: Glycosyl transferases and xyloglucan endotransglycosylases. Biocatal Biotransform 2003; 21: 173–179
  • Thompson JE, Fry SC. Restructuring of wall-bound xyloglucan by transglycosylation in living plant cells. Plant J 2001; 26: 23–34
  • Thompson JE, Smith RC, Fry SC. Xyloglucan undergoes interpolymeric transglycosylation during binding to the plant cell wall in vivo: Evidence from C-13/H-3 dual labelling and isopycnic centrifugation in caesium trifluoroacetate. Biochem J 1997; 327: 699–708
  • Tine MAS, de Lima DU, Buckeridge MS. Galactose branching modulates the action of cellulase on seed storage xyloglucans. Carbohydr Polym 2003; 52: 135–141
  • Wang Q, Ellis PR, Ross-Murphy SB, Burchard W. Solution characteristics of the xyloglucan extracted from Detarium senegalense Gmelin. Carbohydr Polym 1997; 33: 115–124
  • Wang Q, Ellis PR, RossMurphy SB, Reid JSG. A new polysaccharide from a traditional Nigerian plant food: Detarium senegalense gmelin. Carbohydr Res 1996; 284: 229–239
  • Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD. The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proceedings of the National Academy of Sciences of the United States of America 2002; 99: 3340–3345
  • Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ. Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydr Res 1998; 307: 299–309
  • Whitney SEC, Gothard MGE, Mitchell JT, Gidley MJ. Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls. Plant Physiol 1999; 121: 657–663
  • Vierhuis E, York WS, Kolli VSK, Vincken JP, Schols HA, Van Alebeek GJWM, Voragen AGJ. Structural analyses of two arabinose containing oligosaccharides derived from olive fruit xyloglucan: XXSG and XLSG. Carbohydr Res 2001; 332: 285–297
  • Wilchek M, Bayer EA. Foreword and introduction to the book (strept)avidin-biotin system. Biomolec Engineer 1999; 16: 1–4
  • Vincken JP, Beldman G, Niessen WMA, Voragen AGJ. Degradation of apple fruit xyloglucan by endoglucanase. Carbohydr Polym 1996a; 29: 75–85
  • Vincken JP, Beldman G, Voragen AGJ. Substrate specificity of endoglucanases: What determines xyloglucanase activity?. Carbohydr Res 1997a; 298: 299–310
  • Vincken JP, Dekeizer A, Beldman G, Voragen AGJ. Fractionation of xyloglucan fragments and their interaction with cellulose. Plant Physiol 1995; 108: 1579–1585
  • Vincken JP, Wijsman AJM, Beldman G, Niessen WMA, Voragen AGJ. Potato xyloglucan is built from XXGG-type subunits. Carbohydr Res 1996b; 288: 219–232
  • Vincken JP, York WS, Beldman G, Voragen AGJ. Two general branching patterns of xyloglucan, XXXG and XXGG. Plant Physiol 1997b; 114: 9–13
  • Vissenberg K, Fry SC, Pauly M, Hofte H, Verbelen JP. XTH acts at the microfibril-matrix interface during cell elongation. J Exp Bot 2005a; 56: 673–683
  • Vissenberg K, Fry SC, Verbelen JP. Root hair initiation is coupled to a highly localized increase of xyloglucan endotransglycosylase action in arabidopsis roots. Plant Physiol 2001; 127: 1125–1135
  • Vissenberg K, Martinez-Vilchez IM, Verbelen JP, Miller JG, Fry SC. In vivo colocalization of xyloglucan endotransglycosylase activity and its donor substrate in the elongation zone of arabidopsis roots. Plant Cell 2000; 12: 1229–1237
  • Vissenberg K, Oyama M, Osato V, Yokoyama R, Verbelen JP, Nishitani K. Differential expression of AtXTH17, AtXTH18, AtXTH19 and AtXTH20 genes in Arabidopsis roots. Physiological roles in specification in cell wall construction. Plant Cell Physiol 2005b; 46: 192–200
  • Vocadlo DJ, Davies GJ, Laine R, Withers SG. Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 2001; 412: 835–838
  • Yamanaka S, Mimira M, Urakawa H, Kajiwara K, Shirakawa M, Yamatoya K. Conformation of tamarind seed xyloglucan oligomers. Sen'i Gakkaishi 1999; 55: 590–596
  • Yamanaka S, Yuguchi Y, Urakawa H, Kajiwara K, Shirakawa M, Yamatoya K. Gelation of tamarind seed polysaccharide xyloglucan in the presence of ethanol. Food Hydrocolloids 2000; 14: 125–128
  • Yamatoya K, Shirakawa M. Xyloglucan: Structure, rheological properties, biological functions and enzymatic modification. Curr Trends Polym Sci 2003; 8: 27–72
  • Yokoyama R, Nishitani K. Functional diversity of xyloglucan-related proteins and its implications in the cell wall dynamics in plants. Plant Biol 2000; 2: 598–604
  • Yokoyama R, Nishitani K. A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of arabidopsis. Plant Cell Physiol 2001; 42: 1025–1033
  • Yokoyama R, Rose JKC, Nishitani K. A surprising diversity and abundance of xyloglucan endotransglucosylase/hydrolases in rice. Classification and expression analysis. Plant Physiol 2004; 134: 1088–1099
  • York WS, Harvey LK, Guillen R, Albersheim P, Darvill AG. The structure of plant-cell walls .36. Structural-analysis of Tamarind seed xyloglucan oligosaccharides using beta-galactosidase digestion and spectroscopic methods. Carbohydr Res 1993; 248: 285–301
  • York WS, Kolli VSK, Orlando R, Albersheim P, Darvill AG. The structures of arabinoxyloglucans produced by solanaceous plants. Carbohydr Res 1996; 285: 99–128
  • York WS, Vanhalbeek H, Darvill AG, Albersheim P. The structure of plant-cell walls .29. Structural-analysis of xyloglucan oligosaccharides by H-1-Nmr spectroscopy and fast-atom-bombardment mass-spectrometry. Carbohydr Res 1990; 200: 9–31
  • Yuguchi Y, Kumagai T, Wu M, Hirotsu T, Hosokawa J. Gelation of xyloglucan in water/alcohol systems. Cellulose 2004; 11: 203–208
  • Zhou, Q, Baumann, MJ, Teeri, TT, Brumer, III, H. 2005a. The influence of surface chemical composition on the adsorption of xyloglucan to chemical and mechanical pulps. Carbohydr Polym, in press.
  • Zhou Q, Greffe L, Baumann MJ, Malmström E, Teeri TT, Brumer III H. The use of xyloglucan as a molecular anchor for the elaboration of polymers from cellulose surfaces: a general route for the design of biocomposites. Macromolec 2005b; 38: 3547–3549

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.