340
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Improvement of activity and stability of Rhizomucor miehei lipase by immobilization on nanoporous aluminium oxide and potassium sulfate microcrystals and their applications in the synthesis of aroma esters

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 210-223 | Received 26 May 2018, Accepted 27 Sep 2018, Published online: 15 Nov 2018

References

  • Abdul MFM, Attan N, Widodo N, Aboul-Enein HY, Abdul Wahab R. 2018. Rhizomucor miehei lipase immobilized on reinforced chitosan–chitin nanowhiskers support for synthesis of ugenyl benzoate. Prep Biochem Biotechnol. 48:92–102.
  • Acosta A, Filice M, Fernandez-Lorente G, Palomo JM, Guisan JM. 2011. Kinetically controlled synthesis of monoglyceryl esters from chiral and prochiral acids methyl esters catalyzed by immobilized Rhizomucor miehei lipase. Bioresour Technol. 102:507–512.
  • Adiga SP, Jin C, Curtiss LA, Monteiro-Riviere NA, Narayan RJ. 2009. Nanoporous membranes for medical and biological applications. Wires Nanomed Nanobiotechnol. 1:568–581.
  • Alagöz D, Tükel SS, Yildirim D. 2016. Immobilization of pectinase on silica-based supports: impacts of particle size and spacer arm on the activity. Int J Biol Macromol. 87:426–432.
  • Anbu P. 2014. Characterization of an extracellular lipase by Pseudomonas koreensis BK-l07 isolated from soil. Prep Biochem Biotechnol.Biotechnol. 44:266–280.
  • Ansorge-Schumacher MB, Thum O. 2013. Immobilised lipases in the cosmetics industry. Chem Soc Rev. 42:6475–6490.
  • Ateş S, Baran E, Yazıcı B. 2018. The nanoporous anodic alumina oxide formed by two-step anodization. Thin Solid Films. 648:94–102.
  • Badgujar KC, Sasaki T, Bhanage BM. 2015. Synthesis of lipase nano-bio-conjugates as an efficient biocatalyst: characterization and activity-stability studies with potential biocatalytic applications. RSC Adv. 5:55238–55251.
  • Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R. 2015. Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol Adv. 33:435–456.
  • Betancor L, Fuentes M, Dellamora-Ortiz G, Lopez-Gallego F, Hidalgo A, Alonso-Morales N, Mateo C, Guisan JM, Fernandez-Lafuente R. 2005. Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles. J Mol Catal B: Enzym. 32:97–101.
  • Bradford MMA. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254.
  • Brady L, Brzozowski AM, Derewenda ZS, Dodson E, Dodson G, Tolley S, Turkenburg JP, Christiansen L, Huge-Jensen B, Norskov L, et al. 1990. A serine protease triad forms the catalytic center of a triacylglycerol lipase. Nature. 343:767–770.
  • Brocca S, Secundo F, Ossola M, Alberghina L, Carrea G, Lotti M. 2003. Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes. Protein Sci. 12:2312–2319.
  • Chen Z, Zhang H. 2005. Mechanisms for formation of a one-dimensional horizontal anodic aluminum oxide nanopore array on a si substrate. J Electrochem Soc. 152:D227–D231.
  • Chiaradia V, Valério A, de Oliveira D, Araújo PHH, Sayer C. 2016. Simultaneous single-step immobilization of Candida antarctica lipase B and incorporation of magnetic nanoparticles on poly(urea-urethane) nanoparticles by interfacial miniemulsion polymerization. J Mol Catal B: Enzym. 131:31–35.
  • Chulalaksananukul W, Condoret JS, Combes D. 1992. Kinetics of geranyl acetate synthesis by lipase-catalysed transesterification in n-hexane. Enzyme Microb Technol. 14:293–298.
  • Cipolatti EP, Valerio A, Henriques RO, Moritz DE, Ninow JL, Freire DMG, Manoel EA, Fernandez-Lafuente R, de Oliveira D. 2016. Nanomaterials for biocatalyst immobilization - state of the art and future trends. RSC Adv. 6:104675–104692.
  • Derewenda U, Brzozowski AM, Lawson DM, Derewenda ZS. 1992. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochem. 31:1532–1541.
  • Dhathathreyan A. 2011. Real-time monitoring of invertase activity immobilized in nanoporous aluminum oxide. J Phys Chem B. 115:6678–6682.
  • Fan Y, Ke C, Su F, Li K, Yan Y. 2017. Various types of lipases immobilized on dendrimer-functionalized magnetic nanocomposite and application in biodiesel preparation. Energy Fuels. 31:4372–4381.
  • Fernández-Lorente G, Palomo JM, Fuentes M, Mateo C, Guisán JM, Fernández-Lafuente R. 2003. Self-assembly of Pseudomonas fluorescens lipase into bimolecular aggregates dramatically affects functional properties. Biotechnol Bioeng. 82:232–237.
  • Fortes CCS, Daniel-da-Silva AL, Xavier AMRB, Tavares APM. 2017. Optimization of enzyme immobilization on functionalized magnetic nanoparticles for laccase biocatalytic reactions. Chem Eng Process. 117:1–8.
  • Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. 2011. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal. 353:2885–2904.
  • Gaur R, Gupta GN, Vamsikrishnan M, Khare SK. 2008. Protein-coated microcrystals of Pseudomonas aeruginosa PseA lipase. Appl Biochem Biotechnol. 151:160–166.
  • Gupta A, Dhakate SR, Pahwa M, Sinha S, Chand S, Mathur RB. 2013. Geranyl acetate synthesis catalyzed by Thermomyces lanuginosus lipase immobilized on electrospun polyacrylonitrile nanofiber membrane. Process Biochem. 48:124–132.
  • Gupta MN, Kaloti M, Kapoor M, Solanki K. 2011. Nanomaterials as matrices for enzyme immobilization. Artif Cells Blood Subst Immobilization Biotechnol. 39:98–109.
  • Hanefeld U, Gardossi L, Magner E. 2009. Understanding enzyme immobilisation. Chem Soc Rev. 38:453–468.
  • Heilmann A, Teuscher N, Kiesow A, Janasek D, Spohn U. 2003. Nanoporous aluminum oxide as a novel support material for enzyme biosensors. J Nanosci Nanotech. 3:375–379.
  • Hirata DB, Albuquerque TL, Rueda N, Virgen-Ortíz JJ, Tacias-Pascacio VG, Fernandez-Lafuente R. 2016. Evaluation of different immobilized lipases in transesterification reactions using tributyrin: advantages of the heterofunctional octyl agarose beads. J Mol Catal B: Enzym. 133:117–123.
  • Horng YY, Hsu YK, Ganguly A, Chen CC, Chen LC, Chen KH. 2009. Direct-growth of polyaniline nanowires for enzyme-immobilization and glucose detection. Electrochem Commun. 11:850–853.
  • Houde A, Kademi A, Leblanc D. 2004. Lipases and their industrial applications: an overview. Appl Biochem Biotechnol. 118:155–170.
  • Hua D, Xu P. 2011. Recent advances in biotechnological production of 2-phenylethanol. Biotechnol Adv. 29:654–660.
  • Huang S, Li X, Xu L, Ke C, Zhang R, Yan Y. 2015. Protein-coated microcrystals from Candida rugosa lipase: its immobilization characterization and application in resolution of racemic ibuprofen. Appl Biochem Biotechnol. 177:36–47.
  • Huang XJ, Xu ZK, Wan LS, Innocent C, Seta P. 2006. Electrospun nanofibers modified with phospholipid moieties for enzyme immobilization. Macromol Rapid Commun. 27:1341–1345.
  • Ingham CJ, ter Maat J, de Vos WM. 2012. Where bio meets nano: the many uses for nanoporous aluminum oxide in biotechnology. Biotechnol Adv. 30:1089–1099.
  • Jaeger KE, Reetz MT. 1998. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16:396–403.
  • Jia H, Zhu G, Wang P. 2003. Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol Bioeng. 84:406–414.
  • Johnson AK, Zawadzka AM, Deobald LA, Crawford RL, Paszczynski AJ. 2008. Novel method for immobilization of enzymes to magnetic nanoparticles. J Nanopart Res. 10:1009–1025.
  • Jung J, Lim S. 2013. ZnO nanowire-based glucose biosensors with different coupling agents. Appl Surf Sci. 265:24–29.
  • Kasche V, Haufler U, Riechmann L. 1987. Equilibrium and kinetically controlled synthesis with enzymes: semisynthesis of penicillins and peptides. Methods Enzymol. 136:280–292.
  • Kazlauskas S, Kiriliauskaitė V, Kalėdienė L, Bendikienė V. 2015. High performance protein-coated microcrystals of Rhizomucor miehei lipase: preparation and application for organic synthesis. Appl Biochem Biotechnol. 176:321–332.
  • Khan FI, Lan D, Durrani R, Huan W, Zhao Z, Wang Y. 2017. The lid domain in lipases: structural and functional determinant of enzymatic properties. Front Bioeng Biotechnol. 5:16.
  • Knezevic Z, Milosavic N, Bezbradica D, Jakovljevic Z, Prodanovic R. 2006. Immobilization of lipase from Candida rugosa on Eupergit® C supports by covalent attachment. Biochem Eng J. 30:269–278.
  • Kreiner M, Moore BD, Parker MC. 2001. Enzyme-coated micro-crystals: a 1-step method for high activity biocatalyst preparation. Chem Commun. 0:1096–1097.
  • Kreiner M, Parker MC. 2005. Protein-coated microcrystals for use in organic solvents: application to oxidoreductases. Biotechnol Lett. 27:1571–1577.
  • Manoel EA, dos Santos JCS, Freire DMG, Rueda N, Fernandez-Lafuente R. 2015. Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme Microb Technol. 71:53–57.
  • Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. 2007. Improvement of enzyme activity stability and selectivity via immobilization techniques. Enzyme Microb Technol. 40:1451–1463.
  • Md Jani AM, Losic D, Voelcker NH. 2013. Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications. Prog Mater Sci. 58:636–704.
  • Mohammadi M, Habibi Z, Dezvarei S, Yousefi M, Samadi S, Ashjari M. 2014. improvement of the stability and selectivity of Rhizomucor miehei lipase immobilized on silica nanoparticles: selective hydrolysis of fish oil using immobilized preparations. Process Biochem. 49:1314–1323.
  • Noel M, Combes D. 2003. Effects of temperature and pressure on Rhizomucor miehei lipase stability. J Biotechnol. 102:23–32.
  • Norek M, Stępniowski WJ, Siemiaszko D. 2016. Effect of ethylene glycol on morphology of anodic alumina prepared in hard anodization. J Electroanal Chem. 762:20–28.
  • Ozyilmaz G, Yağız E. 2012. Isoamylacetate production by entrapped and covalently bound Candida rugosa and porcine pancreatic lipases. Food Chem. 135:2326–2332.
  • Palomo JM, Fuentes M, Fernández-Lorente G, Mateo C, Guisan JM, Fernández-Lafuente R. 2003. General trend of lipase to self-assemble giving bimolecular aggregates greatly modifies the enzyme functionality. Biomacromolecules. 4:1–6.
  • Palomo JM, Muñoz G, Fernández-Lorente G, Mateo C, Fernández-Lafuente R, Guisán JM. 2002. Interfacial adsorption of lipases on very hydrophobic support (octadecyl–sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J Mol Catal B: Enzym. 19–20:279–286.
  • Palomo JM, Ortiz C, Fuentes M, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. 2004. Use of immobilized lipases for lipase purification via specific lipase-lipase interactions. J Chromatogr A. 1038:267–273.
  • Pencreac'h G, Baratti JC. 1996. Hydrolysis of p-Nitrophenyl palmitate in n-heptane by the Pseudomonas cepacia lipase: a simple test for the determination of lipase activity in organic media. Enzyme Microb Technol. 18:417–422.
  • Pencreac’h G, Leullier M, Baratti JC. 1997. Properties of free and immobilized lipase from Pseudomonas cepacia. Biotechnol Bioeng. 56:181–189.
  • Poinern GEJ, Ali N, Fawcett D. 2011. Progress in nano-engineered anodic aluminum oxide membrane development. Mater. 4:487–526.
  • Popat KC, Mor G, Grimes CA, Desai TA. 2004. surface modification of nanoporous alumina surfaces with poly(ethylene glycol). Langmuir. 20:8035–8041.
  • Poulsen KR, Snabe T, Petersen EI, Fojan P, Neves-Petersen MT, Wimmer R, Petersen SB. 2005. Quantization of pH: evidence for acidic activity of triglyceride lipases. Biochem. 44:11574–11580.
  • Prasad S, Roy I. 2018. Converting enzymes into tools of industrial importance. Recent Pat Biotechnol. 12:33–56.
  • Rodrigues RC, Fernandez-Lafuente R. 2010. Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. J Mol Catal B: Enzym. 66:15–32.
  • Rodrigues RC, Ortiz C, Berenguer-Murcia A, Torres R, Fernandez-Lafuente R. 2013. Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev. 42:6290–6307.
  • Sarda L, Desnuelle P. 1958. Action de la Lipase Pancréatique sur les Esters en Emulsion Biochim. Biophys Acta. 30:513–521.
  • Secundo F. 2013. Conformational changes of enzymes upon immobilisation. Chem Soc Rev. 42:6250–6261.
  • Sheldon RA, van Pelt S. 2013. Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev. 42:6223–6235.
  • Silva C, Martins M, Jing S, Fu J, Cavaco-Paulo A. 2018. Practical insights on enzyme stabilization. Crit Rev Biotechnol. 38:335–350.
  • Stepankova V, Bidmanova S, Koudelakova T, Prokop Z, Chaloupkova R, Damborsky J. 2013. Strategies for stabilization of enzymes in organic solvents. ACS Catal. 3:2823–2836.
  • Stroeve P, Ileri N. 2011. Biotechnical and other applications of nanoporous membranes. Trends Biotechnol. 29:259–266.
  • Sun J, Lee LWW, Liu SQ. 2014. Biosynthesis of flavour-active esters via lipase-mediated reactions and mechanisms. Aust J Chem. 67:1373–1381.
  • Velasco-Lozano S, López-Gallego F, Rocha-Martin J, Guisán JM, Favela-Torres E. 2016. Improving enantioselectivity of lipase from Candida rugosa by carrier-bound and carrier-free immobilization. J Mol Catal B: Enzym. 130:32–39.
  • Verger R. 1997. ‘Interfacial activation’ of lipases: facts and artifacts. Trends Biotechnol. 15:32–38.
  • Wang P. 2006. Nanoscale biocatalyst systems. Curr Opin Biotechnol. 17:574–579.
  • Wang M, Meng G, Huang Q, Li M, Li Z, Tang C. 2011. Fluorescence detection of trace PCB101 based on PITC immobilized on porous AAO membrane. Analyst. 136:278–281.
  • Wielechowska M, Plenkiewicz J. 2005. Lipase-catalyzed separation of the enantiomers of 1-substituted-3-arylthio-2-propanols. Tetrahedron: asymmetry. 16:1199–1205.
  • Xiong J, Huang Y, Zhang H, Hou L. 2014. Lipase-catalyzed transesterification synthesis of geranyl acetate in organic solvents and its kinetics. FSTR Res. 20:207–216.
  • Xu X, Qi X, Wang X, Wang X, Wang Q, Yang H, Fu Y, Yao S. 2017. Highly efficient enzyme immobilization by nanocomposites of metal organic coordination polymers and carbon nanotubes for electrochemical biosensing. Electrochem Commun. 79:18–22.
  • Yadav MG, Kavadia MR, Vadgama RN, Odaneth AA, Lali AM. 2017. Green enzymatic production of glyceryl monoundecylenate using immobilized Candida antarctica lipase B. Prep Biochem Biotechnol. 47:1050–1058.
  • Yang Z, Si S, Zhang C. 2008. Study on the activity and stability of urease immobilized onto nanoporous alumina membranes. Microporous Mesoporous Mater. 111:359–366.
  • Yildirim D, Tükel SS. 2013. Immobilized Pseudomonas sp lipase: a powerful biocatalyst for asymmetric acylation of (±)-2-amino-1-phenylethanols with vinyl acetate. Process Biochem. 48:819–830.
  • Yildirim D, Tükel SS. 2014. Asymmetric ammonolysis of (R/S)-mandelic acid by immobilized lipases via direct amidation of mandelic acid in biphasic media. Biocatal Biotransform. 32:251–258.
  • Zaak H, Siar E-H, Kornecki JF, Fernandez-Lopez L, Pedrero SG, Virgen-Ortíz JJ, Fernandez-Lafuente R. 2017. Effect of immobilization rate and enzyme crowding on enzyme stability under different conditions. The case of lipase from Thermomyces lanuginosus immobilized on octyl agarose beads. Process Biochem. 56:117–123.
  • Zhang WW, Jia JQ, Wang N, Hu CL, Yang SY, Yu XQ. 2015. Improved activity of lipase immobilized in microemulsion-based organogels for (R S)-ketoprofen ester resolution: long-term stability and reusability. Biotechnol Rep. 7:1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.