309
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Purification and characterization of α-amylase from Paenibacillus sp. D9 and Escherichia coli recombinants

, ORCID Icon, &
Pages 24-34 | Received 17 Feb 2019, Accepted 03 Jun 2019, Published online: 19 Jun 2019

References

  • Abd-Elhalem BT, El-Sawy M, Gamal RF, Abou-Taleb KA. 2015. Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Ann Agric Sci. 60:193–202.
  • Abdel-Fattah YR, Soliman NA, El-Toukhy NM, El-Gendi H, Ahmed RS. 2013. Production, purification, and characterization of thermostable α-amylase produced by Bacillus licheniformis isolate AI20. J Chem. 2013:673173.
  • Aguilar G, Morlon-Guyot J, Trejo-Aguilar B, Guyot J. 2000. Purification and characterization of an extracellular α-amylase produced by Lactobacillus manihotivorans LMG 18010 T, an amylolytic lactic acid bacterium. Enzyme Microb Technol. 27:406–413.
  • Annamalai N, Thavasi R, Vijayalakshmi S, Balasubramanian T. 2011. Extraction, purification and characterization of thermostable, alkaline tolerant α-amylase from Bacillus cereus. Indian J Microbiol. 51:424–429.
  • Antranikian G. 1992. Microbial degradation of starch. In Winkelmann G, editor. Microbial degradation of natural products. Weinheim: VCH Verlagsgesellschaft; pp. 27–56.
  • Asoodeh A, Chamani J, Lagzian M. 2010. A novel thermostable, acidophilic α-amylase from a new thermophilic “Bacillus sp. Ferdowsicous” isolated from Ferdows hot mineral spring in Iran: purification and biochemical characterization. Int J Biol Macromol. 46:289–297.
  • Avcı A, Adem D, İnan İ, Yüksel S, Şahin KG, Kalkan Z. 2016. Production of amylase by a novel Bacillus sp. ZBP10 in submerged fermentation. GIDA. 41(3):131–136.
  • Bashir R, Syed Q, Mumtaz MW, Anwar F, Saari N, Adnan A. 2014. Growth kinetics, purification and characterization of α-amylase produced from Bacillus licheniformis DSM-1969 using lignocellulosic banana waste as an elicitor. BioResources. 9:6791–6804.
  • Božić N, Lončar N, Slavić MŠ, Vujčić Z. 2017. Raw starch degrading α-amylases: an unsolved riddle. Amylase. 1:12–25.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254.
  • Cavalcante Braga AR, Manera AP, da Costa Ores J, Sala L, Maugeri F, Juliano Kalil S. 2013. Kinetics and thermal properties of crude and purified β-galactosidase with potential for the production of galactooligosaccharides. Food Technol Biotechnol. 51:45–52.
  • Chakraborty S, Jana S, Zhang L, Kokare C. 2015. A novel α-amylase from haloalkalphlic marine Nocardiopsis sp. strain B2: purification and characterization. J Pharm Sci Technol. 5:19–24.
  • Chakraborty S, Raut G, Khopade A, Mahadik K, Kokare C. 2012. Study on calcium ion independent α-amylase from haloalkaliphilic marine Streptomyces strain A3. Indian J Biotechnol. 11:427–437.
  • Das K, Doley R, Mukherjee AK. 2004. Purification and biochemical characterization of a thermostable, alkaliphilic, extracellular α‐amylase from Bacillus subtilis DM‐03, a strain isolated from the traditional fermented food of India. Biotechnol Appl Biochem. 40:291–298.
  • Dey TB, Kumar A, Banerjee R, Chandna P, Kuhad RC. 2016. Improvement of microbial α-amylase stability: strategic approaches. Process Biochem. 51:1380–1390.
  • El-Fallal A, Dobara MA, El-Sayed A, Omar N. 2012. Starch and microbial α-amylases: from concepts to biotechnological applications. Chapter 21. In: Chang C-F, editor. Carbohydrates-comprehensive studies on glycobiology and glycotechnology. London: Intech Open Science; p. 460–488.
  • Flory SM, Rajamani R, Bheeman D. 2017. Optimization of alpha amylase for better dough preparation. J Microbiol Biotechnol Food Sci. 6:1272.
  • Ganesh A, Lin J. 2009. Diesel degradation and biosurfactant production by Gram-positive isolates. Afr J Biotechnol. 8:5847–5854.
  • Gangadharan D, Nampoothiri KM, Sivaramakrishnan S, Pandey A. 2009. Biochemical characterization of raw-starch-digesting alpha amylase purified from Bacillus amyloliquefaciens. Appl Biochem Biotechnol. 158:653–662.
  • Gopinath SC, Anbu P, Arshad M, Lakshmipriya T, Voon CH, Hashim U, Chinni SV. 2017. Biotechnological processes in microbial amylase production. BioMed Res Int. 2017:1272193.
  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B. 2003. Microbial α-amylases: a biotechnological perspective. Process Biochem. 38:1599–1616.
  • Hussain I, Siddique F, Mahmood MS, Ahmed SI. 2013. A review of the microbiological aspect of α-amylase production. Int J Agric Biol. 15:1029–1034.
  • Ikram-Ul-Haq HU, Mahmood Z, Javed MM. 2012. Solid state fermentation for the production of α-amylase by Paenibacillus amylolyticus. Pak J Botany. 44:341–346.
  • Jana M, Maity C, Samanta S, Pati BR, Islam SS, Mohapatra PKD, Mondal KC. 2013. Salt-independent thermophilic α-amylase from Bacillus megaterium VUMB109: an efficacy testing for preparation of maltooligosaccharides. Ind Crops Prod. 41:386–391.
  • Jeza S, Maseko S, Lin J. 2018. Purification and characterization of exo-inulinase from Paenibacillus sp. d9 strain. Protein J. 37:70–81.
  • Khajeh K, Naderi-Manesh H, Ranjbar B, Akbar Moosavi-Movahedi A, Nemat-Gorgani M. 2001. Chemical modification of lysine residues in Bacillus α-amylases: effect on activity and stability. Enzyme Microb Technol. 28:543–549.
  • Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680.
  • Li Z, Su L, Duan X, Wu D, Wu J. 2017. Efficient expression of maltohexaose-forming α-amylase from Bacillus stearothermophilus in Brevibacillus choshinensis SP3 and its use in maltose production. BioMed Res Int. 2017:5479762.
  • Lineweaver H, Burk D. 1934. The determination of enzyme dissociation constants. J Am Chem Soc. 56:658–666.
  • Liu XD, Xu Y. 2008. A novel raw starch digesting α-amylase from a newly isolated Bacillus sp. YX-1: purification and characterization. Bioresour Technol. 99:4315–4320.
  • Mehta D, Satyanarayana T. 2016. Bacterial and archaeal α-amylases: diversity and amelioration of the desirable characteristics for industrial applications. Front Microbiol. 7:1129.
  • Mihajlovski K, Radovanović Ž, Carević M, Dimitrijević-Branković S. 2018. Valorization of damaged rice grains: optimization of bioethanol production by waste brewer’s yeast using an amylolytic potential from the Paenibacillus chitinolyticus CKS1. Fuel. 224:591–599.
  • Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 31:426–428.
  • Park J-T, Suwanto A, Tan I, Nuryanto T, Lukman R, Wang K, Jane J-l. 2014. Molecular cloning and characterization of a thermostable α-amylase exhibiting an unusually high activity. Food Sci Biotechnol. 23:125–132.
  • Rajesh T, Kim YH, Choi Y-K, Jeon JM, Kim HJ, Park S-H, Park H-Y, Choi K-Y, Kim H, Kim HJ, et al. 2013. Identification and functional characterization of an α-amylase with broad temperature and pH stability from Paenibacillus sp. Appl Biochem Biotechnol. 170:359–369.
  • Rigoldi F, Donini S, Redaelli A, Parisini E, Gautieri A. 2018. Review: engineering of thermostable enzymes for industrial applications. APL Bioeng. 2:011501.
  • Sachdev S, Ojha SK, Mishra S. 2016. Bacillus Spp. amylase: production, isolation, characterisation and its application. Int J Appl Sci Biotechnol. 4:3–14.
  • Sambrook J, EF, Fritsch, T. Maniatis. 1989. Molecular cloning: a laboratory manual. New York: Cold spring harbor laboratory press.
  • Sharma A, Satyanarayana T. 2012. Cloning and expression of acidstable, high maltose-forming, Ca 2+-independent α-amylase from an acidophile Bacillus acidicola and its applicability in starch hydrolysis. Extremophiles. 16:515–522.
  • Sharma A, Satyanarayana T. 2013. Microbial acid-stable α-amylases: characteristics, genetic engineering and applications. Process Biochem. 48:201–211.
  • Sindhu R, Binod P, Madhavan A, Beevi US, Mathew AK, Abraham A, Pandey A, Kumar V. 2017. Molecular improvements in microbial α-amylases for enhanced stability and catalytic efficiency. Bioresour Technol. 245:1740–1748.
  • Singh PK, Singh AK, Kumar Y. 2018. Kinetics and thermodynamic studies of partially purified alpha amylase produced from Bacillus altitudins. World J Pharm Pharm Sci. 7:1362–1376.
  • Sundarram A, Murthy TPK. 2014. α-Amylase production and applications: a review. J Appl Environ Microbiol. 2:166–175.
  • Tanyildizi MS, Özer D, Elibol M. 2005. Optimization of α-amylase production by Bacillus sp. using response surface methodology. Process Biochem. 40:2291–2296.
  • Tsusaki K, Watanabe H, Yamamoto T, Nishimoto T, Chaen H, Fukuda S. 2012. Purification and characterization of highly branched α-glucan–producing enzymes from Paenibacillus sp. PP710. Biosci Biotechnol Biochem. 76:721–731.
  • Wu G, Qin Y, Cheng Q, Liu Z. 2014. Characterization of a novel alkali-stable and salt-tolerant α-amylase from marine bacterium Zunongwangia profunda. J Mol Catal B Enzym. 110:8–15.
  • Wu X, Wang Y, Tong B, Chen X, Chen J. 2018. Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4-423. Int J Biol Macromol. 109:329–337.
  • Xie F, Quan S, Liu D, Ma H, Li F, Zhou F, Chen G. 2014. Purification and characterization of a novel α-amylase from a newly isolated Bacillus methylotrophicus strain P11-2. Process Biochem. 49:47–53.
  • Xu Q, Cao Y, Li X, Liu L, Qin S, Wang Y, Cao Y, Xu H, Qiao D. 2018. Purification and characterization of a novel intracellular α-amylase with a wide variety of substrates hydrolysis and transglycosylation activity from Paenibacillus sp. SSG-1. Protein Expr Purif. 144:62–70.
  • Yin H, Zhang L, Yang Z, Li S, Nie X, Wang Y, Yang C. 2018. Contribution of domain B to the catalytic properties of a Flavobacteriaceae α-amylase. Process Biochem. 70:104–109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.