283
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Efficient biocatalytic synthesis of D-tagatose 1,6-diphosphate by LacC-catalysed phosphorylation of D-tagatose 6-phosphate

, , , , & ORCID Icon
Pages 53-63 | Received 02 Apr 2019, Accepted 12 Jun 2019, Published online: 10 Jul 2019

References

  • Abranches J, Chen YYM, Burne RA. 2004. Galactose metabolism by Streptococcus mutans. Appl Environ Microbiol. 70:6047–6052.
  • Anderson RL, Wenger WC, Bissett DL. 1982. D-Galactose 6-phosphate and D-tagatose 6-phosphate. Methods Enzymol. 89:93–98.
  • Bissett DL, Anderson RL. 1974. Lactose and D-galactose metabolism in Group N Streptococci: presence of enzymes for both the D-galactose 1-phosphate and d-tagatose 6-phosphate pathways. J Bacteriol. 117:318–320.
  • Bissett DL, Anderson RL. 1980a. Lactose and D-galactose metabolism in Staphylococcus aureus. 111. Purification and properties of d-tagatose-6-phosphate kinase. J Biol Chem. 255:8745–8749.
  • Bissett DL, Anderson RL. 1980b. D-tagatose-6-phosphate kinase from Staphylococcus aureus. Methods Enzymol. 90:87–91.
  • Bissett DL, Wenger WC, Anderson RL. 1980. Lactose and D-galactose metabolism in Staphylococcus aureus. II. Isomerization of D-galactose 6-phosphate to D-tagatose 6-phosphate by a specific D-galactose-6-phosphate isomerase. J Biol Chem. 255:8740–8744.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254.
  • Crans DC, Kazlauskas RJ, Hirschbein BL, Wong CH, Abril O, Whitesides GM. 1987. Enzymatic regeneration of adenosine 5′-triphosphate: acetyl phosphate, phosphoenol-pyruvate, methoxycarbonyl phosphate, dihydroxyacetone phosphate, 5-phospho-α-D-ribosyl pyrophosphate, uridine-5′-diphosphoglucose. Vol. 136. In: Methods in enzymology. Academic Press; p. 263–280.
  • Ehrlich F, Guttmann R. 1934. Zur Kenntnis der d‐Galakturonsäure, II. Mitteil.: Ihre Umlagerung in 5‐Keto‐l‐galaktonsäure. Ber. 67:573–589.
  • Eyrisch O, Sinerius G, Fessner WD. 1993. Facile enzymic de novo synthesis and NMR spectroscopic characterization of d-tagatose 1,6-bisphosphate. Carbohydrate Res. 238:287–306.
  • Fessner WD, Badía J, Eyrisch O, Schneider A, Sinerius G. 1992. Enzymatic syntheses of rare ketose 1-phosphates. Tetrahedron Lett. 33:5231–5234.
  • Fessner WD, Eyrisch O. 1992. One‐pot synthesis of tagatose 1, 6‐bisphosphate by diastereoselective enzymatic aldol addition. Angew Chem Int Ed Engl. 31:56–58.
  • Gauss D, Sánchez‐Moreno I, Oroz‐Guinea I, García‐Junceda E, Wohlgemuth R. 2018. Phosphorylation catalyzed by dihydroxyacetone kinase. Eur J Org Chem. 2018:2892–2895.
  • Gauss D, Schoenenberger B, Molla GS, Kinfu BM, Chow J, Liese A, Streit W, Wohlgemuth R. 2016. Biocatalytic phosphorylation of metabolites. In: Liese A, Hilterhaus L, Kettling U, Antranikian G, editors. Applied biocatalysis – from fundamental science to industrial applications. Weinheim, Germany: Wiley-VCH; p.147–177.
  • Gauss D, Schoenenberger B, Wohlgemuth R. 2014. Chemical and enzymatic methodologies for the synthesis of enantiomerically pure glyceraldehyde 3-phosphates. Carbohydrate Res. 389:18–24.
  • Hamilton IR, Lebtag H. 1979. Lactose metabolism by Streptococcus mutans: evidence for induction of the tagatose 6-phosphate pathway. J Bacteriol. 140:1102–1104.
  • Hardt N, Kind S, Schoenenberger B, Eggert T, Obkircher M, Wohlgemuth R. 2019. Facile synthesis of D-xylulose-5-phosphate and L-xylulose-5-phosphate by xylulokinase-catalyzed phosphorylation. Biocatal Biotransform. doi:10.1080/10242422.2019.1630385
  • Hardt N, Kinfu BM, Chow J, Streit WR, Schoenenberger B, Obkircher M, Wohlgemuth R. 2017. Biocatalytic asymmetric phosphorylation catalyzed by recombinant glycerate-2-kinase. ChemBioChem 18:1518–1522.
  • Heidlas JE, Lees WJ, Whitesides GM. 1992. Practical enzyme-based syntheses of uridine 5'-diphosphogalactose and uridine 5'-diphospho-N-acetylgalactosamine on a gram scale. J Org Chem. 57:152–157.
  • Hélaine V, Mahdi R, Sudhir Babu GV, de Berardinis V, Wohlgemuth R, Lemaire M, Guérard ‐, Hélaine C. 2015. Straightforward synthesis of terminally phosphorylated L‐sugars via multienzymatic cascade reactions. Adv Synth Catal. 357:1703–1708.
  • Hoffmeister D, Yang J, Liu L, Thorson JS. 2003. Creation of the first anomeric D/L-sugar kinase by means of directed evolution. Proc Natl Acad Sci USA. 100:13184–13189.
  • Huang K, Parmeggiani F, Pallister E, Huang CJ, Liu FF, Li Q, Birmingham WR, Both P, Thomas B, Liu L, et al. 2018. Characterisation of a bacterial galactokinase with high activity and broad substrate tolerance for chemoenzymatic synthesis of 6‐aminogalactose‐1‐phosphate and analogues. ChemBioChem 19:388–394.
  • Izumori K. 2006. Izumoring: a strategy for bioproduction of all hexoses. J Biotechnol. 124:717–722.
  • Jayamuthunagai J, Gautam P, Srisowmeya G, Chakravarthy M. 2017. Biocatalytic production of D-tagatose: a potential rare sugar with versatile applications. Crit Rev Food Sci Nutr. 57:3430–3437.
  • Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680–685.
  • Lengeler JW. 2015. PTS 50: past, present and future, or diauxie revisited. J Mol Microbiol Biotechnol. 25:79–93.
  • Liu Y, Nishimoto M, Kitaoka M. 2015. Facile enzymatic synthesis of sugar 1-phosphates as substrates for phosphorylases using anomeric kinases. Carbohydr Res. 401:1–4.
  • Loughman JA, Caparon MG. 2006. A novel adaptation of aldolase regulates virulence in Streptococcus pyogenes. Embo J. 25:5414–5422.
  • Matsumi R, Hellriegel C, Schoenenberger B, Milesi T, Van Der Oost J, Wohlgemuth R. 2014. Biocatalytic asymmetric phosphorylation of mevalonate. RSC Adv. 4:12989–12994.
  • Miallau L, Hunter WN, McSweeney SM, Leonard GA. 2007. Structures of Staphylococcus aureus D-tagatose-6-phosphate kinase implicate domain motions in specificity and mechanism. J Biol Chem. 282:19948–19957.
  • Moye ZD, Zeng L, Burne RA. 2014. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans. J Oral Microbiol. 6:24878.
  • Nobelmann B, Lengeler JW. 1996. Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. J Bacteriol. 178:6790–6795.
  • Nolle N, Felsl A, Heermann R, Fuchs TM. 2017. Genetic characterization of the galactitol utilization pathway of Salmonella enterica serovar Typhimurium. J Bacteriol. 199:e00595–16.
  • Oh DK. 2007. Tagatose: properties, applications, and biotechnological processes. Appl Microbiol Biotechnol. 76:1–8.
  • Postma PW, Lengeler JW, Jacobson GR. 1993. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 57:543–594.
  • Rios-Mercadillo, V M, Whitesides, G M. 1979. Enzymic synthesis of sn-glycerol 3-phosphate. J Am Chem Soc.101:5828–5829.
  • Rosey EL, Oskouian B, Stewart GC. 1991. Lactose metabolism by Staphylococcus aureus: characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway. J Bacteriol. 173:5992–5998.
  • Rosey EL, Stewart GC. 1992. Nucleotide and deduced amino acid sequences of the lacR, lacABCD, and lacFE genes encoding the repressor, tagatose 6-phosphate gene cluster, and sugar-specific phosphotransferase system components of the lactose operon of Streptococcus mutans. J Bacteriol. 174:6159–6170.
  • Saier MH. Jr 2015. The Bacterial Phosphotransferase System: new frontiers 50 years after its discovery. J Mol Microbiol Biotechnol. 25:73–78.
  • Sha F, Zheng Y, Chen J, Chen K, Cao F, Yan M, Ouyang P. 2018. D-Tagatose manufacture through bio-oxidation of galactitol derived from waste xylose mother liquor. Green Chem. 20:2382–2391.
  • Shakeri-Garakani A, Brinkkötter A, Schmid K, Turgut S, Lengeler JW. 2004. The genes and enzymes for the catabolism of galactitol, D-tagatose, and related carbohydrates in Klebsiella oxytoca M5a1 and other enteric bacteria display convergent evolution. Mol Gen Genomics 271:717–728.
  • Studier FW, Moffatt BA. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 189:113–130.
  • Thomas TD. 1975. Tagatose-1, 6-diphosphate activation of lactate dehydrogenase from Streptococcus cremoris. Biochem Biophys Res Commun. 63:1035–1047.
  • Thompson J. 1987. Regulation of sugar transport and metabolism in lactic acid bacteria. FEMS Microbiol Rev. 46:221–231.
  • Totton EL, Lardy HA. 1957. Synthetic ketohexose phosphates: I. D-tagatose-6-phosphate. Methods Enzymol. 3:174–176.
  • Tung TC, Ling KH, Byrne WL, Lardy HA. 1954. Substrate specificity of muscle aldolase. Biochim Biophys Acta. 14:488–494.
  • Van der Heiden E, Delmarcelle M, Lebrun S, Freichels R, Brans A, Vastenavond CM, Galleni M, Joris B. 2013. A pathway closely related to the (D)-tagatose pathway of gram-negative enterobacteria identified in the gram-positive bacterium Bacillus licheniformis. Appl Environ Microbiol. 79:3511–3515.
  • Van der Heiden E, Delmarcelle M, Simon P, Counson M, Galleni M, Freedberg DI, Thompson J, Joris B, Battistel MD. 2015. Synthesis and physicochemical characterization of d-tagatose-1-phosphate: the substrate of the tagatose-1-phosphate kinase in the phosphotransferase system-mediated d-tagatose catabolic pathway of Bacillus licheniformis. J Mol Microbiol Biotechnol. 25:106–119.
  • van Rooijen RJ, van Schalkwijk S, de Vos WM. 1991. Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. J Biol Chem. 266:7176–7181.
  • Wen L, Huang K, Liu Y, Wang PG. 2016. Facile enzymatic synthesis of phosphorylated ketopentoses. ACS Catal. 6:1649–1654.
  • Wen L, Huang K, Wei M, Meisner J, Liu Y, Garner K, Zang L, Wang X, Li X, Fang J, et al. 2015. Facile enzymatic synthesis of ketoses. Angew Chem Int Ed Engl. 54:12654–12658.
  • Wen L, Huang K, Zheng Y, Fang J, Kondengaden SM, Wang PG. 2016. Two-step enzymatic synthesis of 6-deoxy-L-psicose. Tetrahedron Lett. 57:3819–3822.
  • Wen L, Zang L, Huang K, Li S, Wang R, Wang PG. 2016. Efficient enzymatic synthesis of L-rhamnulose and L-fuculose. Bioorg Med Chem Lett. 26:969–972.
  • Wichelecki DJ, Vetting MW, Chou L, Al-Obaidi N, Bouvier JT, Almo SC, Gerlt JA. 2015. ATP-binding cassette (ABC) transport system solute-binding protein-guided identification of novel d-altritol and galactitol catabolic pathways in Agrobacterium tumefaciens C58. J Biol Chem. 290:28963–28976.
  • Wildberger P, Pfeiffer M, Brecker L, Nidetzky B. 2015. Diastereoselective synthesis of glycosyl phosphates by using a phosphorylase–phosphatase combination catalyst. Angew Chem Int Ed. 54:15867–15871.
  • Wohlgemuth R, Liese A, Streit W. 2017. Biocatalytic phosphorylations of metabolites: past, present, and future. Trends Biotechnol. 35:452–465.
  • Xu Z, Li S, Feng X, Liang J, Xu H. 2014. L-Arabinose isomerase and its use for bio-technological production of rare sugars. Appl Microbiol Biotechnol. 98:8869–8878.
  • Yang J, Fu X, Jia Q, Shen J, Biggins JB, Jiang J, Zhao J, Schmidt JJ, Wang PG, Thorson JS. 2003. Studies on the substrate specificity of Escherichia coli galactokinase. Org Lett. 5:2223–2226.
  • Zhang W, Zhang T, Jiang B, Mu W. 2017. Enzymatic approaches to rare sugar production. Biotechnol Adv. 35:267–274.
  • Zhu J-S, Stiers KM, Winter SM, Garcia AD, Versini AF, Beamer LJ, Jakeman DL. 2019. Synthesis, derivatization, and structural analysis of phosphorylated mono-, di -, and trifluorinated D-gluco-heptuloses by glucokinase: tunable phosphoglucomutase inhibition. ACS Omega. 4:7029–7037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.