338
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

One-phase synthesis of single enzyme nanoparticles (SENs) of Trametes versicolor laccase by in situ acrylamide polymerisation

ORCID Icon & ORCID Icon
Pages 64-74 | Received 28 Jan 2019, Accepted 04 Jul 2019, Published online: 31 Jul 2019

References

  • Addorisio V, Sannino F, Mateo C, Guisan JM. 2013. Oxidation of phenyl compounds using strongly stable immobilized-stabilized laccase from Trametes versicolor. Process Biochem. 48:1174–1180.
  • Beloqui A, Baur S, Trouillet V, Welle A, Madsen J, Bastmeyer M, Delaittre G. 2016. Single-molecule encapsulation: a straightforward route to highly stable and printable enzymes. Small. 12:1716–1722.
  • Beloqui A, Kobitski AY, Nienhaus GU, Delaittre G. 2018. A simple route to highly active single-enzyme nanogels. Chem Sci. 9:1006–1013.
  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. 2000. The protein data bank. Nucleic Acids Res. 28:235–242.
  • Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C. 2002. Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry. 41:7325–7333.
  • Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal H. 2017. Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants—A review. Sci Total Environ. 576:646–659.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem Biochem. 72:248–254.
  • Cao S, Xu P, Ma Y, Yao X, Yao Y, Zong M, Li X, Lou W. 2016. Recent advances in immobilized enzymes on nanocarriers. Cuihua Xuebao/Chinese J Catal. 37:1814–1823.
  • Choi JM, Han SS, Kim HS. 2015. Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv. 33:1443–1454.
  • Cipolatti EP, Silva MJA, Klein M, Feddern V, Feltes MMC, Oliveira JV, Ninow JL, de Oliveira D. 2014. Current status and trends in enzymatic nanoimmobilization. J Mol Catal B Enzym. 99:56–67.
  • Duggleby RG. 1981. A nonlinear regression program for small computers. Anal Biochem Biochem. 110:9–18.
  • Elbert DL, Pratt AB, Lutolf MP, Halstenberg S, Hubbell JA. 2001. Protein delivery from materials formed by self-selective conjugate addition reactions. J Control Rel. 76:11–25.
  • Erden, E, Ucar, M C, Kaymaz, Y, Pazarlioglu, N K. 2009. New and different lignocellulosic materials from Turkey for laccase and manganese peroxidase production by Trametes versicolor. Eng Life Sci. 9:60–65.
  • Frasconi M, Favero G, Boer H, Koivula A, Mazzei F. 2010. Kinetic and biochemical properties of high and low redox potential laccases from fungal and plant origin. Biochim Biophys Acta. 1804:899–908.
  • Garcia-Galan C, Berenguer-Murcia Á, Fernandez-Lafuente R, Rodrigues RC. 2011. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal. 353:2885–2904.
  • Ge, J, Lu, D, Wang, J, Liu, Z. 2009. Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide. Biomacromolecules 10:1612–1618.
  • Gonçalves MCP, Kieckbusch TG, Perna RF, Fujimoto JT, Morales SAV, Romanelli JP. 2019. Trends on enzyme immobilization researches based on bibliometric analysis. Process Biochem. 76:95–110.
  • Guzik U, Hupert-Kocurek K, Wojcieszyńska D. 2014. Immobilization as a strategy for improving enzyme properties- Application to oxidoreductases. Molecules. 19:8995–9018.
  • Hassani T, Ba S, Cabana H. 2013. Formation of enzyme polymer engineered structure for laccase and cross-linked laccase aggregates stabilization. Bioresour Technol. 128:640–645.
  • Hegedús I, Hancsók J, Nagy E. 2012. Stabilization of the cellulase enzyme complex as enzyme nanoparticle. Appl Biochem Biotechnol. 168:1372–1383.
  • Hegedús I, Nagy E. 2014. Stabilization techniques of single enzymes as nanoparticles or enzyme nanobioconjugates. In: Kumar AA, editor. Biotechnology, Vol 10 Nanobiotechnology. USA: Studium Press LLC; p. 323–360.
  • Homaei AA, Sariri R, Vianello F, Stevanato R. 2013. Enzyme immobilization: an update. J Chem Biol. 6:185–205.
  • Humphrey W, Dalke A, Schulten K. 1996. VMD: visual molecular dynamics. J Mol Graph. 14:33–38.
  • Johannes C, Majcherczyk A. 2000. Laccase activity tests and laccase inhibitors. J Biotechnol. 78:193–199.
  • Kim J, Grate JW. 2003. Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett. 3:1219–1222.
  • Kim J, Grate JW, Wang P. 2006. Nanostructures for enzyme stabilization. Chem Eng Sci. 61:1017–1026.
  • Kim J, Jia H, Won LC, Wook CS, Kwak JH, Shin Y, Dohnalkova A, Kim BG, Wang P, Grate JW. 2006. Single enzyme nanoparticles in nanoporous silica: a hierarchical approach to enzyme stabilization and immobilization. Enzyme Microb Technol. 39:474–480.
  • Kumar VV, Sivanesan S, Cabana H. 2014. Magnetic cross-linked laccase aggregates - Bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci Total Environ. 487:830–839.
  • Liu Q, Xun G, Feng Y. 2019. The state-of-the-art strategies of protein engineering for enzyme stabilization. Biotechnol Adv. 37:530–537.
  • Madhavi V, Lele SS. 2009. Laccase: properties and applications. BioResources. 4:1694–1717.
  • Madzak C, Mimmi MC, Caminade E, Brault A, Baumberger S, Briozzo P, Mougin C, Jolivalt C. 2006. Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Protein Eng Des Sel. 19:77–84.
  • Mate DM, Alcalde M. 2015. Laccase engineering: from rational design to directed evolution. Biotechnol Adv. 33:25–40.
  • Matijošyte I, Arends I, de Vries S, Sheldon RA. 2010. Preparation and use of cross-linked enzyme aggregates (CLEAs) of laccases. J Mol Catal B Enzym. 62:142–148.
  • Nunes CS, Kunamneni A. 2018. Laccases-properties and applications. In: Nunes C, Kumar V. Enzymes in human and animal nutrition: principles and perspectives. London, UK: Elsevier Inc. p.133–161.
  • Piontek K, Antorini M, Choinowski T. 2002. Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem. 277:37663–37669.
  • Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernández-Lafuente R. 2013. Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev. 42:6290–6307.
  • Şahutoğlu AS, Akgül C. 2019. Fine-tuned preparation of cross-linked laccase nanoaggregates. Biocatal Biotransformation. 1–17.
  • Salazar-López M, Rostro-Alanis MJ, Castillo-Zacarías C, Parra-Guardado AL, Hernández-Luna C, Iqbal HMN, Parra-Saldivar R. 2017. Induced degradation of anthraquinone-based dye by laccase produced from Pycnoporus sanguineus (CS43). Water Air Soil Pollut. 228:469.
  • Sedlak J, Lindsay RH. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem. 25:192–205.
  • Sheldon RA, van Pelt S. 2013. Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev. 42:6223–6235.
  • Shraddha, Shekher R, Sehgal S, Kamthania M, Kumar A. 2011. Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res. 2011:1–11.
  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. 1985. Measurement of protein using bicinchoninic acid. Analytical Biochemistry. 150:76–85.
  • Sóti V, Lenaerts S, Cornet I. 2018. Of enzyme use in cost-effective high solid simultaneous saccharification and fermentation processes. J Biotechnol. 270:70–76.
  • Stoscheck C. 1990. Chapter 6: quantitation of protein. Methods Enzymol. 182:50–68.
  • Trovaslet M, Enaud E, Guiavarc’h Y, Corbisier AM, Vanhulle S. 2007. Potential of a Pycnoporus sanguineus laccase in bioremediation of wastewater and kinetic activation in the presence of an anthraquinonic acid dye. Enzyme Microb Technol. 41:368–376.
  • Wang, R, Zhang, Y, Huang, J, Lu, D, Ge, J, Liu, Z. 2013. Substrate imprinted lipase nanogel for one-step synthesis of chloramphenicol palmitate. Green Chem. 15:1155.
  • Yan M, Ge J, Liu Z, Ouyang P. 2006. Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. J Am Chem Soc. 128:11008–11009.
  • Yang Z, Si S, Zhang C. 2008. Magnetic single-enzyme nanoparticles with high activity and stability. Biochem Biophys Res Commun. 367:169–175.
  • Yang Z, Zhang C, Zhang J, Huang L. 2013. Development of magnetic single-enzyme nanoparticles as electrochemical sensor for glucose determination. Electrochim Acta. 111:25–30.
  • Yu M, Wu J, Shi J, Farokhzad OC. 2016. Nanotechnology for protein delivery: overview and perspectives. J Control Release. 240:24–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.