728
Views
17
CrossRef citations to date
0
Altmetric
Review Article

Enzyme promiscuity – A light on the “darker” side of enzyme specificity

&
Pages 81-92 | Received 31 Jul 2019, Accepted 18 Nov 2019, Published online: 28 Nov 2019

References

  • Abhinav N, Atkins WM. 2008. A quantitative index of substrate promiscuity. Biochem. 47(1):157–166.
  • Aharoni A, Gaidukov L, Khersonsky O, Mc QGS, Roodveldt C, Tawfik DS. 2005. The evolvability of promiscuous protein functions. Nat Genet. 37(1):73–76.
  • Andrianantoandro E, Basu S, Karig DK, Weiss R. 2006. Synthetic biology: new engineering rules for an emerging discipline. Mol Sys Biol. 2:28.
  • Arbildi P, Sonora C, Del Rio N, Marques JM, Hernandez A. 2018. Alternative RNA splicing of leucocyte tissue transglutaminase in coeliac disease. Scand J Immunol. 87(5):e12659.
  • Babbitt PC, Hasson MS, Wedekind JE, Palmer DRJ, Barrett WC, Reed GH, Rayment I, Ringe D, Kenyon GL, Gerlt JA. 1996. The enolase superfamily: a general strategy for enzyme-catalyzed abstraction of the α-protons of carboxylic acids. Biochem. 35(51):16489–16501.
  • Babtie A, Tokuriki N, Hollfelder F. 2010. What makes an enzyme promiscuous? Curr Opin Chem Biol. 14(2):200–207.
  • Bahekar SP, Sarode PB, Wadekar MP, Chandak HS. 2015. Simple and efficient synthesis of 3,4-dihydropyrimidin-2(1H)-thiones utilizing L-proline nitrate as a proficient, recyclable and eco-friendly catalyst. J Saudi Chem Soc. 2:1–5.
  • Baier F, Chen J, Solomonson M, Strynadka NC, Tokuriki N. 2015. Distinct metal isoforms underlie promiscuous activity profiles of metalloenzymes. ACS Chem Biol. 10(7):1684–1693.
  • Barford D, Das AK, Egloff MP. 1998. The structure and mechanism of protein phosphatases: Insights into catalysis and regulation. Annu Rev Biophys Biomol Struct. 27(1):133–164.
  • Bordes I, Recatala J, Swiderek K, Moliner V. 2015. Is promiscuous CALB a good scaffold for designing new epoxidases? Molecules. 20(10):7789–17806.
  • Bornadel A, Akerman CO, Adlercreutz P, Hatti-Kaul R, Borg N. 2013. Kinetic modeling of lipase-catalyzed esterification reaction between oleic acid and trimethylolpropane: a simplified model for multi-substrate multi-product ping-pong mechanisms. Biotechnol Progress. 29(6):1422–1429.
  • Boukouris AE, Zervopoulos SD, Michelakis ED. 2016. Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem. 41(8):712–730.
  • Bugg T. 2004. Introduction to enzyme and coenzyme chemistry. 2nd ed. Oxford (UK): Blackwell publishing; p. 2, 4, 5.
  • Carbonell P, Faulon JL. 2010. Molecular signatures-based prediction of enzyme promiscuity. Bioinfo. 26(16):2012–2019.
  • Chen W, Yao J, Meng J, Han W, Tao Y, Chen Y, Guo Y, Shi G, He Y, Jin JM, et al. 2019. Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynthesis. Nature Commun. 10. Article number: 960.
  • Cheng L, Leung KS. 2018. Identification and characterization of moonlighting long non-coding RNAs based on RNA and protein interactome. Bioinfo. 34(20):3519–3528.
  • Cohen HM, Tawfik DS, Griffiths AD. 2002. Promiscuous methylation of non-canonical DNA sites by HaeIII methyltransferase. Nucleic Acids Res. 30(17):3880–3885.
  • Colin PY, Kintses B, Gielen F, Miton CM, Fischer G, Mohamed MF, Hyvonen M, Morgavi DP, Janssen DB, Hollfelder F. 2015. Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nature Commun. 6:10008.
  • Copley SD. 2003. Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr Opin Chem Biol. 7(2):265–272.
  • de Visser JA, Krug J. 2014. Empirical fitness landscapes and the predictability of evolution. Nat Rev Genet. 15(7):480–490.
  • Delmas J, Robin F, Carvalho F, Mongaret C, Bonnet R. 2006. Prediction of the evolution of ceftazidime resistance in extended-spectrum beta-lactamase CTX-M-9. Antimicrob Agents Chemother. 50(2):731–738.
  • Devries EJ, Janssen DB. 2003. Biocatalytic conversion of epoxides. Curr Opin Biotechnol. 14:414–420.
  • Duarte F, Amrein BA, Kamerlin S. 2013. Modeling catalytic promiscuity in the alkaline phosphatase superfamily. Phys Chem Chem Phys. 15(27):11160–11177.
  • Fan L, Arvai AS, Cooper PK, Iwai S, Hanaoka F, Tainer JA. 2006. Conserved XPB core structure and motifs for DNA unwinding: implications for pathway selection of transcription or excision repair. Mol Cell. 22(1):27–37.
  • Fisher HF. 2013. The application of transient-state kinetic isotope effects to the resolution of mechanisms of enzyme-catalyzed reactions. Mol. 18(7):8230–8242.
  • Gancedo C, Flores CL. 2008. Moonlighting proteins in yeasts. Microb Mol Biol Rev. 72(1):197–210.
  • Gupta RD. 2016. Recent advances in enzyme promiscuity. Sustain Chem Process. 4(1):1–7.
  • Guzman GI, Sandberg TE, LaCroix RA, Nyerges A, Papp H, de Raad M, King ZA, Hefner Y, Northen TR, Notebaart RA, et al. 2019. Enzyme promiscuity shapes adaptation to novel growth substrates. Mol Syst Biol. 15:e8462.
  • Hoffmeister D, Yang J, Liu L, Thorson JS. 2003. Creation of the first anomeric D/L-sugar kinase by means of directed evolution. Pro Nat Acad Sci U S A. 100(23):13184–13189.
  • Huberts DH, van der Klei IJ. 2010. Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta. 1803(4):520–525.
  • Hult K, Berglund P. 2007. Enzyme promiscuity: mechanism and applications. Trends Biotechnol. 25(5):231–238.
  • Humble MS, Berglund P. 2011. Biocatalytic promiscuity. Eur J Org Chem. 2011(19):3391–3401.
  • Jayakumar R, Vadivel R, Ananthi N. 2018. Role of chirality in drugs. OMCIJ. 5(3):1–6.
  • Jeanguenin L, Lara NA, Pribat A, Mageroy MH, Gregory JF, Rice KC, de Crecy-Lagard V, Hanson AD. 2010. Moonlighting glutamate formiminotransferases can functionally replace 5-formyltetrahydrofolate cycloligase. J Biol Chem. 285(53):41557–41566.
  • Jeffery CJ. 2003. Multifunctional proteins: examples of gene sharing. Ann Med. 35(1):28–35.
  • Jeffery CJ. 2015. Why study moonlighting proteins? Front Genet. 6:211
  • Jensen RA. 1976. Enzyme recruitment in evolution of new function. Annu Rev Microbiol. 30(1):409–425.
  • Jia B, Cheong GW, Zhang S. 2013. Multifunctional enzymes in archaea: promiscuity and moonlight. Extremophiles. 17(2):193–203.
  • Jia B, Lee S, Pham B, Cho Y, Yang JK, Byeon HS, Kim J, Cheong GW. 2010. An archaeal NADH oxidase causes damage to both proteins and nucleic acids under oxidative stress. Mol Cells. 29(4):363–371.
  • Jia B, Linh L, Lee S, Pham B, Liu J, Pan H, Zhang S, Cheong GW. 2011. Biochemical characterization of glyceraldehyde-3-phosphate dehydrogenase from Thermococcus kodakarensis KOD1. Extremophiles. 15(3):337–346.
  • Kazlauskas RJ. 2005. Enhancing catalytic promiscuity for biocatalysis. Curr Opin Chem Biol. 9(2):195–201.
  • Kellogg BA, Poulter CD. 1997. Chain elongation in the isoprenoid biosynthetic pathway. Curr Opin Chem Biol. 1(4):570–578.
  • Khandelwal A, Chandu D, Roe CM, Kopan R, Quatrano RS. 2007. Moonlighting activity of presenilin in plants is independent of gamma-secretase and evolutionarily conserved. Proc Nat Acad Sci U S A. 104(33):13337–13342.
  • Khersonsky O, Malitsky S, Rogachev I, Tawfik DS. 2011. Role of chemistry versus substrate binding in recruiting promiscuous enzyme functions. Biochemistry. 50(13):2683–2690.
  • Khersonsky O, Roodveldt C, Tawfik DS. 2006. Enzyme promiscuity: evolutionary and mechanistic aspects. Curr Opin Chem Biol. 10(5):498–508.
  • Khersonsky O, Tawfik DS. 2006. The histidine 115-histidine 134 dyad mediates the lactonase activity of mammalian serum paraoxonases. J Biol Chem. 281(11):7649–7656.
  • Kirschner M, Gerhart J. 1998. Evolvability. Proc Natl Acad Sci U S A. 95(15):8420–8427.
  • Kolmodin K, Aqvist J. 2001. The catalytic mechanism of protein tyrosine phosphatases revisited. FEBS Lett. 498(2–3):208–213.
  • Koval T, Lipovova P, Podzimek T, Matousek J, Duskova J, Skalova T, Stepankova A, Hasek J, Dohnalek J. 2013. Plant multifunctional nuclease TBN1 with unexpected phospholipase activity: structural study and reaction-mechanism analysis. Acta Crystallogr D Biol Crystallogr. 69(2):213–226.
  • Le Breton M, Henneke G, Norais C, Flament D, Myllykallio H, Querellou J, Raffin JP. 2007. The heterodimeric primase from the euryarchaeon Pyrococcus abyssi: a multifunctional enzyme for initiation and repair? J Mol Biol. 374(5):1172–1185.
  • Lee S, Jia B, Pham B, Shao Y, Kwak J, Cheong GW. 2012. Architecture and characterization of sarcosine oxidase from Thermococcus kodakarensis KOD1. Extremophiles. 16(1):87–93.
  • Macho AP, Duran RL, Zipfel C. 2015. Tyrosine Importance of tyrosine phosphorylation in receptor kinase complexes. Trends Plant Sci. 20(5):269–272.
  • Martinez-Nunez MA, Perez-Rueda E. 2016. Do lifestyles influence the presence of promiscuous enzymes in bacteria and Archaea metabolism? Sustain Chem Process. 4:3.
  • Martinez-Nunez MA, Poot-Hernandez AC, Rodriguez-Vazquez K, Perez-Rueda E. 2013. Increments and duplication events of enzymes and transcription factors influence metabolic and regulatory diversity in prokaryotes. Plos One. 8(7):69707.
  • Martinez-Nunez MA, Rodríguez-Escamilla Z, Rodriguez-Vazquez K, Perez-Rueda E. 2017. Tracing the repertoire of promiscuous enzymes along the metabolic pathways in archaeal organisms. Life (Basel). 7:30.
  • Miles ZD, Roberts SA, McCarty RM, Bandarian V. 2014. Biochemical and structural studies of 6-carboxy-5,6,7,8-tetrahydropterin synthase reveal the molecular basis of catalytic promiscuity within the tunnel-fold superfamily. J Biol Chem. 22(34):23641–23652.
  • Mittag T, Kay LE, Forman-Kay JD. 2010. Protein dynamics and conformational disorder in molecular recognition. J Mol Recog. 23(2):105–116.
  • Moore BD. 2004. Bifunctional and moonlighting enzymes: lighting the way to regulatory control. Trends Plant Sci. 9(5):221–228.
  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J. 2003. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science. 300(5617):332–336.
  • Nam H, Lewis NE, Lerman JA, Lee DH, Chang RL, Kim D, Palsson BO. 2012. Network context and selection in the evolution to enzyme specificity. Sci. 337(6098):1101–1104.
  • Nguyen LA, He H, Huy CP. 2006. Chiral drugs: an overview. Int J Biomed Sci. 2(2):85–100.
  • Norrgard MA, Mannervik B. 2011. Engineering GST M2-2 for high activity with indene 1,2-oxide and indication of an H-site residue sustaining catalytic promiscuity. J Mol Biol. 412(1):111–120.
  • O’Brien PJ, Herschlag D. 2001. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. Biochemistry. 40(19):5691–5699.
  • Pandey RP. 2017. Diversifying natural products with promiscuous glycosyltransferase enzymes via a sustainable microbial fermentation approach. Front Chem. 5(110):1–4.
  • Pandya C, Dunaway-Mariano D, Xia Y, Allen KN. 2014. Structure-guided approach for detecting large domain inserts in protein sequences as illustrated using the haloacid dehalogenase superfamily. Proteins. 82(9):1896–1906.
  • Piedrafita G, Keller MA, Ralser M. 2015. The impact of non-enzymatic reactions and enzyme promiscuity on cellular metabolism during (oxidative) stress conditions. Biomolecules. 5(3):2101–2122.
  • Poelarends GJ, Veetil VP, Whitman CP. 2008. The chemical versatility of the β–α–β fold: Catalytic promiscuity and divergent evolution in the tautomerase superfamily. Cell Mol Life Sci. 65(22):3606–3618.
  • Pordea A. 2015. Metal-binding promiscuity in artificial metalloenzyme design. Curr Opin Chem Biol. 25:124–132.
  • Ramos LM, Ponce de Leon y Tobio AY, dos Santos MR, de Oliveira HC, Gomes AF, Gozzo FC, de Oliveira AL, Neto BA. 2012. Mechanistic studies on Lewis acid catalyzed Biginelli reactions in ionic liquids: evidence for the reactive intermediates and the role of the reagents. J Org Chem. 77(22):10184–10193.
  • Renata H, Wang ZJ, Arnold FH. 2015. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew Chem Int Ed Engl. 54(11):3351–3367.
  • Rivera PC, Nyati P, Noriega FG. 2015. A corpora allata farnesyl diphosphate synthase in mosquitoes displaying a metal ion dependent substrate specificity. Insect Mol Biol. 64:44–50.
  • Ronimus R, Morgan H. 2003. Distribution and phylogenies of enzymes of the Embden–Meyerhof–Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism. Archaea. 1(3):199–221.
  • Rowe LA, Geddie ML, Alexander OB, Matsumura I. 2003. A comparison of directed evolution approaches using the beta-glucuronidase model system. J Mol Biol. 332(4):851–860.
  • Royer SF, Haslett L, Crennell SJ, Hough DW, Danson MJ, Bull SD. 2010. CentreStructurally informed site-directed mutagenesis of a stereochemically promiscuous aldolase to afford stereochemically complementary biocatalysts. J Am Chem Soc. 132(33):11753–11758.
  • Schiraldi C, Giuliano M, De Rosa M. 2002. Perspectives on biotechnological applications of archaea. Archaea. 1(2):75–86.
  • Soskine M, Tawfik D. 2010. Mutational effects and the evolution of new protein functions. Nat Rev Genet. 11(8):572–582.
  • Srinivasan B, Marks H, Mitra S, Smalley DM, Skolnick J. 2016. Catalytic and substrate promiscuity: Distinct multiple chemistries catalyzed by the phosphatase domain of receptor protein tyrosine phosphatase. Biochem J. 473(14):2165–2177.
  • Timar E, Groma G, Kiss A, Venetianer P. 2004. Changing the recognition specificity of a DNA-methyltransferase by in vitro evolution. Nucleic Acids Res. 32(13):3898–3903.
  • Ulusu NN. 2015. Curious cases of the enzymes. J Med Biochem. 34(3):271–281.
  • Wienkers LC, Rock B. 2014. Multienzyme kinetics and sequential metabolism. Methods Mol Biol. 1113:93–118.
  • Woo EJ, Lee S, Cha H, Park JT, Yoon SM, Song HN, Park KH. 2008. Structural insight into the bifunctional mechanism of the glycogen-debranching enzyme TreX from the archaeon Sulfolobus solfataricus. J Biol Chem. 283(42):28641–22864.
  • Xiong D, Lu S, Wu J, Liang C, Wang W, Wang W, Jin JM, Tang SY. 2017. Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor. Metab Eng. 40:115–123.
  • Yang K, Metcalf WW. 2004. A new activity for an old enzyme: Escherichia coli bacterial alkaline phosphatase is a phosphitedependent hydrogenase. Pro Nat Acad Sci USA. 101(21):7919–7924.
  • Yoshikuni Y, Ferrin TE, Keasling JD. 2006. Designed divergent evolution of enzyme function. Nature. 440(7087):1078–1082.
  • Zhang Z, Akutsu J, Kawarabayasi Y. 2010. Identification of novel acetyltransferase activity on the thermostable protein ST0452 from Sulfolobus tokodaii strain 7. J Bacteriol. 192(13):3287–3293.
  • Zheng H, Mei YJ, Du K, Shi QY, Zhang PF. 2013. Trypsin catalysed one-pot multicomponent synthesis of 4-thiazolidinones. Catal Lett. 143(3):298–301.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.