154
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Kinetics and thermodynamics of catalysis and thermal inactivation of a novel α-amylase (Tp-AmyS) from Thermotoga petrophila

&
Pages 227-233 | Received 20 Jul 2019, Accepted 22 Feb 2020, Published online: 11 Mar 2020

References

  • Anema S, McKenna A. 1996. Reaction kinetics of thermal denaturation of whey proteins in heated reconstituted whole milk. J Agric Food Chem. 44(2):422–428.
  • Apar DK, Ozbek B. 2005. α-Amylase inactivation during rice starch hydrolysis. Process Biochem. 40(3–4):1367–1379.
  • Ashogbon AO, Akintayo ET. 2014. Recent trend in the physical and chemical modification of starches from different botanical sources: a review. Starch Stärke. 66(1–2):41–57.
  • Atalah J, Cáceres-Moreno P, Espina G, Blamey JM. 2019. Thermophiles and the applications of their enzymes as new biocatalysts. Bioresour Technol. 280:478–488.
  • Bauer MW, Driskill LE, Kelly RM. 1998. Glycosyl hydrolases from hyperthermophilic microorganisms. Curr Opin Biotechnol. 9(2):141–145.
  • Deylami MZ, Rahman RA, Tan CP, Bakar J, Olusegun L. 2014. Thermodynamics and kinetics of thermal inactivation of peroxidase from mangosteen (Garcinia mangostana L.) pericarp. J Eng Sci Technol. 9:374–383.
  • Duy C, Fitter J. 2005. Thermostability of irreversible unfolding alpha-amylases analyzed by unfolding kinetics. J Biol Chem. 280(45):37360–37365.
  • Fincan SA, Enez B, Ozdemir S, Beklera FM. 2014. Purification and characterization of thermostable α-amylase from thermophilic Anoxybacillus flavithermus. Carbohydr Polym. 102:144–150.
  • Hameed U, Price I, Ikram-Ul-Haq, Ke A, Wilson DB, Mirza O. 2017. Functional characterization and crystal structure of thermostable amylase from Thermotoga petrophila, reveals high thermostability and an unusual form of dimerization. Biochim Biophys Acta Proteins Proteomics. 1865:1237–1245.
  • Haq I, Hussain Z, Khan MA, Muneer B, Afzal S, Majeed S, Akram F. 2012. Kinetic and thermodynamic study of cloned thermostable endo-1,4-β-xylanase from Thermotoga petrophila in mesophilic host. Mol Biol Rep. 39:7251–7261.
  • Hauli I, Sarkar B, Mukherjee T, Mukhopadhyay SK. 2013. Isolation and identification of a novel thermo-alkaline, thermostable, SDS and chelator resistant amylase producing Anoxybacillus sp. IB-A from hot spring of Bakreswar, West Bengal (India): first report. Pelagia Res Libr J. 4:202–212.
  • Hmidet N, Bayoudh A, Berrin JG, Kanoun S, Juge N, Nasri M. 2008. Purification and biochemical characterization of a novel a -amylase from Bacillus licheniformis NH1 cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Proc Biochem. 43:499–510.
  • Hussain A, Rashid MH, Perveen R, Ashraf M. 2009. Purification, kinetic and thermodynamic characterization of soluble acid invertase from sugarcane (Saccharum officinarum L.). Plant Physiol Biochem. 47(3):188–194.
  • Jana M, Maity C, Samanta S, Pati BR, Islam SS, Mohapatra PKD, Mondal KC. 2013. Salt-independent thermophilic α-amylase from Bacillus megaterium VUMB109: an efficacy testing for preparation of maltooligosaccharides. Ind Crops Prod. 41:386–391.
  • Kandra L, Gyémánt G, Remenyik J, Ragunath C, Ramasubbu N. 2003. Subsite mapping of human salivary α-amylase and the mutant Y151M. FEBS Lett. 544(1–3):194–198.
  • Khajeh K, Naderi-Manesh H, Ranjbar B, Moosavi-Movahedi A. a, Nemat-Gorgani M. 2001. Chemical modification of lysine residues in Bacillus alpha-amylases: effect on activity and stability. Enzyme Microb Technol. 28(6):543–549.
  • Kouadio EJP, Konan HK, Dabonné S, Due EA, Kouame LP. 2013. Study of thermal stability of α-amylases sourced from digestive tract of the tropical house cricket Gryllodes sigillatus (Orthoptera: Gryllidae): kinetic and thermodynamic analysis. J Nov Appl Sci. 2:74–82.
  • Liebl W, Stemplinger I, Ruile P. 1997. Properties and gene structure of the Thermotoga maritima α-amylase AmyA, a putative lipoprotein of a hyperthermophilic bacterium. J Bacteriol. 179(3):941–948.
  • Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 31(3):426–428.
  • Najafi MF, Deobagkar D, Deobagkar D. 2005. Purification and characterization of an extracellular alpha-amylase from Bacillus subtilis AX20. Protein Expr Purif. 41(2):349–354.
  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, et al. 1999. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature. 399(6734):323–329.
  • Oliveira AN, de Oliveira LA, de, Andrade JS. 2010. Partial characterization of amylases of two indigenous Central Amazonian rhizobia strains. Braz Arch Biol Technol. 53(1):35–45.
  • Ozdemir S, Fincan SA, Karakaya A, Enez B. 2018. A novel raw starch hydrolyzing thermostable α-amylase produced by newly isolated Bacillus mojavensis SO-10: purification, characterization and usage in starch industries. Braz Arch Biol Technol. 61:1–16.
  • Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT. 1999. The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem. 29 (2):119–131.
  • Perveen R, Hamid Rashid M, Saleem M, Mukhtar Khalid A, Ibrahim Rajoka M. 2006. Kinetic and thermodynamic properties of an immobilized glucoamylase from a mesophilic fungus, Arachniotus citrinus. Protein Pept Lett. 13(7):665–671.
  • Pogaku R, Raman JK, Ravikumar G. 2012. Evaluation of activation energy and thermodynamic properties of enzyme-catalysed transesterification reactions. Adv Chem Eng. 02(01):150–154.
  • Prakash O, Jaiswal N, Kumar PR. 2011. Effect of metal ions, EDTA and sulfhydryl reagents on soybean amylase activity. Asian J Biochem. 6:282–290.
  • Quezada-Calvillo R, Sim L, Ao Z, Hamaker BR, Quaroni A, Brayer GD, Sterchi EE, Robayo-Torres CC, Rose DR, Nichols BL. 2008. Luminal starch substrate “brake” on maltase-glucoamylase activity is located within the glucoamylase subunit. J Nutr. 138(4):685–692.
  • Riaz M, Perveen R, Javed MR, Nadeem H, Rashid MH. 2007. Kinetic and thermodynamic properties of novel glucoamylase from Humicola sp. Enzyme Microb Technol. 41(5):558–564.
  • Rogers A, Gibon Y. 2009. Plant metabolic networks. New York (NY): Springer.
  • Saini NY, Saini R, Singh Saini H, Dahiya A, Harnek Singh C. 2017. Amylases: characteristics and industrial applications. J Pharmacogn Phytochem. 6:1865–1871.
  • Santa-Maria MC, Chou CJ, Yencho GC, Haigler CH, Thompson WF, Kelly RM, Sosinski B. 2009. Plant cell calcium-rich environment enhances thermostability of recombinantly produced alpha-amylase from the hyperthermophilic bacterium Thermotoga maritime. Biotechnol Bioeng. 104(5):947–956.
  • Sarethy IP, Saxena Y, Kapoor A. 2013. Amylase produced by Bacillus sp. SI-136 isolated from sodic-alkaline soil for efficient starch desizing. J Biochem Technol. 4:604–609.
  • Sarian FD, van der Kaaij RM, Kralj S, Wijbenga DJ, Binnema DJ, van der Maarel MJEC, Dijkhuizen L. 2012. Enzymatic degradation of granular potato starch by Microbacterium aurum strain B8.A. Appl Microbiol Biotechnol. 93(2):645–654.
  • Singh AK, Chhatpar HS. 2011. Purification and characterization of chitinase from Paenibacillus sp. D1. Appl Biochem Biotechnol. 164(1):77–88.
  • Suman S, Ramesh K. 2010. Production of a thermostable extracellular amylase from thermophilic Bacillus species. J Pharm Sci Res. 2:149–154.
  • Tabassum R, Khaliq S, Rajoka MI, Agblevor F. 2014. Solid state fermentation of a raw starch digesting alkaline alpha-amylase from Bacillus licheniformis RT7PE1 and its characteristics. Biotechnol Res Int. 2014:1–8.
  • Tachibana Y, Leclere MM, Fujiwara S, Takagi M, Imanaka T. 1996. Cloning and expression of the α-amylase gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1, and characterization of the enzyme. J Ferment Bioeng. 82(3):224–232.
  • Takahata Y, Nishijima M, Hoaki T, Maruyama T. 2001. Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol. 51(5):1901–1909.
  • Tanaka A, Hoshino E. 2003. Similarities between the thermal inactivation kinetics of Bacillus amyloliquefaciens alpha-amylase in an aqueous solution of sodium dodecyl sulphate and the kinetics in the solution of anionic-phospholipid vesicles. Biotechnol Appl Biochem. 38(2):175–181.
  • Violet M, Meunier JC. 1989. Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis alpha-amylase. Biochem J. 263(3):665–670.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.