504
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Supplementation of watermelon peels as an enhancer of lipase and esterase production by Yarrowia lipolytica in solid-state fermentation and their potential use as biocatalysts in poly(ethylene terephthalate) (PET) depolymerization reactions

, , &
Pages 457-468 | Received 29 Nov 2019, Accepted 07 Jun 2020, Published online: 26 Jun 2020

References

  • Ali YB, Verger R, Abousalham A. 2012. Lipases or Esterases: does it really matter? toward a New bio-physico-chemical classification. Methods in Molecular Biology (Clifton, N.J.). 861:31–51.
  • Alkan H, Baysal Z, Uyar F, Dogru M. 2007. Production of lipase by a newly isolated Bacillus coagulans under solid-state fermentation using melon wastes. Appl Biochem Biotechnol. 136(2):183–192. doi:10.1007/BF02686016.
  • Aloulou A, Bénarouche A, Puccinelli D, Spinelli S, Cavalier J-F, Cambillau C, Carrière F. 2013. Biochemical and structural characterization of non-glycosylated Yarrowia lipolytica LIP2 lipase. Eur J Lipid Sci Technol. 115(4):429–441.
  • Amaral PFF, Rocha-Leão MHM, Marrucho IM, Coutinho JA, Coelho MAZ. 2006. Improving lipase production using a perfluorocarbon as oxygen carrier. J Chem Technol Biotechnol. 81(8):1368–1374.
  • Association of Official Analytical Chemists (AOAC). 1990. Official methods of analysis. Choice Reviews Online. 1(02):35–0912.
  • Athanázio-Heliodoro JC, Okino-Delgado CH, Fernandes CJdC, Zanutto MR, Prado DZd, da Silva RA, Facanali R, Zambuzzi WF, Marques MOM, Fleuri LF, et al. 2018. Improvement of lipase obtaining system by orange waste-based solid-state fermentation: production, characterization and application. Prep Biochem Biotechnol. 48(7):565–573.
  • Babu IS, Rao GH. 2007. Lipase production by Yarrowia lipolytica NCIM 3589 in solid state fermentation using mixed substrate. Res J Microbiol. 2(5):469–474. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-34547867114&partnerID=40&md5=ea5825a0f015df21a9fab74e528acb10.
  • Barth M, Oeser T, Wei R, Then J, Schmidt J, Zimmermann W. 2015. Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester hydrolase from Thermobifida fusca. Biochem. Eng. J. 93:222–228. doi:10.1016/j.bej.2014.10.012.
  • Barth G, Gaillardin C. 1996. Nonconventional yeasts in biotechnology, nonconventional yeasts in biotechnology. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Barth M, Honak A, Oeser T, Wei R, Belisário-Ferrari MR, Then J, Schmidt J, Zimmermann W. 2016. A dual enzyme system composed of a polyester hydrolase and a carboxylesterase enhances the biocatalytic degradation of polyethylene terephthalate films. Biotechnol J. 11(8):1082–1087.
  • Biz A, Finkler ATJ, Pitol LO, Medina BS, Krieger N, Mitchell DA. 2016. Production of pectinases by solid-state fermentation of a mixture of citrus waste and sugarcane bagasse in a pilot-scale packed-bed bioreactor. Biochem Eng J. 111:54–62.
  • Bornscheuer U. 2002. Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev. 26(1):73–81.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72(1–2):248–254.
  • Brijwani K, Vadlani PV. 2011. Cellulolytic enzymes production via solid-state fermentation: effect of pretreatment methods on physicochemical characteristics of substrate. Enzyme Res. 2011(1):1–10.
  • Carniel A, Valoni É, Nicomedes J, Gomes A. d C, Castro A. M d. 2017. Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochem. 59:84–90.
  • Charney J, Tomarelli RM. 1947. A colorimetric method for the determination of the proteolytic activity of duodenal juice. J Biol Chem. 171(2):501–505. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20272088.
  • Chaudhari SA, Singhal RS. 2015. Cutin from watermelon peels: a novel inducer for cutinase production and its physicochemical characterization. Int J Biol Macromol. 79:398–404.
  • Cheng Y-H, Hsiao FS-H, Wen C-M, Wu C-Y, Dybus A, Yu Y-H. 2019. Mixed fermentation of soybean meal by protease and probiotics and its effects on the growth performance and immune response in broilers. J Appl Anim Res. 47(1):339–348.
  • Coelho MAZ, Amaral PFF, Belo I. 2010. Yarrowia lipolytica: an industrial workhorse. Formatex. pp. 930–944.
  • Dalgaard R, Schmidt J, Halberg N, Christensen P, Thrane M, Pengue WA. 2008. LCA of soybean meal. Int J Life Cycle Assess. 13(3):240–254.
  • de Castro AM, Carniel A, Nicomedes Junior J, da Conceição Gomes A, Valoni É. 2017. Screening of commercial enzymes for poly(ethylene terephthalate) (PET) hydrolysis and synergy studies on different substrate sources. J Ind Microbiol Biotechnol. 44(6):835–844.
  • de Castro AM, Castilho L. d R, Freire DMG. 2016. Characterization of babassu, canola, castor seed and sunflower residual cakes for use as raw materials for fermentation processes. Ind Crops Prod. 83:140–148.
  • de Castro RJS, Nishide TG, Sato HH. 2014. Production and biochemical properties of proteases secreted by Aspergillus niger under solid state fermentation in response to different agroindustrial substrates. Biocatalysis Agricultural Biotechnol. 3(4):236–245.
  • de Oliveira CT, Alves EA, Todero I, Kuhn RC, de Oliveira D, Mazutti MA. 2019. Production of cutinase by solid-state fermentation and its use as adjuvant in bioherbicide formulation. Bioprocess Biosyst Eng. 42(5):829–838.
  • de Souza CEC, Ribeiro BD, Coelho MAZ. 2019. Characterization and application of yarrowia lipolytica lipase obtained by solid-state fermentation in the synthesis of different esters used in the food industry. Appl Biochem Biotechnol. 189(3):933–959. Applied Biochemistry and Biotechnology.
  • Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC, Galgani F, Ryan PG, Reisser J. 2014. Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at Sea. PLoS One. 9(12):e111913.
  • Farias M. a, et al. 2014. Lipase production by yarrowia lipolytica in solid state fermentation using different agro industrial residues. Italian Assoc Chem Eng. 38:301–306.
  • Fickers P, Fudalej F, Le Dall MT, Casaregola S, Gaillardin C, Thonart P, Nicaud JM. 2005. Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genet Biol. 42(3):264–274.
  • Fickers P, Destain J, Thonart P. 2005. Methyl oleate modulates LIP2 expression in the lipolytic yeast yarrowia lipolytica. Biotechnol Lett. 27(22):1751–1754.
  • Fraga LP, Carvalho PO, Macedo GA. 2012. Production of cutinase by fusarium oxysporum on Brazilian agricultural by-products and its enantioselective properties. Food Bioprocess Technol. 5(1):138–146.
  • Guerrand D. 2017. Lipases industrial applications: focus on food and agroindustries. OCL. 24(4):D403.
  • Gupta R, Gupta N, Rathi P. 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol. 64(6):763–781.
  • Gutarra MLE, de Godoy MG, Silva Jd N, Guedes IA, Lins U, Castilho LDR, Freire DMG. 2009. Lipase production and Penicillium simplicissimum morphology in solid-state and submerged fermentations. Biotechnol J. 4(10):1450–1459.
  • Hagler AN, Mendonça-Hagler LC. 1981. Yeasts from marine and estuarine waters with different levels of pollution in the state of rio de janeiro, Brazil. Appl Environ Microbiol. 41(1):173–178. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16345683%5Cnhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC243658.
  • Herrero Acero E, Ribitsch D, Steinkellner G, Gruber K, Greimel K, Eiteljoerg I, Trotscha E, Wei R, Zimmermann W, Zinn M, et al. 2011. Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from thermobifida. Macromolecules. 44(12):4632–4640.
  • Houde A, Kademi A, Leblanc D. 2004. Lipases and their industrial applications: an overview. Appl Biochem Biotechnol. 118(1-3):155–170.
  • Imandi SB, Karanam SK, Garapati HR. 2013. Use of plackett-burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus). Braz J Microbiol. 44(3):915–921.
  • Kar T, et al. 2010. Impact of scaled-down on dissolved oxygen fluctuations at different levels of the lipase synthesis pathway of yarrowia lipolytica. Biotechnol Agron Soc Environ. 14:523–529.
  • Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227(5259) :680–685.
  • Liu H-H, Ji X-J, Huang H. 2015. Biotechnological applications of Yarrowia lipolytica: Past, present and future. Biotechnol Adv. 33(8):1522–1546. Elsevier Inc.,
  • Lopes VRO, Farias MA, Belo IMP, Coelho MAZ. 2016. Nitrogen sources on tpomw valorization through solid state fermentation performed by Yarrowia lipolytica. Braz J Chem Eng. 33(2):261–270.
  • Messias JM, Costa B. Z d, Lima V. M G d, Giese C, Dekker RFH, Barbosa AdM. 2011. Lipases microbianas: produção, propriedades e aplicações biotecnológicas. Semina: Tech Ex. 32(2):213–234.
  • Milazzo MF, Spina F, Cavallaro S, Bart JCJ. 2013. Sustainable soy biodiesel. Renewable Sustain Energy Rev. 27:806–852.
  • Mukhtar H, Haq I. 2013. Comparative evaluation of agroindustrial byproducts for the production of alkaline protease by wild and mutant strains of bacillus subtilis in submerged and solid state fermentation. Sci World J. 2013:1–6.
  • Ohara A, Santos JGd, Angelotti JAF, Barbosa PdPM, Dias FFG, Bagagli MP, Sato HH, Castro RJ Sd. 2018. A multicomponent system based on a blend of agroindustrial wastes for the simultaneous production of industrially applicable enzymes by solid-state fermentation. Food Sci Technol. 38(suppl 1):131–137.
  • Oliveira AC, Amorim GM, Azevêdo JAG, Godoy MG, Freire DMG. 2018. Solid-state fermentation of co-products from palm oil processing: Production of lipase and xylanase and effects on chemical composition. Biocatal Biotransform. 36(5):381–388.
  • Panda T, Gowrishankar BS. 2005. Production and applications of esterases. Appl Microbiol Biotechnol. 67(2):160–169.
  • Pandey A. 2003. Solid-state fermentation. Biochem Eng J. 13(2-3):81–84.
  • Pereira-Meirelles FV, Rocha-Leão MH, Sant Anna GL. 1997. A stable lipase from Candida lipolytica: cultivation conditions and crude enzyme characteristics. Appl Biochem Biotechnol. 63-65(1):73–85.
  • Ribeiro BD, Castro A. M d, Coelho MAZ, Freire DMG. 2011. Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Res. 2011:1–16.
  • Rigo E, Ninow JL, Di Luccio M, Oliveira JV, Polloni AE, Remonatto D, Arbter F, Vardanega R, de Oliveira D, Treichel H, et al. 2010. Lipase production by solid fermentation of soybean meal with different supplements. LWT Food Sci Technol. 43(7):1132–1137.
  • Romano D, Bonomi F, de Mattos MC, de Sousa Fonseca T, de Oliveira MdCF, Molinari F. 2015. Esterases as stereoselective biocatalysts. Biotechnol Adv. 33(5):547–565.
  • Ronkvist ÅM, Xie W, Lu W, Gross RA. 2009. Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules. 42(14):5128–5138.
  • Singhania RR, Patel AK, Soccol CR, Pandey A. 2009. Recent advances in solid-state fermentation. Biochem Eng J. 44(1):13–18.
  • Soares VF, Castilho LR, Bon EPS, Freire DMG. 2005. High-yield Bacillus subtilis protease production by solid-state fermentation. ABAB. 121(1-3):0311–0320.
  • Soccol CR, Costa ESFd, Letti LAJ, Karp SG, Woiciechowski AL, Vandenberghe LPdS. 2017. Recent developments and innovations in solid state fermentation. Biotechnol Res Innovation. 1(1):52–71.
  • Souza CEC, Farias MA, Ribeiro BD, Coelho MAZ. 2017. Adding value to agro-industrial co-products from canola and soybean oil extraction through lipase production using yarrowia lipolytica in solid-state fermentation. Waste Biomass Valor. 8(4):1163–1176.
  • Turati DFM, Almeida AF, Terrone CC, Nascimento JMF, Terrasan CRF, Fernandez-Lorente G, Pessela BC, Guisan JM, Carmona EC. 2019. Thermotolerant lipase from Penicillium sp. section gracilenta CBMAI 1583: effect of carbon sources on enzyme production, biochemical properties of crude and purified enzyme and substrate specificity. Biocatal Agric Biotechnol. 17:15–24.
  • USDA 2019. ‘World agricultural production’.
  • Vargas GDLP, Treichel H, de Oliveira D, Beneti SC, Freire DMG, Di Luccio M. 2008. Optimization of lipase production by Penicillium simplicissimum in soybean meal. J Chem Technol Biotechnol. 83(1):47–54.
  • Verger R. 1997. Interfacial activation” of lipases: facts and artifacts. Trends Biotechnol. 15(1):32–38.
  • Webb H, Arnott J, Crawford R, Ivanova E. 2012. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers. 5(1):1–18.
  • Wei R, Zimmermann W. 2017. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb Biotechnol. 10(6):1308–1322.
  • Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K, et al. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science. 351(6278):1196–1199.
  • Yu M, Qin S, Tan T. 2007. Purification and characterization of the extracellular lipase Lip2 from Yarrowia lipolytica. Process Biochem. 42(3):384–391.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.