263
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Development of a biocatalytic cascade for synthesis of 2-oxo-4-(hydroxymethylphosphinyl) butyric acid in one pot

, , , ORCID Icon, , , & show all
Pages 190-197 | Received 27 Apr 2020, Accepted 27 Jun 2020, Published online: 25 Jul 2020

References

  • Baillie AC, Wright BJ, Wright K, Earnshaw CG. 1983. Phosphinic acid derivatives. U.S. Patent 4399287
  • Bakke M, Kajiyama N. 2004. Improvement in thermal stability and substrate binding of pig kidney D-amino acid oxidase by chemical modification. ABAB. 112:123–131.
  • Chapman MR, Cosgrove SC, Turner NJ, Kapur N, Blacker AJ. 2018. Highly productive oxidative biocatalysis in continuous flow by enhancing the aqueous equilibrium solubility of oxygen. Angew Chem Int Ed Engl. 57:10535–10539.
  • Charles M. 1985. Fermentation scale-up: problems and possibilities. Trends Biotechnol. 3:134–139.
  • Conti G, Pollegioni L, Rosini E. 2015. One-pot conversion of cephalosporin C by using an optimized two-enzyme process. Catal Sci Technol. 5:1854–1863.
  • Fernández-Lafuente R, Rodrı́guez V, Mateo C, Fernández-Lorente G, Arminsen P, Sabuquillo P, Guisán JM. 1999. Stabilization of enzymes (D-amino acid oxidase) against hydrogen peroxide via immobilization and post-immobilization techniques. J Mol Catal B Enzym. 7:173–179.
  • García-García P, Rocha-Martin J, Fernandez-Lorente G, Guisan JM. 2018. Co-localization of oxidase and catalase inside a porous support to improve the elimination of hydrogen peroxide: oxidation of biogenic amines by amino oxidase from Pisum sativum. Enzyme Microb Technol. 115:73–80.
  • Grey CE, Hedström M, Adlercreutz P. 2007. A mass spectrometric investigation of native and oxidatively inactivated chloroperoxidase. Chembiochem. 8:1055–1062.
  • Han H, Zhu B, Fu X, You S, Wang B, Li Z, Zhao W, Peng R, Yao Q. 2015. Overexpression of D-amino acid oxidase from Bradyrhizobium japonicum, enhances resistance to glyphosate in Arabidopsis thaliana. Plant Cell Rep. 34:2043–2051.
  • Han SW, Shin JS. 2018. One-pot preparation of D-amino acids through biocatalytic deracemization using alanine dehydrogenase and ω-transaminase. Catal Lett. 148:3678–3684.
  • Hsieh HC, Kuan IC, Lee SL, Tien GY, Wang YJ, Yu CY. 2009. Stabilization of D-amino acid oxidase from Rhodosporidium toruloides by immobilization onto magnetic nanoparticles. Biotechnol Lett. 31:557–563.
  • Jin LQ, Peng F, Liu HL, Cheng F, Jia DX, Xu JM, Liu ZQ, Xue YP, Zheng YG. 2019. Asymmetric biosynthesis of L-phosphinothricin by a novel transaminase from Pseudomonas fluorescens ZJB09-108. Process Biochem. 85:60–67.
  • Lv SZ, Guo YX, Xue YP, Xu JM, Zheng YG. 2019. Efficient separation of L-phosphinothricin from enzymatic reaction solution using cation-exchange resin. Sep Sci Technol. 55:1–9.
  • Murtas G, Sacchi S, Pollegioni L. 2019. Substitution of arginine 120 in human D-amino acid oxidase favors FAD-binding and nuclear mistargeting. Front Mol Biosci. 6:125.
  • Nadler V, Goldberg I, Hochman A. 1986. Comparative study of bacterial catalases. BBA General Subjects. 882:234–241.
  • Pollegioni L, Caldinelli L, Molla G, Sacchi S, Pilone MS. 2004. Catalytic properties of D-amino acid oxidase in cephalosporin C bioconversion: a comparison between proteins from different sources. Biotechnol Prog. 20:467–473.
  • Pollegioni L, Diederichs K, Molla G, Umhau S, Welte W, Ghisla S, Pilone MS. 2002. Yeast D-amino acid oxidase: structural basis of its catalytic properties. J Mol Biol. 324:535–546.
  • Pollegioni L, Molla G. 2011. New biotech applications from evolved D-amino acid oxidases. Trends Biotechnol. 29:276–283.
  • Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G. 2007. Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci. 64:1373–1394.
  • Rosini E, Molla G, Ghisla S, Pollegioni L. 2011. On the reaction of D-amino acid oxidase with dioxygen: O2 diffusion pathways and enhancement of reactivity. FEBS J. 278:482–492.
  • Seo YM, Mathew S, Bea HS, Khang YH, Lee SH, Kim BG, Yun H. 2012. Deracemization of unnatural amino acid: homoalanine using D-amino acid oxidase and ω-transaminase. Org Biomol Chem. 10:2482–2485.
  • Shimekake Y, Furuichi T, Abe K, Kera Y, Takahashi S. 2019. A novel thermostable D-amino acid oxidase of the thermophilic fungus Rasamsonia emersonii strain YA. Sci Rep. 9:11948.
  • Thakur N, Sharma NK, Thakur S, Monika Bhalla TC. 2019. Bioprocess development for the synthesis of 4-aminophenylacetic acid using nitrilase activity of whole cells of Alcaligenes faecalis MTCC 12629. Catal Lett. 149:2854–2863.
  • Toftgaard Pedersen A, Birmingham WR, Rehn G, Charnock SJ, Turner NJ, Woodley JM. 2015. Process requirements of galactose oxidase catalyzed oxidation of alcohols. Org Process Res Dev. 19:1580–1589.
  • Trost EM, Fischer L. 2002. Minimization of by-product formation during D-amino acid oxidase catalyzed racemate resolution of D/L-amino acids. J Mol Catal B Enzym. 19-20:189–195.
  • Umhau S, Pollegioni L, Molla G, Diederichs K, Welte W, Pilone MS, Ghisla S. 2000. The x-ray structure of D-amino acid oxidase at very high resolution identifies the chemical mechanism of flavin-dependent substrate dehydrogenation. Proc Natl Acad Sci USA. 97:12463–12468.
  • Upadhya R, Nagajyothi  , Bhat SG. 2000. Stabilization of D-amino acid oxidase and catalase in permeabilized Rhodotorula gracilis cells and its application for the preparation of α-ketoacids. Biotechnol Bioeng. 68:430–436.
  • Volpato G, Rodrigues RC, Fernandez-Lafuente R. 2010. Use of enzymes in the production of semi-synthetic penicillins and cephalosporins: drawbacks and perspectives. Curr Med Chem. 17:3855–3873.
  • Xue YP, Cao CH, Zheng YG. 2018. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev. 47:1516–1561.
  • Zeiss HJ. 1991. Enantioselective synthesis of both enantiomers of phosphinothricin via asymmetric hydrogenation of.alpha.-acylamido acrylates. J Org Chem. 56:1783–1788.
  • Zhu L, Tao RS, Wang Y, Jiang Y, Lin X, Yang YL, Zheng HB, Jiang WH, Yang S. 2011. Removal of L-alanine from the production of L-2-aminobutyric acid by introduction of alanine racemase and D-amino acid oxidase. Appl Microbiol Biotechnol. 90:903–910.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.