216
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Laccase treatment of phenolic compounds for bioethanol production and the impact of these compounds on yeast physiology

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 38-49 | Received 14 Aug 2020, Accepted 24 Nov 2020, Published online: 07 Dec 2020

References

  • Adeboye PT, Bettiga M, Olsson L. 2014. The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates. AMB Express. 4:46.
  • Adeboye PT, Bettiga M, Olsson L. 2017. ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae. Sci Rep. 7:42635.
  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB. 2011. Biomass pretreatment: fundamentals toward application. Biotechnol Adv. 29(6):675–685.
  • Aljawish A, Chevalot I, Jasniewski J, Paris C, Scher J, Muniglia L. 2014. Laccase-catalysed oxidation of ferulic acid and ethyl ferulate in aqueous medium: a green procedure for the synthesis of new compounds. Food Chem. 145:1046–1054.
  • Bertrand B, Munusamy S, Espinosa-Romero J-F, Corzo G, Arenas Sosa I, Galván-Hernández A, Ortega-Blake I, Hernández-Adame PL, Ruiz-García J, Velasco-Bolom J-L, et al. 2020. Biophysical characterization of the insertion of two potent antimicrobial peptides-Pin2 and its variant Pin2[GVG] in biological model membranes. Biochim Biophys Acta Biomembr. 1862(2):183105.
  • Bonarska-Kujawa D, Pruchnik H, Oszmiański J, Sarapuk J, Kleszczyńska H. 2011. Changes caused by fruit extracts in the lipid phase of biological and model membranes. Food Biophys. 6(1):58–67.
  • Campos F, Couto J, Hogg T. 2016. Utilisation of natural and by-products to improve wine safety. In Wine safety, consumer preference, and human health. Switzerland: Springer International Publishing. pp 27–49.
  • Campos FM, Couto JA, Figueiredo AR, Toth IV, Rangel AO, Hogg TA. 2009. Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int J Food Microbiol. 135(2):144–151.
  • Chandel AK, Kapoor RK, Singh A, Kuhad RC. 2007. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol. 98(10):1947–1950.
  • Chen H, Zhao X, Liu Y, Kong F, Ji X. 2019. Ligninases remove phenolic inhibitors and facilitate yeast growth in lignocellulosic hydrolysate. Holzforschung. 73(7):681–687.
  • Dwivedi UN, Singh P, Pandey VP, Kumar A. 2011. Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzym. 68(2):117–128.
  • Garcia-Ruiz A, Moreno-Arribas MV, Martin-Alvarez PJ, Bartolome B. 2011. Comparative study of the inhibitory effects of wine polyphenols on the growth of enological lactic acid bacteria. Int J Food Microbiol. 145(2–3):426–431.
  • Ikeda R, Sugihara J, Uyama H, Kobayashi S. 1998. Enzymatic oxidative polymerization of 4-hydroxybenzoic acid derivatives to poly(phenylene oxide)s. Polym Int. 47(3):295–301.
  • Iwaki A, Ohnuki S, Suga Y, Izawa S, Ohya Y. 2013. Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in Saccharomyces cerevisiae: application and validation of high-content, image-based profiling. PLoS One. 8(4):e61748.
  • Jönsson LJ, Alriksson B, Nilvebrant NO. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 6(1):16.
  • Jönsson LJ, Martín C. 2016. Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol. 199:103–112.
  • Jönsson LJ, Palmqvist E, Nilvebrant NO, Hahn-Hägerdal B. 1998. Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol. 49(6):691–697.
  • Jurado M, Prieto A, Martinez-Alcala A, Martinez AT, Martinez MJ. 2009. Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour Technol. 100(24):6378–6384.
  • Keating DH, Zhang Y, Ong IM, McIlwain S, Morales EH, Grass JA, Tremaine M, Bothfeld W, Higbee A, Ulbrich A, et al. 2014. Aromatic inhibitors derived from ammonia-pretreated lignocellulose hinder bacterial ethanologenesis by activating regulatory circuits controlling inhibitor efflux and detoxification. Front Microbiol. 5:402.
  • Klinke HB, Thomsen AB, Ahring BK. 2004. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 66(1):10–26.
  • Kolb M, Sieber V, Amann M, Faulstich M, Schieder D. 2012. Removal of monomer delignification products by laccase from Trametes versicolor. Bioresour Technol. 104:298–304.
  • Kwolek-Mirek M, Zadrag-Tecza R. 2014. Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res. 7:n/a–na.
  • Larsson S, Quintana-Sainz A, Reimann A, Nilvebrant NO, Jonsson LJ. 2000. Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Appl Biochem Biotechnol. 84-86:617–632.
  • Malekar SA, Sarode AL, Bach AC, Worthen DR. 2016. The localization of phenolic compounds in liposomal bilayers and their effects on surface characteristics and colloidal stability. AAPS PharmSciTech. 17(6):1468–1476.
  • Mikulášová M, Vodný Š, Pekarovičová A. 1990. Influence of phenolics on biomass production by Candida utilis and Candida albicans. Biomass. 23(2):149–154.
  • Mills TY, Sandoval NR, Gill RT. 2009. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels. 2:26.
  • Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer JP, Carrère H. 2014. Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv. 32(5):934–951.
  • Moreno AD, Ibarra D, Alvira P, Tomás-Pejó E, Ballesteros M. 2016. Exploring laccase and mediators behavior during saccharification and fermentation of steam-exploded wheat straw for bioethanol production. J Chem Technol Biotechnol. 91(6):1816–1825.
  • Moreno AD, Ibarra D, Fernandez JL, Ballesteros M. 2012. Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresour Technol. 106:101–109.
  • Nakamura H, Nozaki Y, Koizumi Y, Watano S. 2018. Effect of number of hydroxyl groups of fullerenol C60(OH)n on its interaction with cell membrane. J Taiwan Inst Chem Eng. 90:18–24.
  • Nguyen TTM, Iwaki A, Ohya Y, Izawa S. 2014. Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J Biosci Bioeng. 117(1):33–38.
  • Oliva-Taravilla A, Tomas-Pejo E, Demuez M, Gonzalez-Fernandez C, Ballesteros M. 2015. Inhibition of cellulose enzymatic hydrolysis by laccase-derived compounds from phenols. Biotechnol Prog. 31(3):700–706.
  • Oliva JM, Ballesteros I, Negro MJ, Manzanares P, Cabanas A, Ballesteros M. 2004. Effect of binary combinations of selected toxic compounds on growth and fermentation of Kluyveromyces marxianus. Biotechnol Prog. 20(3):715–720.
  • Parasassi T, De Stasio G, d'Ubaldo A, Gratton E. 1990. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J. 57(6):1179–1186.
  • Parawira W, Tekere M. 2011. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol. 31(1):20–31.
  • Pastorkova E, Zakova T, Landa P, Novakova J, Vadlejch J, Kokoska L. 2013. Growth inhibitory effect of grape phenolics against wine spoilage yeasts and acetic acid bacteria. Int J Food Microbiol. 161(3):209–213.
  • Piotrowski JS, Zhang Y, Bates DM, Keating DH, Sato TK, Ong IM, Landick R. 2014. Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors. Front Microbiol. 5:90.
  • Sabel A, Bredefeld S, Schlander M, Claus H. 2017. Wine phenolic compounds: antimicrobial properties against yeasts, lactic acid and acetic acid bacteria. Beverages. 3:29.
  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K. 2012. Bioethanol production from agricultural wastes: an overview. Renew Energ. 37(1):19–27.
  • Scheinpflug K, Wenzel M, Krylova O, Bandow JE, Dathe M, Strahl H. 2017. Antimicrobial peptide cWFW kills by combining lipid phase separation with autolysis. Sci Rep. 7:44332.
  • Xu C, Arancon RA, Labidi J, Luque R. 2014. Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev. 43(22):7485–7500.
  • Yang J, Li W, Ng TB, Deng X, Lin J, Ye X. 2017. Laccases: production, expression regulation, and applications in pharmaceutical biodegradation. Front Microbiol. 8:832.
  • Zaldivar J, Martinez A, Ingram LO. 1999. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng. 65(1):24–33.
  • Zaldivar J, Martinez A, Ingram LO. 2000. Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng. 68(5):524–530.
  • Zaldivar J, Nielsen J, Olsson L. 2001. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 56(1–2):17–34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.