778
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Catalase-mediated remediation of environmental pollutants and potential application – a review

, &
Pages 389-407 | Received 24 Feb 2021, Accepted 17 May 2021, Published online: 14 Jun 2021

References

  • Ajao AT, Oluwajobi AO, Olatayo VS. 2011. Bioremediation of soil microcosms from automechanic workshops. J Appl Sci Environ Manage. 15(3):473–477.
  • Ahmed I, Iqbal HMN, Dhama K. 2017. Enzyme-based biodegradation of hazardous pollutants – an overview. J Exp Biol Agric Sci. 5(4):402–411.
  • Aljahdali MO, Alhassan AB. 2020. Metallic pollution and the use of antioxidant enzymes as biomarkers in Bellamya unicolor (Olivier, 1804) (Gastropoda: Bellamyinae). Water. 12(1):202–214.
  • Alneyadi AH, Rauf MA, Ashraf SS. 2018. Oxidoreductases for the remediation of organic pollutants in water—a critical review. Crit Rev Biotechnol. 38(7):971–988.
  • Al-Maqdi KA, Hisaindee SM, Rauf MA, Ashraf SS. 2017. Comparative degradation of a thiazole pollutant by an advanced oxidation process and an enzymatic approach. Biomolecules. 7(4):64.
  • Ameen F, Moslem M, Hadi S, Al-Sabri AE. 2016. Biodegradation of diesel fuel hydrocarbons by mangrove fungi from Red Sea Coast of Saudi Arabia. Saudi J Biol Sci. 23(2):211–218.
  • Amorim AM, Gasques MDG, Andreaus J, Scharf M. 2002. The application of catalase for the elimination 5of hydrogen peroxide residues after bleaching of cotton fabrics. An Acad Bras Cienc. 74(3):433–436.
  • Anku WW, Mamo MA, Govender PP. 2017. Phenolic compounds in water: sources, reactivity, toxicity and treatment methods. In: Soto-Hernandez M, Palma-Tenango M, Garcia-Mateos MDR, editors. Phenolic compounds - natural sources, importance and applications. London (UK): IntechOpen, p. 420–443.
  • Baginski R, Sommerhalter M. 2017. A manganese catalase from Thermomicrobium roseum with peroxidase and catecholase activity. Extremophiles. 21(1):201–210.
  • Bansal N, Kanwar SS. 2013. Peroxidase(s) in environment protection. Sci World J. 2013:1–9.
  • Barrios-Estrada C, de Jesús Rostro-Alanis M, Parra AL, Belleville MP, Sanchez-Marcano J, Iqbal HM, Parra-Saldívar R. 2018. Potentialities of active membranes with immobilized laccase for bisphenol A degradation. Int J Biol Macromol. 108:837–844.
  • Barquero-Quirós M, Arcos-Martínez MJ. 2018. Development and selection of aluminium screen printed amperometric biosensor modified with nanoparticles and catalase enzyme. Sens Transduc. 223:1–8.
  • Berthet S, Nykyri LM, Bravo J, Mate MJ, Berthet-Colominas C, Alzari PM, Koller F, Fita I. 1997. Crystallization and preliminary structural analysis of catalase A from Saccharomyces cerevisiae. Protein Sci. 6(2):481–483.
  • Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal HMN. 2017. Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutants - a review. Sci Total Environ. 576:646–659.
  • Bilal M, Rasheed T, Hassan AA, Nabeel F, Bharagava RN, Ferreira LFR, Tran HN, Iqbal HMN. 2020. Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents. Environ Res. 185(2020):109436.
  • Bilal M, Rasheed T, Iqbal HM, Hu H, Wang W, Zhang X. 2018. Toxicological assessment and UV/TiO2-based induced degradation profile of reactive black 5 dye. Environ Manage. 61(1):171–180.
  • Bilal M, Rasheed T, Iqbal HMN, Yan Y. 2018. Peroxidases-assisted removal of environmentally-related hazardous pollutants with reference to the reaction mechanisms of industrial dyes. Sci Total Environ. 644:1–13.
  • Bindhumol V, Chitra KC, Mathur PP. 2003. Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology. 188(2–3):117–124.
  • Bingham S. 2007. Pesticides exceeding environmental quality standards (EQS). Bristol (UK): The Environment Agency, UK.
  • Blackburn RS. 2009. Sustainable textiles: life cycle and environmental impact. Cambridge (UK): Woodhead.
  • Bravo J, Verdaguer N, Tormo J, Betzel C, Switala J, Loewen PC, Fita I. 1995. Crystal structure of catalase HPII from Escherichia coli. Structure. 3(5):491–502.
  • Busca G, Berardinelli S, Resini C, Arrighi L. 2008. Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater. 160(2–3):265–288.
  • Calvo-Flores FG, Isac-García J, Dobado JA. 2018. Introduction. In: Emerging Pollutants: Origin, Structure, and Properties. Weinheim (Germany): Wiley; p. 1–13.
  • Carpena X, Soriano M, Klotz MG, Duckworth HW, Donald LJ, Melik-Adamyan W, Fita I, Loewen PC. 2003. Structure of the clade 1 catalase, CatF of Pseudomonas syringae, at 1.8 A resolution. Proteins. 50(3):423–436.
  • Chandanshive VV, Rane NR, Gholave AR, Patil SM, Jeon B, Govindwar SP. 2016. Efficient decolorization and detoxification of textile industry effluent by Salvinia molesta in lagoon treatment. Environ Res. 150:88–96.
  • Chen L, Zhang J, Zhu Y, Zhang Y. 2018. Interaction of chromium(III) or chromium(VI) with catalase and its effect on the structure and function of catalase: an in vitro study. Food Chem. 244:378–385.
  • Deblonde T, Cossu -Leguille C, Hartemann P. 2011. Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health. 214(6):442–448.
  • Değirmenbaşı D, Takaç S. 2018. Use of olive mill wastewater as a growth medium for superoxide dismutase and catalase production. Clean - Soil, Air, Water. 46(5):1700228.
  • Di Gennaro P, Bargna A, Bruno F, Sello G. 2014. Purification of recombinant catalase-peroxidase HPI from E. coli and its application in enzymatic polymerization reactions. Appl Microbiol Biotechnol. 98(3):1119–1126.
  • Dinçer AR. 2020. Increasing BOD5/COD ratio of non-biodegradable compound (reactive black 5) with ozone and catalase enzyme combination. SN Appl Sci. 2(4):1–10.
  • Dwivedi VK, Bharadwaj S, Kaushik AC, Mishra SK. 2016. 3D structure modeling of catalase enzyme from Aspergillusfumigatus. Open J Proteomics Gen. 1:8–12.
  • El-Ashtoukhy SZ, El-Taweel YA, Abdelwahab O, Nassef EM. 2013. Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor. Int J Electrochem Sci. 8:1534–1550.
  • Elsebai B, Ghica ME, Abbas MN, Brett CMA. 2017. Catalase based hydrogen peroxide biosensor for mercury determination by inhibition measurements. J Hazard Mater. 340:344–350.
  • Fatma F, Verma S, Kamal A, Srivastava A. 2018. Phytotoxicity of pesticides mancozeb and chlorpyrifos: correlation with the antioxidative defence system in Allium cepa. Physiol Mol Biol Plants. 24(1):115–123.
  • Fita I, Silva AM, Murthy MRN, Rossmann MG. 1986. The refined structure of beef liver catalase at 2.5 Å resolution. Acta Crystallogr B Struct Sci. 42(5):497–515.
  • Fruhwirth GO, Paar A, Gudelj M, Cavaco-Paulo A, Robra K-H, Gübitz GM. 2002. An immobilized catalase peroxidase from the alkalothermophilic Bacillus SF for the treatment of textile-bleaching effluents. Appl Microbiol Biotechnol. 60(3):313–319.
  • Gebicka L, Didik J. 2009. Catalytic scavenging of peroxynitrite by catalase. J Inorg Chem. 103(10):1375–1379.
  • Gianfreda L, Rao MA. 2004. Potential of extra cellular enzymes in remediation: a review. Enzyme Microb Technol. 35(4):339–354.
  • Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, van der Ploeg M, van de Zee SEATM, Ritsema CJ. 2015. Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res. 3(1):57–65.
  • Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F. 2015. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. N Biotechnol. 32(1):147–156.
  • Gomes AR, Justino C, Rocha-Santos T, Freitasd AC, Duarte AC, Pereira R. 2017. Review of the ecotoxicological effects of emerging contaminants on soil biota. J Environ Sci Health A. 52(1):1–16.
  • Goyal MM, Basak A. 2010. Human catalase: looking for complete identity. Protein Cell. 1(10):888–897.
  • Goyal MM, Basak A. 2012. Hydroxyl radical generation theory: a possible explanation of unexplained actions of mammalian catalase. Int J Biochem Mol Biol. 3:282–289.
  • Halliwell B. 1987. Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem Phys Lipids. 44(2–4):327–340.
  • Hanstein WG. 1976. Uncoupling of oxidative phosphorylation. Trends Biochem Sci. 1(2):65–67.
  • Horita M, Wang DH, Tsutsui K, Sano K, Masuoka N, Kira S. 2005. Involvement of oxidative stress in hydroquinone-induced cytotoxicity in catalase-deficient Escherichia coli mutants. Free Radic Res. 39(10):1035–1041.
  • Hurtado-Gallego J, Redondo-López A, Leganés F, Rosal R, Fernández-Piñas F. 2019. Peroxiredoxin (2-cys-prx) and catalase (katA) cyanobacterial-based bioluminescent bioreporters to detect oxidative stress in the aquatic environment. Chemosphere. 236:124395.
  • Jagini S, Konda S, Bhagawan D, Himabindu V. 2019. Emerging contaminant (triclosan) identification and its treatment: a review. SN Appl Sci. 1(6):640.
  • Jemec A, Drobne D, Tišler T, Sepčić K. 2010. Biochemical biomarkers in environmental studies-lessons learnt from enzymes catalase, glutathione S-transferase and cholinesterase in two crustacean species. Environ Sci Pollut Res Int. 17(3):571–581.
  • Jia X, Lin X, Lin C, Lin L, Chen J. 2017. Enhanced alkaline catalase production by Serratiamarcescens FZSF01: Enzyme purification, characterisation and recombinant expression. Electron J Biotechnol. 30:110–117.
  • Kadam SK, Tamboli AS, Sambhare SB, Jeon B, Govindwar SP. 2018. Enzymatic analysis, structural study and molecular docking of laccase and catalase from B. subtilis SK1 after textile dye exposure. Ecol Inform. 48:269–280.
  • Karigar CS, Rao SS. 2011. Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res. 2011:805187.
  • Katiyar S, Kumar A. 2019. Purification of Catalase Enzyme from Chilli Plants and its Physiochemical Properties. International Journal of Engineering Sciences and Advanced Research. 5:25–30.
  • Kauldhar BS, Dhau JS, Sooch BS. 2016. Covalent linkage of alkalothermophiliccatalase onto functionalized cellulose. RSC Adv. 6(45):39364–39375.
  • Kaushal J, Mehandia S, Singh G, Raina A, Arya SK. 2018. Catalase enzyme: application in bioremediation and food industry. Biocatal Agric Biotechnol. 16:192–199.
  • Karakus YY. 2020. Typical catalases: function and structure. In: Bagatini MD, editors. Glutathione system and oxidative stress in health and disease. London (UK): IntechOpen Limited; p. 1–16.
  • Khare A, Chhawani N, Kumari K. 2019. Glutathione reductase and catalase as potential biomarkers for synergistic intoxication of pesticides in fish. Biomarkers. 24(7):666–676.
  • Khataee AR, Movafeghi A, Torbati S, Salehi Lisar SY, Zarei M. 2012. Phytoremediation potential of duckweed (Lemna minor L.) in degradation of C.I. Acid Blue 92: artificial neural network modeling. Ecotoxicol Environ Saf. 80:291–298.
  • Ko TP, Safo MK, Musayev FN, Di Salvo ML, Wang C, Wu SH, Abraham DJ. 2000. Structure of human erythrocyte catalase ActaCryst. Acta Crystallogr D Biol Crystallogr. 56(2):241–245. D
  • Koclar Avci G, Coruh N, Bolukbasi U, Ogel ZB. 2013. Oxidation of phenolic compounds by the bifunctional catalase-phenol oxidase (CATPO) from Scytalidium thermophilum. Appl Microbiol Biotechnol. 97(2):661–672.
  • Kulkarni AN, Watharkar AD, Rane NR, Jeon BH, Govindwar SP. 2018. Decolorization and detoxification of dye mixture and textile effluent by lichen Dermatocarpon vellereceum in fixed bed upflow bioreactor with subsequent oxidative stress study. Ecotoxicol Environ Saf. 148:17–25.
  • Kwon SII, Lee H, An CS. 2007. Differential expression of three catalase genes in the small radish (Rhaphanussativus L. var. sativus). Molecules Cells. 24:37–44.
  • Li H, Huang WX, Gao MY, Li X, Xiang L, Mo CH, Li YW, Cai QY, Wong MH, Wu FY. 2020. AM fungi increase uptake of Cd and BDE-209 and activities of dismutase and catalase in amaranth (Amaranthus hypochondriacus L.) in two contaminants spiked soil. Ecotoxicol Environ Saf. 195:110485.
  • Lei M, Zhang L, Lei J, Zong L, Li J, Wu Z, Wang Z. 2015. Overview of emerging contaminants and associated human health effects. Biomed Res Int. 2015:404796.
  • Liu L, Bilal M, Duan X, Iqbal HMN. 2019. Mitigation of environmental pollution by genetically engineered bacteria — current challenges and future perspectives. Sci Total Environ. 667:444–454.
  • Loncar N, Fraaije MW. 2015. Catalases as biocatalysts in technical applications: current state and perspectives . Appl Microbiol Biotechnol. 99(8):3351–3357.
  • Lu G, Tan W, Li G, Yang M, Wang H. 2020. Effects of carbendazim on catalase activity and related mechanism. Environ Sci Pollut Res Int. 27(20):24686–24691.
  • Liu J, Zhao Z, Ou Q, Yin X. 2017. Nanomaterial-based electrochemical hydrogen peroxide biosensor. Int J Biosens Bioelectron. 2:100–102.
  • Manzetti S. 2013. Polycyclic aromatic hydrocarbons in the environment: environmental fate and transformation. Polycycl Aromat Compd. 33(4):311–330.
  • Matthiessen P, Wheeler JR, Weltje L. 2018. A review of the evidence for endocrine disrupting effects of current-use chemicals on wildlife populations. Crit Rev Toxicol. 48(3):195–216.
  • Margesin R, Walder G, Schinner F. 2000. The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil. Acta Biotechnol. 20(3–4):313–333.
  • Melik-Adamyan WR, Barynin VV, Vagin AA, Borisov VV, Vainshtein BK, Fita I, Murthy MR, Rossmann MG. 1986. Comparison of beef liver and Penicillium vitale catalases. J Mol Biol. 188(1):63–72.
  • Mishra S, Maiti A. 2019. Applicability of enzymes produced from different biotic species for biodegradation of textile dyes. Clean Techn Environ Policy. 21(4):763–781.
  • Moussavi G, Mahmoudi M, Barikbin B. 2009. Biological removal of phenol from strong wastewaters using a novel MSBR. Water Res. 43(5):1295–1302.
  • Mofidi Najjar F, Ghadari R, Yousefi R, Safari N, Sheikhhasani V, Sheibani N, Moosavi-Movahedi AA. 2017. Studies to reveal the nature of interactions between catalase and curcumin using computational methods and optical techniques. Int J Biol Macromol. 95:550–556.
  • Morsi R, Bilal M, Iqbal HMN, Ashraf SS. 2020. Laccases and peroxidases: the smart, greener and futuristic biocatalytic tools to mitigate recalcitrant emerging pollutants. Sci Total Environ. 714:136572.
  • Muñoz-García A, Mestanza O, Isaza JP, Figueroa-Galvis I, Vanegas J. 2019. Influence of salinity on the degradation of xenobiotic compounds in rhizospheric mangrove soil. Environ Pollut. 249:750–757.
  • Murshudov GN, Melik-Adamyan WR, Grebenko AI, Barynin VV, Vagin AA, Vainshtein BK, Dauter Z, Wilson KS. 1992. Three-dimensional structure of catalase from Micrococcus lysodeikticus at 1.5 Å resolution. FEBS Lett. 312(2–3):127–131.
  • O'Riordan SL, Lowry JP. 2017. In vivo characterisation of a catalase based biosensor for real-time electrochemical monitoring of brain hydrogen peroxide in freely moving animals. Anal Methods. 9(8):1253–1264.
  • Orozco J, García-Gradilla V, D’Agostino M, Gao W, Cortés A, Wang J. 2013. Artificial enzyme-powered micro fish for water-quality testing. ACS Nano 7(1):818–824.
  • Palanisami S, Prabaharan D, Uma L. 2009. Fate of few pesticide-metabolizing enzymes in the marine cyanobacterium Phormidium valderianum BDU 20041 in perspective with chlorpyrifos exposure. Pestic Biochem Physiol. 94(2–3):68–72.
  • Parmar J, Vilela D, Villa K, Wang J, Sánchez S. 2018. Micro- and nanomotors as active environmental microcleaners and sensors. J Am Chem Soc. 140(30):9317–9331. − 
  • Palüzar H, Özcan HM. 2017. Catalase immobilized PANI biosensor for detection of deltamethrine. J Nat Appl Sci. 21(2):644–651.
  • Piao X, Liu Z, Li Y, Yao D, Sun L, Wang B, Ma Y, Wang L, Zhang Y. 2019. Investigation of the effect for bisphenol A on oxidative stress in human hepatocytes and its interaction with catalase. Spectrochim Acta A Mol Biomol Spectrosc. 221:117149.
  • Pirkarami A, Olya ME. 2017. Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism. J Saudi Chem Soc. 21:S179–S186.
  • Putnam CD, Arvai AS, Bourne Y, Tainer JA. 2000. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J Mol Biol. 296(1):295–309.
  • Rasheed T, Bilal M, Iqbal HM, Shah SZH, Hu H, Zhang X, Zhou Y. 2018. TiO2/UV-assisted rhodamine B degradation: putative pathway and identification of intermediates by UPLC/MS. Environ Technol. 39(12):1533–1543.
  • Regelsberger G, Jakopitsch C, Engleder M, Rüker F, Peschek GA, Obinger C. 1999. Spectral and kinetic studies of the oxidation of monosubstituted phenols and anilines by recombinant Synechocystis catalase-peroxidase compound I. Biochemistry. 38(32):10480–10488.
  • Reyes YIA, Franco FC. 2019. DFT study on the effect of proximal residues on the Mycobacterium tuberculosis catalase-peroxidase (katG) heme compound I intermediate and its bonding interaction with isoniazid. Phys Chem Chem Phys. 21(30):16515–16525.
  • Retnaningrum E, Rizqullah MF, Wilopo W. 2019. Biocatalysts characters of novel bacteria from crude oil-contaminated river. Paper presented at the 6th International Conference on Biological Science ICBS 2019; October 10–11; Yogyakarta, Indonesia.
  • Ribeiro EB, Noleto KS, de Oliveira SRS, Batista de Jesus W, de Sousa Serra IMR, da Silva de Almeida Z, de Sousa de Oliveira Mota Andrade T, de Araújo Soares R, Antonio ÍG, Santos DMS, et al. 2020. Biomarkers (glutathione S-transferase and catalase) and microorganisms in soft tissues of Crassostrea rhizophorae to assess contamination of seafood in Brazil. Mar Pollut Bull. 158:111348.
  • Rosales G, Alves F, Costa F, Martín Pastor M, Fernandes VC, Mattedi S, Boaventura JS. 2019. Development of a bioelectrode based on catalase enzyme and the novel protic ionic liquid pentaethylenehexammonium acetate (PEHAA). J Mol Liq. 280:182–190.
  • Ruggaber TP, Talley JW. 2006. Enhancing bioremediation with enzymatic processes: a review. Pract Period Hazard Toxic Radioact Waste Manage. 10(2):73–85.
  • Said M, Ahmad A, Abdul Wahab M. 2013. Removal of phenol during ultrafiltration of Palm oil mill effluent (POME): effect of pH, ionic strength, pressure and temperature. Der Pharma Chemica. 5(3):190–196.
  • Salouti M, Khadivi Derakhshan F. 2020. Biosensors and nanobiosensors in environmental applications. In: Ghorbanpour M, Bhargava P, Varma A, Choudhary D, editors. Biogenic nano-particles and their use in agro-ecosystems. Singapore (Singapore): Springer. p. 515–591.
  • Samson M, Yang T, Omar M, Xu M, Zhang X, Alphonse U, Rao Z. 2018. Improved thermostability and catalytic efficiency of overexpressed catalase from B. pumilus ML 413 (KatX2) by introducing disulfide bond C286-C289. Enzyme Microb Technol. 119:10–16.
  • Santoso P, Ambarsari L. Suryani, Yopi Y. 2016. Purification and Characterization of Catalase from Indigenous Fungi of Neurospora crassa InaCC F226. International Journal on Advanced Science, Engineering and Information Technology. 6(4):502–507.
  • Sarkar A, Sarkar KD, Amrutha V, Dutta K. 2019. An overview of enzyme-based biosensors for environmental monitoring. In: Brar SK, Hegde K, Pachapur VL, editors. Tools, techniques and protocols for monitoring environmental contaminants. Amsterdam (The Netherlands): Elsevier Inc.; p. 307–329.
  • Satapute P, Sanakal RD, Mulla SI, Kaliwal B. 2019. Molecular interaction of the triazole fungicide propiconazole with homology modelled superoxide dismutase and catalase. Env Sustain. 2(4):429–439.
  • Sattayasamitsathit S, Kaufmann K, Galarnyk M, Vazquez-Duhalt R, Wang J. 2014. Dual-enzyme natural motors incorporating decontamination and propulsion capabilities. RSC Adv. 4(52):27565–27570.
  • Sezginturk MK, Goktug T, Dinckaya E. 2005. A biosensor based on catalase for determination of highly toxic chemical azide in fruit juices. Biosens Bioelectron. 21:684–688.
  • Shaeer A, Aslam M, Rashid N. 2019. A highly stable manganese catalase from Geobacillus thermopakistaniensis: molecular cloning and characterization. Extremophiles. 23(6):707–718.
  • Singh RP, Kang DY, Oh BK, Choi JW. 2009. Polyaniline based catalase biosensor for the detection of hydrogen peroxide and azide. Biotechnol Bioproc E. 14(4):443–449.
  • Smejkal GB, Kakumanu S. 2019. Enzymes and their turnover numbers. Expert Rev Proteomics. 0:1–2.
  • Shen YY, Wang W, Li CR. 2011. Research on soil catalase activity for petroleum contaminations. Paper presented at the International Symposium on Water Resource and Environmental Protection; May 20–22; Xi’an, China
  • Sooch BS, Kauldhar BS, Puri M. 2017. Catalases: types, structure, applications and future outlook. In: Ray RC, Rosell CM, editors. Microbial enzyme technology in food applications. London (UK): CRC Press; p. 241–254.
  • Soto D, Alzate M, Gallego J, Orozco J. 2020. Hybrid nanomaterial/catalase-modified electrode for hydrogen peroxide sensing. J Electroanal Chem. 114826:1–45.
  • Stadlmair LF, Letzel T, Drewes JE, Grassmann J. 2018. Enzymes in removal of pharmaceuticals from wastewater: a critical review of challenges, applications and screening methods for their selection. Chemosphere. 205:649–661.
  • Sumner JB, Dounce AL. 1937. Crystalline catalase. J Biol Chem. 121(2):417–424.
  • Tehrani HS, Moosavi-Muvahedi AA. 2018. Catalase and its mysteries. Progr Biophys Mol Biol. 140:5–12.
  • Teodosiu C, Gilca A-F, Barjoveanu G, Fiore S. 2018. Emerging pollutants removal through advanced drinking water treatment: a review on processes and environmental performances assessment. J Clean Prod. 197:1210–1221.
  • Tran NH, Urase T, Ngo HH, Hu J, Ong SL. 2013. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour Technol. 146:721–731.
  • Tufail F, Abdullah S, Naz H. 2019. Purification and kinetic characterization of hepatic catalase from carnivore fish, channastriata exposed to agrochemicals (endosulfan + deltamethrin). Punjab Univ J Zool. 34:79–84.
  • Unuofin JO, Okoh AI, Nwodo UU. 2019. Aptitude of oxidative enzymes for treatment of wastewater pollutants: a laccase perspective. Molecules. 24(11):2064.
  • Vainshtein BK, Melik-Adamyan WR, Barynin VV, Vagin AA, Grebenko AI. 1981. Three-dimensional structure of the enzyme catalase. Nature. 293(5831):411–412.
  • Vaishnavi J, Devanesan S, AlSalhi MS, Rajasekar A, Selvi A, Srinivasan P, Govarthanan M. 2021. Biosurfactant mediated bioelectrokinetic remediation of diesel contaminated environment. Chemosphere. 264(1):128377.
  • Vasilachi IC, Asiminicesei DM, Fertu DI, Gavrilescu M. 2021. Occurrence and fate of emerging pollutants in water environment and options for their removal. Water. 13(2):181.
  • Verma N, Thakur S, Bhatt AK. 2012. Microbial lipases: industrial applications and properties (a review). Int Res J Biological Sci. 1(8):88–92.
  • Vlasits J, Jakopitsch C, Bernroitner M, Zamocky M, Furtmüller PG, Obinger C. 2010. Mechanisms of catalase activityofheme peroxidases. Arch Biochem Biophys. 500(1):74–81.
  • Waldo GS, Penner H, James E. 1995. Mechanism of manganese catalase peroxide disproportionation: determination of manganese oxidation states during turnover. Biochemistry. 34(5):1507–1512.
  • Wang H, Wang J, Wang J, Zhu R, Shen Y, Xu Q, Hu X. 2017. Spectroscopic method for the detection of 2,4-dichlorophenoxyacetic acid based on its inhibitory effect towards catalase immobilized on reusable magnetic Fe3O4-chitosan nanocomposite. Sensors Actuators, B Chem. 247:146–154.
  • Wang RF, Wennerstrom D, Cao WW, Khan AA, Cerniglia CE. 2000. Cloning, expression, and characterization of the katG gene, encoding catalase-peroxidase, from the polycyclic aromatic hydrocarbon-degrading bacterium Mycobacterium sp. strain PYR-1. Appl Environ Microbiol. 66(10):4300–4304.
  • Wasi S, Tabrez S, Ahmad M. 2013. Toxicological effects of major environmental pollutants: an overview. Environ Monit Assess. 185(3):2585–2593.
  • Xiao M, Ma H, Sun M, Yin X, Feng Q, Song H, Gai H. 2019. Characterization of cometabolic degradation of p-cresol with phenol as growth substrate by Chlorella vulgaris. Bioresour Technol. 281:296–302.
  • Yang F, Yang H, Ramesh A, Goodwin JS. 2016. Overexpression of catalase enhances benzo(a)pyrene detoxification in endothelial microsomes. PLoS One. 11(9):1–16.
  • Yildiz H, Akyilmaz E, Dinçkaya E. 2004. Catalase immobilization in cellulose acetate beads and determination of its hydrogen peroxide decomposition level by using a catalase biosensor. Artif Cells Blood Substit Immobil Biotechnol. 32(3):443–452.
  • Yoon DS, Won K, Kim YH, Song BK, Kim SJ, Moon SJ, Kim BS. 2007. Continuous removal of hydrogen peroxide with immobilized catalase for wastewater reuse. Water Sci Technol. 55(1–2):27–33.
  • Yu Z, Zheng H, Zhao X, Li S, Xu J, Song H. 2016. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching. Bioresour Technol. 214:303–310.
  • Yuan H, Liu X, Wang L, Ma X. 2021. Fundamentals and applications of enzyme powered micro/nano-motors. Bioact Mater. 6(6):1727–1749.
  • Zamocky M, Furtmuller PG, Obinger C. 2008. Evolution of catalases from bacteria to humans. Antioxid Redox Signal. 10(9):1527–1548.
  • Zámocký M, Godocíková J, Koller F, Polek B. 2001. Potential application of catalase-peroxidase from Comamonas terrigena N3H in the biodegradation of phenolic compounds. Antonie Van Leeuwenhoek. 79(2):109–117.
  • Zhang X, Li C, Pan J, Liu R, Cao Z. 2019. Searching for a bisphenol A substitute: effects of bisphenols on catalase molecules and human red blood cells. Sci Total Environ. 669:112–119.
  • Zhang M, Yang N, Liu Y, Tang J. 2019. Enzyme and microbial technology synthesis of catalase-inorganic hybrid nanoflowers via sonication for colorimetric detection of
  • Zhang Z, Zhang Y, Yang DC, Zhang JL. 2018. Expression and functional analysis of three nicosulfuron-degrading enzymes from Bacillus subtilis YB1. J Environ Sci Heal B. 53(7):476–485.
  • Zhang C, Wu D, Ren H. 2020. Bioremediation of oil contaminated soil using agricultural wastes via microbial consortium. Sci Rep. 10(9188):1–8.
  • Zhang M, Yang N, Liu Y, Tang J. 2019. Enzyme and Microbial Technology Synthesis of catalase-inorganic hybrid nanoflowers via sonication for colorimetric detection of hydrogen peroxide. Enzyme Microb Technol. 128:22–25.
  • Zhao H, Li W, Zhao X, Li X, Yang D, Ren H, Zhou Y. 2017. Cu/Zn superoxide dismutase (SOD) and catalase (CAT) response to crude oil exposure in the polychaete Perinereis aibuhitensis. Environ Sci Pollut Res Int. 24(1):616–627.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.