406
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

The effect of natural deep eutectic solvents on laccase activity and oligomerization of rutin

, , , &
Pages 353-366 | Received 15 Jun 2019, Accepted 26 Aug 2022, Published online: 08 Sep 2022

References

  • Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK. 2004. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc. 126(29):9142–9147.
  • Aktaş N, Tanyolaç A. 2003. Reaction conditions for laccase catalyzed polymerization of catechol. Bioresour Technol. 87(3):209–214.
  • Anthoni J, Humeau C, Maia ER, Chebil L, Engasser JM, Ghoul M. 2010. Enzymatic synthesis of oligoesculin: structure and biological activities characterizations. Eur Food Res Technol. 231(4):571–579.
  • Anthoni J, Lionneton F, Wieruszeski JM, Magdalou J, Engasser JM, Chebil L, Humeau C, Ghoul M. 2008. Investigation of enzymatic oligomerization of rutin. Rasayan J Chem. 1:718–731.
  • Arıkaya A, Ünlü AE, Takaç S. 2019. Use of deep eutectic solvents in the enzyme catalysed production of ethyl lactate. Process Biochem. 84:53–59.
  • Bourbonnais R, Leech D, Paice MG. 1998. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim Biophys Acta. 1379(3):381–390.
  • Choi YH, Spronsen J, van Dai Y, Verberne M, Hollmann F, Arends IWCE, Witkamp G-J, Verpoorte R. 2011. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 156(4):1701–1705.
  • Chung JE, Kurisawa M, Kim YJ, Uyama H, Kobayashi S. 2004. Amplification of antioxidant activity of catechin by polycondensation with acetaldehyde. Biomacromolecules. 5(1):113–118.
  • Crucianelli M, Saladino R, De Angelis, F, 2010. Methyltrioxorhenium catalysis in nonconventional solvents: a great catalyst in a safe reaction medium. ChemSusChem. 3(5):524–540.
  • Cvjetko Bubalo M, Jurinjak Tušek A, VinkoviĿ M, RadoševiĿ K, Gaurina SrĿek V, RadojĿiĿ RedovnikoviĿ I. 2015. Cholinium-based deep eutectic solvents and ionic liquids for lipase-catalyzed synthesis of butyl acetate. J Mol Catal B Enzym. 122:188–198.
  • Cvjetko Bubalo M, Vidović S, Radojčić Redovniković I, Jokić S. 2018. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod Process. 109:52–73.
  • Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH. 2013. Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta. 766:61–68.
  • Dawidowicz AL, Bernacik K, Typek R. 2016. Rutin transformation during ıts analysis ınvolving extraction process for sample preparation. Food Anal Methods. 9(1):213–224.
  • Desentis-Mendoza RM, Hernández-Sánchez H, Moreno A, Rojas del C E, Chel-Guerrero L, Tamariz J, Jaramillo-Flores ME. 2006. Enzymatic polymerization of phenolic compounds using laccase and tyrosinase from ustilago maydis. Biomacromolecules. 7(6):1845–1854.
  • Durand E, Lecomte J, Baréa B, Piombo G, Dubreucq E, Villeneuve P. 2012. Evaluation of deep eutectic solvents as new media for Candida antarctica B lipase catalyzed reactions. Process Biochem. 47(12):2081–2089.
  • Eckstein M, Sesing M, Kragl U, Adlercreutz P. 2002. At low water activity α-chymotrypsin is more active in an ionic liquid than in non-ionic organic solvents. Biotechnol. Lett. 24(11):867–872.
  • Ganske F, Bornscheuer UT. 2005a. Lipase-catalyzed glucose fatty acid ester synthesis in ionic liquids. Org Lett. 7(14):3097–3098.
  • Ganske F, Bornscheuer UT. 2005b. Optimization of lipase-catalyzed glucose fatty acid ester synthesis in a two-phase system containing ionic liquids and t-BuOH. J Mol Catal B Enzym. 36(1–6):40–42.
  • Gao WW, Zhang FX, Zhang GX, Zhou CH. 2015. Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis. Biochem Eng J. 99:67–84.
  • García G, Aparicio S, Ullah R, Atilhan M. 2015. Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels. 29(4):2616–2644.
  • Ghoul M, Chebil L. 2012. Enzymatic polymerization of phenolic compounds by oxidoreductases. In: Enzymatic polymerization of phenolic compounds by oxidoreductases. SpringerBriefs in Molecular Science. Dordrecht: Springer, p. 1–46. https://doi.org/10.1007/978-94-007-3919-2_1
  • Itoh T. 2017. Ionic liquids as tool to improve enzymatic organic synthesis. Chem Rev. 117(15):10567–10607.
  • Itoh T, Takagi Y. 2021. Laccase-Catalyzed reactions in ıonic liquids for green sustainable chemistry. ACS Sustainable Chem Eng. 9(4):1443–1458.
  • Khodaverdian S, Dabirmanesh B, Heydari A, Dashtban-moghadam E, Khajeh K, Ghazi F. 2018. Activity, stability and structure of laccase in betaine based natural deep eutectic solvents. Int J Biol Macromol. 107(Pt B):2574–2579.
  • Kostova I, Ivanova A, Mikhova B, Klaiber I. 1999. Alkaloids and coumarins from ruta graveolens. Monatshefte Fuer Chemie. 130(5):703–707.
  • Kurisawa M, Chung JE, Uyama H, Kobayashi S. 2003a. Laccase-Catalyzed synthesis and antioxidant property of poly(catechin). Macromol Biosci. 3(12):758–764.
  • Kurisawa M, Chung JE, Uyama H, Kobayashi S. 2003b. Enzymatic synthesis and antioxidant properties of poly(rutin). Biomacromolecules. 4(5):1394–1399.
  • Lahtinen M, Heinonen P, Oivanen M, Karhunen P, Kruus K, Sipilä J. 2013. On the factors affecting product distribution in laccase-catalyzed oxidation of a lignin model compound vanillyl alcohol: experimental and computational evaluation. Org Biomol Chem. 11(33):5454–5464.
  • Lindberg D, de la Fuente Revenga M, Widersten M. 2010. Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis. J Biotechnol. 147(3–4):169–171.
  • Madhavi V, Lele SS. 2009. Laccase: properties and applications. BioResources. 4:1694–1717.
  • Mann JP, McCluskey A, Atkin R. 2009. Activity and thermal stability of lysozyme in alkylammonium formate ionic liquids—influence of cation modification. Green Chem. 11(6):785–792.
  • Michiels C, Arnould T, Remacle J. 1994. Rôle clé de l’hypoxie et des cellules endothéliales dans le développement des veines variqueuses. Med Sci. 10(8–9):845–853.
  • Miletić N, Loos K, Gross RA. 2010. Enzymatic polymerization of polyester. In Loos K (ed.), Biocatalysis in polymer chemistry. Weinheim: Wiley-VCH Verlag & Co. KGaA.
  • Muñiz-Mouro A, Gullón B, Lú-Chau T, Moreira M, Lema J, Eibes G. 2018. Laccase activity as an essential factor in the oligomerization of rutin. Catalysts. 8(8):321.
  • Navarro-Núñez L, Lozano ML, Palomo M, Martínez C, Vicente V, Castillo J, Benavente-García O, Diaz-Ricart M, Escolar G, Rivera J. 2008. Apigenin inhibits platelet adhesion and thrombus formation and synergizes with aspirin in the suppression of the arachidonic acid pathway. J Agric Food Chem. 56(9):2970–2976.
  • Pöhnlein M, Ulrich J, Kirschhöfer F, Nusser M, Muhle-Goll C, Kannengiesser B, Brenner-Weiß G, Luy B, Liese A, Syldatk C, et al. 2015. Lipase-catalyzed synthesis of glucose-6-O-hexanoate in deep eutectic solvents. Eur J Lipid Sci Technol. 117(2):161–166.
  • van Rantwijk F, Sheldon RA. 2007. Biocatalysis in ionic liquids. Chem Rev. 107(6):2757–2785.
  • Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F, Seddon KR. 2002. Biocatalysis in ionic liquids. Green Chem. 4(2):147–151.
  • Smith EL, Abbott AP, Ryder KS. 2014. Deep eutectic solvents (DESs) and their applications. Chem Rev. 114(21):11060–11082.
  • Tang B, Row KH. 2013. Recent developments in deep eutectic solvents in chemical sciences. Monatsh Chem. 144(10):1427–1454.
  • Toledo ML, Pereira MM, Freire MG, Silva JPA, Coutinho JAP, Tavares APM. 2019. Laccase activation in deep eutectic solvents. ACS Sustainable Chem Eng. 7(13):11806–11814.
  • Ulbert O, Bélafi-Bakó K, Tonova K, Gubicza L. 2005. Thermal stability enhancement of Candida rugosa lipase using ionic liquids. Biocatal. Biotransformation. 23(3–4):177–183.
  • Ünlü AE, Arikaya A, Altundağ A, Takaç S. 2020. Remarkable effects of deep eutectic solvents on the esterification of lactic acid with ethanol over Amberlyst-15. Korean J Chem Eng. 37(1):46–53.
  • Ünlü AE, Prasad B, Anavekar K, Bubenheim P, Liese A. 2017. Investigation of a green process for the polymerization of catechin. Prep Biochem Biotechnol. 47(9):918–924.
  • Uzan E, Portet B, Lubrano C, Milesi S, Favel A, Lesage-Meessen L, Lomascolo A. 2011. Pycnoporus laccase-mediated bioconversion of rutin to oligomers suitable for biotechnology applications. Appl Microbiol Biotechnol. 90(1):97–105.
  • Wang J, Zhao L-L, Sun G-X, Liang Y, Wu F-A, Chen Z-L, Cui S-M. 2011. A comparison of acidic and enzymatic hydrolysis of rutin. African J Biotechnol. 10:1460–1466.
  • Yang J, Guo J, Yuan J. 2008. In vitro antioxidant properties of rutin. LWT – Food Sci Technol. 41(6):1060–1066.
  • Yildizoǧlu-Ari N, Altan VM, Altinkurt O, Öztürk Y. 1991. Pharmacological effects of rutin. Phytother Res. 5(1):19–23.
  • Zhang Q, Vigier O, De K, Royer S, Jerome F. 2012. Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev. 41(21):7108–7146.
  • Zhao H. 2016. Protein stabilization and enzyme activation in ionic liquids: specific ion effects. J Chem Technol Biotechnol. 91(1):25–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.