33
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Recovery of antioxidative phenolic compounds by the valorization of rice biomass under the influence of lignocellulolytic enzymes

, , &
Pages 440-453 | Received 02 Jun 2022, Accepted 06 Sep 2023, Published online: 25 Sep 2023

References

  • Asada C, Suzuki A, Nakamura Y. 2023. Antioxidant activity of water extract from bamboo by high-temperature and high-pressure steam treatment. Biomass Conv Bioref. 13(5):3809–3817. doi: 10.1007/s13399-021-01413-0.
  • Azwanida NN. 2015. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal and Aromat Plants. 4:196. doi: 10.4172/2167-0412.1000196.
  • Beladhadi RV, Shankar K, Jayalakshmi SK, Sreeramulu K. 2021. Production of cocktail of lignolytic, cellulolytic and hemicellulolytic enzymes by the novel bacterium Burkholderia sp SMB1 utilizing rice bran and straw: application in the saccharification of untreated agro‑wastes for bioethanol production. Waste Biomass Valor. 13(3):1565–1577. doi: 10.1007/s12649-021-01607-7.
  • Bener M, Shen Y, Apak R, Finley JW, Xu Z. 2013. Release and degradation of anthocyanins and phenolics from blueberry pomace during thermal acid hydrolysis and dry heating. J Agric Food Chem. 61(27):6643–6649. doi: 10.1021/jf401983c.
  • Bruno SF, Kudre TG, Narayan B. 2021. Optimisation of ultrasound-assisted enzymatic extraction conditions of umami compounds from fish by-products using the combination of fractional factorial design and central composite design. Food Chem. 334:127498. doi: 10.1016/j.foodchem.2020.127498.
  • Conde E, Moure A, Domínguez H, Carlos J. 2011. Production of antioxidants by non-isothermal autohydrolysis of lignocellulosic wastes. LWT- Food Sci. Technol. 44(2):436–442. doi: 10.1016/j.lwt.2010.08.006.
  • Díaz S, Benítez AN, Ramírez-Bolaños S, Robaina L, Ortega Z. 2021. Optimization of banana crop by-products solvent extraction for the production of bioactive compounds. Biomass Conver Biorefinery. 13:7701–7712. doi: 10.1007/s13399-021-01703-7.
  • Dulf FV, Vodnar DC, Dulf EV, Pintea A. 2017. Phenolic compounds, favonoids, lipids and antioxidant potential of apricot (Prunus armeniaca L.) pomace fermented by two filamentous fungal strains in solid state system. Chem Cent J. 11(1):92. doi: 10.1186/s13065-017-0323-z.
  • Gao M, Wang X, Gu M, Su Z, Wang Y, Janson J-C. 2011. Separation of polyphenols using porous polyamide resin and assessment of mechanism of retention. J Sep Sci. 34(15):1853–1858. doi: 10.1002/jssc.201100139.
  • García A, González Alriols M, Spigno G, Labidi J. 2012. Lignin as natural radical scavenger. Effect of the obtaining and purification processes on the antioxidant behaviour of lignin. Biochem Eng J. 67:173–185. doi: 10.1016/j.bej.2012.06.013.
  • Giacobbe S, Pezzella C, Lettera V, Sannia G, Piscitelli A. 2018. Laccase pretreatment for agrofood wastes valorization. Bioresour Technol. 265:59–65. doi: 10.1016/j.biortech.2018.05.108.
  • Hung NV, Maguyon-Detras MC, Migo MV, Quilloy R, Balingbing C, Chivenge P, Gummert M. 2020. Rice straw overview: availability, properties, and management practices. Sustainable Rice Straw Manag. 1–13. doi: 10.1007/978-3-030-32373-81.
  • Huynh NT, Smagghe G, Gonzales GB, Camp JV, Raes K. 2014. Enzyme-assisted extraction enhancing the phenolic release from cauliflower (Brassica oleracea L. var. botrytis) outer leaves. J Agric Food Chem. 62(30):7468–7476. doi: 10.1021/jf502543c.
  • Izadifar Z. 2013. Ultrasound pretreatment of wheat dried distiller’s grain (DDG) for extraction of phenolic compounds. Ultrason Sonochem. 20(6):1359–1369. doi: 10.1016/j.ultsonch.2013.04.004.
  • Kerber CMdC, Rasbold LM, Heinen PR, Henn C, Maller A, da Conceição Silva JL, Garcia Simão RdC, Simões MR, Kadowaki MK. 2021. Production of hemicellulolytic enzymes by a novel Trichoderma koningiopsis 2OI2A1M and its application in the saccharification of barley bagasse. Waste Biomass Valor. 12(11):5949–5958. doi: 10.1007/s12649-021-01401-5.
  • Kumar Y, Yadav DN, Ahmad T, Narsaiah K. 2015. Recent trends in the use of natural antioxidants for meat and meat products. Comp Rev Food Sci Food Safety. 14(6):796–812. doi: 10.1111/1541-4337.12156.
  • Lafka TI, Sinanoglou V, Lazos ES. 2007. On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chem. 104(3):1206–1214. doi: 10.1016/j.foodchem.2007.01.068.
  • Lau T, Harbourne T, Oruna-Concha MJ. 2019. Valorisation of sweet corn (Zea mays) cob by extraction of valuable compounds. Int J Food Sci Technol. 54(4):1240–1246. doi: 10.1111/ijfs.14092.
  • Li T, Wang L, Chen Z, Li C, Li X, Sun D. 2020. Structural changes and enzymatic hydrolysis yield of rice bran fiber under electron beam irradiation. Food Bioprod Process. 122:62–71. doi: 10.1016/j.fbp.2020.04.004.
  • Ma X, Chen X, Wang X, Choi S, Zhang T-A, Hu J, Tsang YF, Gao M-T. 2019. Extraction of flavonoids from the saccharification of rice straw is an integrated process for straw utilization. Appl Biochem Biotechnol. 189(1):249–261. doi: 10.1007/s12010-019-03002-4.
  • Malviya Shalini, Arvind, Jha Alok, Hettiarachchy Navam. (2014) Antioxidant and antibacterial potential of pomegranate peel extracts. J Food Sci Technol, 12(51): 4132–4137. doi: 10.1007/s13197-013-0956-4.
  • Milić MD, Buntić AV, Mihajlovski KR, Ilić NV, Davidović SZ, Dimitrijević-Branković SI. 2021. The development of a combined enzymatic and microbial fermentation as a viable technology for the spent coffee ground full utilization. Biomass Conversion and Biorefnery. 13:6747–6759. doi: 10.1007/s13399-021-01605-8.
  • Mushtaq M, Sultana B, Anwar F, Adnan A, Rizvi SSH. 2015. Enzyme-assisted supercritical fluid extraction of phenolic antioxidants from pomegranate peel. J. Supercrit. Fluids. 104:122–131. doi: 10.1016/j.supflu.2015.05.020.
  • Neelkant KS, Shankar K, Jayalakshmi SK, Sreeramulu K. 2019. Optimization of conditions for the production of lignocellulolytic enzymes by Sphingobacterium sp. Ksn-11 utilizing agro-wastes under submerged condition. Prep Biochem Biotechnol. 49(9):927–934. doi: 10.1080/10826068.2019.1643735.
  • Pamidipati S, Ahmed A. 2017. Degradation of Lignin in Agricultural Residues by locally Isolated Fungus Neurospora discrete. Appl Biochem Biotechnol. 181(4):1561–1572. doi: 10.1007/s12010-016-2302-6.
  • Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN. 2006. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem. 54(16):5806–5813. doi: 10.1021/jf0605392.
  • Pavithra K, Vadivukkarasi S. 2015. Evaluation of free radical scavenging activity of various extracts of leaves from Kedrostis foetidissima (Jacq.) Cogn. Food Sci. Hum. Wellness. 4(1):42–46. doi: 10.1016/j.fshw.2015.02.001.
  • Prabhu AA, Jayadeep A. 2017. Optimization of enzyme-assisted improvement of polyphenols and free radical scavenging activity in red rice bran: a statistical and neural network- based approach. Prep Biochem Biotechnol. 47(4):397–405. doi: 10.1080/10826068.2016.1252926.
  • Rodrigues D, Sousa S, Silva A, Amorim M, Pereira L, Rocha-Santos TAP, Gomes AMP, Duarte AC, Freitas AC. 2015. Impact of enzyme- and ultrasound-assisted extraction methods on biological properties of red, brown, and green seaweeds from the central west coast of Portugal. J Agric Food Chem. 63(12):3177–3188. doi: 10.1021/jf504220e.
  • Neta IMR, de Castro RJS. 2019. Enzyme-assisted extraction of biocomponents of lentils (Lens culinaris L.): effect of process parameters on the recovery of compounds with antioxidant properties. Biocat Biotransform. 38(1):1–9. doi: 10.1080/10242422.2019.1614172.
  • Salim AA, Grbavčić S, Šekuljica N, Stefanović A, Jakovetić Tanasković S, Luković N, Knežević-Jugović Z. 2017. Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid state fermentation on agricultural by-products: the evaluation of substrate pretreatment methods. Bioresour Technol. 228:193–200. doi: 10.1016/j.biortech.2016.12.081.
  • Shankar K, Kulkarni NS, Jayalakshmi SK, Sreeramulu K. 2019. Saccharification of the pretreated husks of corn, peanut and coffee cherry by the lignocellulolytic enzymes secreted by Sphingobacterium sp. Ksn for the production of bioethanol. Biomass Bioenergy. 127:105298. doi: 10.1016/j.biombioe.2019.105298.
  • Shankar K, Kulkarni NS, Jayalakshmi SK, Sreeramulu K. 2020a. Comparative assessment of solvents and lignocellulolytic enzymes affiliated extraction of polyphenols from the various lignocellulosic agro-residues: identification and their antioxidant properties. Prep Biochem Biotechnol. 50(2):164–171. doi: 10.1080/10826068.2019.1676782.
  • Shankar K, Kulkarni NS, Sajjanshetty R, Jayalakshmi SK, Sreeramulu K. 2020b. Co-production of xylitol and ethanol by the fermentation of the lignocellulosic hydrolysates of banana and water hyacinth leaves by individual yeast strains. Ind Crop Prod. 155:112809. doi: 10.1016/j.indcrop.2020.112809.
  • Sharif T, Bhatti HN, Bull ID, Bilal M. 2021. Recovery of high-value bioactive phytochemicals from agro-waste of mango (Mangifera indica L.) using enzyme-assisted ultrasound pretreated extraction. Biomass Conversion and Biorefnery. 13:6591–6599. doi: 10.1007/s13399-021-01589-5.
  • Siddiq M, Sogi DS, Dolan KD. 2013. Antioxidant properties, total phenolics, and quality of fresh-cut ‘Tommy Atkins’ mangoes as affected by different pre-treatments. LWT-Food Sci Technol. 53(1):156–162. doi: 10.1016/j.lwt.2013.01.017.
  • Souza T, Leal CA, Massarolo CK, Badiale-Fulong E. 2019. Profile of phenolic compounds released from rice bran by Rhizopus oryzae and Trichoderma reesei: their relation with hydrolases activity. J Food Sci. 84(6):1382–1389. doi: 10.1111/1750-3841.14646.
  • Stanford JP, Hall PH, Rover MR, Smith RG, Brown RC. 2018. Separation of sugars and phenolics from the heavy fraction of bio-oil using polymeric resin adsorbents. Sep Purif Technol. 194:170–180. doi: 10.1016/j.seppur.2017.11.040.
  • Tomaz I, Maslov L, Stupic D, Preiner D, Asperger D, Kontic JK. 2016. Recovery of flavonoids from grape skins by enzyme-assisted extraction. Sep. Sci. Technol. 51(2):255–268. doi: 10.1080/01496395.2015.1085881.
  • Um M, Shin G, Lee J. 2017. Extraction of total phenolic compounds from yellow poplar hydrolysate and evaluation of their antioxidant activities. Ind. Crop. Prod. 97:574–581. doi: 10.1016/j.indcrop.2016.12.062.
  • Vazquez-Olivo G, Lopez-Martinez LX, Contreras-Angulo L, Heredia JB. 2019. Antioxidant capacity of lignin and phenolic compounds from corn stover. Waste Biomass Valor. 10(1):95–102. doi: 10.1007/s12649-017-0028-5.
  • Vijayalaxmi S, Jayalakshmi SK, Sreeramulu K. 2015. Polyphenols from different agricultural residues: extraction, identification and their antioxidant properties. J Food Sci Technol. 52(5):2761–2769. doi: 10.1007/s13197-014-1295-9.
  • Wang W, Guo J, Zhang J, Peng J, Liu T, Xin Z. 2015. Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran. Food Chem. 171:40–49. doi: 10.1016/j.foodchem.2014.08.095.
  • Wang Y, Li L, Liu H, Zhao T, Meng C, Liu Z, Liu X. 2018. Original article Bioactive compounds and in vitro antioxidant activities of peel, flesh and seed powder of kiwi fruit. Int J Food Sci Technol. 53(9):2239–2245. doi: 10.1111/ijfs.13812.
  • Xavier L, Freire MD, González-Álvarez J. 2019. Modeling and optimizing the solid–liquid extraction of phenolic compounds from lignocellulosic subproducts. Biomass Conv Bioref. 9(4):737–747. doi: 10.1007/s13399-019-00401-9.
  • Zambrano C, Kotogán A, Bencsik O, Papp T, Vágvölgyi C, Mondal KC, Krisch J, Tako M. 2018. Mobilization of phenolic antioxidants from grape, apple and pitahaya residues via solid state fungal fermentation and carbohydrase treatment. LWT-Food Sci Technol. 89:457–465. doi: 10.1016/j.lwt.2017.11.025.
  • Zhang G, Hu M, He L, Fu P, Wang L, Zhou J. 2013. Optimization of microwave-assisted enzymatic extraction of polyphenols from waste peanut shells and evaluation of its antioxidant and antibacterial activities in vitro. Food Bioprod. Process. 91(2):158–168. doi: 10.1016/j.fbp.2012.09.003.
  • Zhou Z, Shao H, Han X, Wang K, Gong C, Yang X. 2017. The extraction efficiency enhancement of polyphenols from Ulmus pumila L. barks by trienzyme-assisted extraction. Ind Crop Prod. 97:401–408. doi: 10.1016/j.indcrop.2016.12.060.
  • Zhu Y, Li T, Fu X, Brennan M, Abbasi AM, Zheng BS, Liu RH. 2016. The use of an enzymatic extraction procedure for the enhancement of highland barley (Hordeum vulgare L.) phenolic and antioxidant compounds. Int J Food Sci Technol. 51(8):1916–1924. doi: 10.1111/ijfs.13165.
  • Yusoff Mohd Hizami Mohd, Ayoub Muhammad, Nazir Muhammad Hamza, Sher Farooq, Zahid Imtisal, Ameen Mariam,   Zulqarnain. (2021) Solvent extraction and performance analysis of residual palm oil for biodiesel production: Experimental and Simulation study. J Environ Chem Eng, 4(9):105519. doi: 10.1016/j.jece.2021.105519.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.