597
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Efficient biotransformations in Cunninghamella elegans and Streptomyces sp. JCM9888 of selectively fluorinated benzoic acids to the corresponding benzamides and benzyl alcohols

, , , &
Pages 480-484 | Received 21 Aug 2023, Accepted 01 Oct 2023, Published online: 12 Oct 2023

References

  • Amadio J, Murphy CD. 2010. Biotransformation of fluorobiphenyl by Cunninghamella elegans. Appl Microbiol Biotechnol. 86(1):345–351. doi: 10.1007/s00253-009-2346-4.
  • Asha S, Vidyavathi M. 2009. Cunninghamella – a microbial model for drug metabolism studies – a review. Biotechnol Adv. 27(1):16–29. doi: 10.1016/j.biotechadv.2008.07.005.
  • Bock M, Kneifel H, Schoberth SM, Sahm H. 2000. Reduction of halogenated derivatives of benzoic acid to the corresponding alcohols by Desulfovibrio vulgaris PY1. Acta Biotechnol. 20(3–4):189–201. doi: 10.1002/abio.370200303.
  • Dorr BM, Fuerst DE. 2018. Enzymatic amidation for industrial applications. Curr Opin Chem Biol. 43:127–133. doi: 10.1016/j.cbpa.2018.01.008.
  • Genthner BRS, Townsend GT, Blattmann BO. 1997. Reduction of 3-chlorobenzoate, 3-bromobenzoate and benzoate to corresponding alcohols by Desulfomicrobium escambiense isolated from a 3-chlorobenzoate dechlorinating coculture. Appl Environ Microbiol. 63(12):4698–4703. doi: 10.1128/aem.63.12.4698-4703.1997.
  • Isono K, Uramoto M, Kusakabe H, Miyata N, Koyama T, Ubukata M, Sethi SK, McCloskey JA. 1984. Ascamycin and dealanylascamycin, nucleoside antibiotics from Streptomyces sp. J Antibiot. 37(6):670–672. doi: 10.7164/antibiotics.37.670.
  • Kato N, Konishi H, Uda K, Shimao M, Sakazawa C. 1988. Microbial reduction of benzoate to benzyl alcohol. Agric Biol Chem. 52:1885–1886.
  • Kergomard A, Renard MF. 1986. Action of two strains of Streptomyces on aromatic substrates. Agric Biol Chem. 50(11):2913–2914. doi: 10.1080/00021369.1986.10867848.
  • Klatte S, Wendisch VF. 2014. Redox self-sufficient whole cell biotransformation for amination of alcohols. Bioorg Med Chem. 22(20):5578–5585. doi: 10.1016/j.bmc.2014.05.012.
  • Khan MF, Murphy CD. 2021. Bacterial degradation of the anti-depressant drug fluoxetine produces trifluoroacetic acid and fluoride ion. Appl Microbiol Biotechnol. 105(24): 9359–9369 doi: 10.1007/s00253-021-11675-3
  • Sheldon RA, Pereira PC. 2017. Biocatalysis engineering; the big picture. Chem Soc Rev. 46(10):2678–2691. doi: 10.1039/c6cs00854b.
  • Takahashi E, Beppu T. 1982. A new nucleoside antibiotic. J. Antibiotic 35(8): 939–947. doi: 10.7164/antibiotics.35.939
  • van den Ban ECD, Willemen HM, Wassink H, Laane C, Haaker H. 1999. Bioreduction of carboxylic acids by Pyrococcus furiosus in batch cultures. Enzyme Microb Technol. 25(3–5):251–257. doi: 10.1016/S0141-0229(99)00036-8.
  • Wojnowska M, Feng X, Chen Y, Deng H, O'Hagan D. 2023. Identification of genes essential for fluorination and sulfamylation within the nucleocidin gene clusters of Streptomyces calvus and Streptomyces virens. Chembiochem. 24(5):e2022006. doi: 10.1002/cbic.202200684.
  • Wood JL, Weise NJ, Frampton JD, Dunstan MS, Hollas MA, Derrington SR, Lloyd RC, Quaglia D, Parmeggiani F, Leys D, et al. 2017. Adenylation activity of carboxylic acid reductases enables the synthesis of amides. Angew Chem Int Ed Engl. 56(46):14498–14501. doi: 10.1002/anie.201707918.
  • Zhao CH, Qi JZ, Tao WX, He L, Xu W, Chan J, Deng ZX. 2014. Characterization of biosynthetic genes of ascamycin/dealanylascamycin featuring a 5′-O-sulfonamide moiety in Streptomyces sp. JCM9888. PLOS One. 9(12):e114722. doi: 10.1371/journal.pone.0114722.
  • Zhuk TS, Skorobohatko OS, Albuquerque W, Zorn H. 2021. Scope and limitations of biocatalytic reduction with white rot fungi. Bioorg Chem. 108:104651. doi: 10.1016/j.bioorg.2021.104651.