191
Views
20
CrossRef citations to date
0
Altmetric
Current Clinical Practice

The genetics of the myelodysplastic syndromes: Classical cytogenetics and recent molecular insights

&
Pages 1-13 | Published online: 29 Nov 2013

References

  • Vergilio JA, Bagg A. Myelodysplastic syndromes. Contem-porary biologic concepts and emerging diagnostic approaches. Am J Clin Pathol 2003;119:58–77.
  • Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997;89:2079–2088.
  • Steensma DP, Dewald GW, Hodnefield JM, Tefferi A, Hanson CA. Clonal cytogenetic abnormalities in bone marrow specimens without clear morphologic evidence of dysplasia: A form fruste of myelodysplasia? Leuk Res 2003;27:235–242.
  • Mauritzson N, Albin M, Rylander L, Billstrom R, Ahlgren T, Mikoczy Z, et al. Pooled analysis of clinical and cytogenetic features in treatment-related and de novo adult acute myeloid leukemia and myelodysplastic syndromes based on a consecutive series of 761 patients analyzed 1976-1993 and on 5098 unselected cases reported in the literature 1974-2001. Leukemia 2002;16:2366–2378.
  • Mecucci C. Molecular features of primary MDS with cytogenetic changes. Leuk Res 1998;22:293–302.
  • Mhawech P, Saleem A. Myelodysplastic syndrome: Review of the cytogenetic and molecular data. Crit Rev Oncol-Hematol 2001;40:229–238.
  • Brunning RD, Bennett JM, Flandrin G, Matutes D, Head D. Myelodysplastic syndromes. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, editors. World health organization classifi-cation of tumours. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2001. p 61–73.
  • Giagounidis AA, Germing U, Haase S, Hildebrandt B, Schlegelberger B, Schoch C, et al. Clinical, morphological, cytogenetic, and prognostic features of patients with myelodysplastic syndromes and del(5q) including band q31. Leukemia 2004;18:113–119.
  • Boultwood J, Fidler C, Strickson AJ, Watkins F, Gama S, Kearney L, et al. Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome. Blood 2002;99:4638–4641.
  • Zhao N, Stoffel A, Wang PW, Eisenbart JD, Espinosa III, R, Larson RA, Le Beau MM. Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1–1.5 Mb and preparation of a PAC-based physical map. Proc Natl Acad Sci USA 1997;94: 6948–6953.
  • Horrigan SK, Arbieva ZH, Xie HY, Kravarusic J, Fulton NC, Naik H, et al. Delineation of a minimal interval and identification of 9 candidates for a tumor suppressor gene in malignant myeloid disorders on 5q31. Blood 2000; 95:2372–2377.
  • Xie H, Hu Z, Chyna B, Horrigan SK, Westbrook CA. Human mortalin (HSPA9): A candidate for the myeloid leukemia tumor suppressor gene on 5q31. Leukemia 2000;14: 2128–2134.
  • Dubourg C, Toutain B, Helias C, Henry C, Lessard M, Le Gall JY, et al. Evaluation of ETF1/eRF1, mapping to 5q31, as a candidate myeloid tumor suppressor gene. Cancer Genet Cytogenet 2002;134: 33–37.
  • Hu Z, Gomes I, Horrigan SK, Kravarusic J, Mar B, Arbieva Z, et al. A novel nuclear protein. 5qNCA (L0051780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. Oncogene 2001;20:6946–6954.
  • Craven SE, French D, Ye W, de Sauvage F, Rosenthal A. Loss of Hspa9b in zebrafish recapitulates the ineffective hemato-poiesis of the myelodysplastic syndrome. Blood 2005;105: 3528–3534.
  • Ting Xi L. Michael Becker Karl Hsu Jaroslav Jelinek Min Deng Clara Bloomfield Jean-Pierre Issa Michael F. Clarke A. Thomas Look. Epigenetic Suppression of the CINNA1 Gene, Encoding the a-Catenin Protein, which Is Located in the 5q31 Critical Deleted Region in Malignant Myeloid Disorders with del(5q). Session Type: Oral Session. Blood 2004;104 (11):11–16, Ref Type: Abstract.
  • Hajra KM, Fearon ER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 2002; 34:255–268.
  • McKenna RW. Myelodysplasia and myeloproliferative dis-orders in children. Am J Chin Pathol 2004;122:558–569.
  • Dohner K, Brown J, Hehmann U, Hetzel C, Stewart J, Lowther G, et al. Molecular cytogenetic characterization of a critical region in bands 7q35-q36 commonly deleted in malignant myeloid disorders. Blood 1998;92:4031–4035.
  • Kratz CP, Emerling BM, Donovan S, Laig-Webster M, Taylor BR, Thompson P, et al. Candidate gene isolation and comparative analysis of a commonly deleted segment of 7q22 implicated in myeloid malignancies. Genomics 2001;77: 171–180.
  • Le Beau MM, Espinosa III, R, Davis EM, Eisenbart JD, Larson RA, Green ED. Cytogenetic and molecular delinea-tion of a region of chromosome 7 commonly deleted in malignant myeloid diseases. Blood 1996;88: 1930–1935.
  • Tosi S, Scherer SW, Giudici G, Czepulkowski B, Biondi A, Kearney L. Delineation of multiple deleted regions in 7q in myeloid disorders. Genes Chromosomes Cancer 1999; 25:384–392.
  • Emerling BM, Bonifas J, Kratz CP, Donovan S, Taylor BR, Green ED, et al. MLL5, a homolog of Drosophila trithorax located within a segment of chromosome band 7q22 implicated in myeloid leukemia. Oncogene 2002; 21:4849–4854.
  • Frohling S, Nakabayashi K, Scherer SW, Dohner H, Dohner K. Mutation analysis of the origin recognition complex subunit 5 (ORC5L) gene in adult patients with myeloid leukemias exhibiting deletions of chromosome band 7q22. Hum Genet 2001;108: 304–309.
  • Kratz CP, Emerling BM, Bonifas J, Wang W, Green ED, Beau MM, Shannon KM. Genomic structure of the PIK3CG gene on chromosome band 7q22 and evaluation as a candidate myeloid tumor suppressor. Blood 2002;99: 372–374.
  • Curtiss NP, Bonifas JM, Lauchle JO, Balkman JD, Kratz CP, Emerling BM, et al. Isolation and analysis of candidate myeloid tumor suppressor genes from a commonly deleted segment of 7q22. Genomics 2005;85:600–607.
  • Bernasconi P, Cavigliano PM, Boni M, Calatroni S, Klersy C, Giardini I, et al. Is FISH a relevant prognostic tool in myelodysplastic syndromes with a normal chromosome pattern on conventional cytogenetics? A study on 57 patients. Leukemia 2003;17:2107–2112.
  • Beyer V, Castagne C, Muhlematter D, Parlier V, Gmur J, Hess U, et al. Systematic screening at diagnosis of -5/del(5)(q31), -7, or chromosome 8 aneuploidy by interphase fluorescence in situ hybridization in 110 acute myelocytic leukemia and high-risk myelodysplastic syndrome patients: Concordances and discrepancies with conventional cytogenetics. Cancer Genet Cytogenet 2004;152:29–41.
  • Cherry AM, Brockman SR, Paternoster SF, Hicks GA, Neuberg D, Higgins RR, et al. Comparison of interphase FISH and metaphase cytogenetics to study myelodysplastic syndrome: An eastern cooperative oncology group (ECOG) study. Leuk Res 2003;27:1085–1090.
  • Romeo M, Chauffaille Mde L, Silva MR, Bahia DM, Kerbauy J. Comparison of cytogenetics with FISH in 40 myelodysplastic syndrome patients. Leuk Res 2002; 26:993–996.
  • Schrock E, du MS, Veldman T, Wienberg J, Ferguson-Smith MA, et al. Multicolor spectral karyotyping of human chromosomes. Science 1996;273:494–497.
  • Speicher MR, Gwyn BS, Ward DC. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 1996;12:368–375.
  • Barouk-Simonet E, Soenen-Cornu V, Roumier C, Cosson A, Lai JL, Fenaux P, Preudhomme C. Role of multiplex FISH in identifying chromosome involvement in myelodysplastic syndromes and acute myeloid leukemias with complex karyotypes: A report on 28 cases. Cancer Genet Cytogenet 2005;157:118–126.
  • Martinez-Ramirez A, Urioste M, Alvarez S, Vizmanos JL, Calasanz MJ, Cigudosa JC, Benitez J. Cytogenetic profile of myelodysplastic syndromes with complex karyotypes: An analysis using spectral karyotyping. Cancer Genet Cytogenet 2004;153:39–47.
  • Weiss MM, Hermsen MA, Meijer GA, van Grieken NC, Baak JP, Kuipers EJ, van Diest PJ. Comparative genomic hybridisation. Mol Pathol 1999;52:243–251.
  • Wilkens L, Burkhardt D, Tchinda J, Busche G, Werner M, Nolte M, et al. Cytogenetic aberrations in myelodysplastic syndrome detected by comparative genomic hybridization and fluorescence in situ hybridization. Diagn Mol Pathol 1999;8:47–53.
  • Martinez-Ramirez A, Urioste M, Melchor L, Blesa D, Valle L, de Andres SA, et al. Analysis of myelodysplastic syndromes with complex karyotypes by high-resolution comparative genomic hybridization and subtelomeric CGH array. Genes Chromosomes Cancer 2005;42:287–298.
  • MacGrogan D, Kalakonda N, Alvarez S, Scandura JM, Boccuni P, Johansson B, Nimer SD. Structural integrity and expression of the L3MBTL gene in normal and malignant hematopoietic cells. Genes Chromosomes Cancer 2004;41: 203–213.
  • Bench AJ, Nacheva EP, Hood TL, Holden JL, French L, Swanton S, et al. Chromosome 20 deletions in myeloid malignancies: Reduction of the common deleted region, generation of a PAC/BAC contig and identification of candidate genes. UK cancer cytogenetics group (UKCCG). Oncogene 2000;19:3902–3913.
  • Kita-Sasai Y, Horiike S, Misawa S, Kaneko H, Kobayashi M, Nakao M, et al. International prognostic scoring system and TP53 mutations are independent prognostic indicators for patients with myelodysplastic syndrome. Br J Haematol 2001;115: 309–312.
  • Block AW, Carroll AJ, Hagemeijer A, Michaux L, van LK, Olney HJ, Baer MR. Rare recurring balanced chromosome abnormalities in therapy-related myelodysplastic syndromes and acute leukemia: Report from an international workshop. Genes Chromosomes Cancer 2002;33:401–412.
  • Suzukawa K, Parganas E, Gajjar A, Abe T, Takahashi S, Tani K, et al. Identification of a breakpoint cluster region 3' of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute myelogenous leukemias with inv(3)(q21q26). Blood 1994;84:2681–2688.
  • Buonamici S, Li D, Chi Y, Zhao R, Wang X, Brace L, et al. EVI1 induces myelodysplastic syndrome in mice. J Clin Investig 2004;114:713–719.
  • Lahortiga I, Vazquez I, Agirre X, Larrayoz MJ, Vizmanos JL, Gozzetti A, et al. Molecular heterogeneity in ANIL/MDS patients with 3q21q26 rearrangements. Genes Chromosomes Cancer 2004;40:179–189.
  • Mitani K. Molecular mechanisms of leukemogenesis by ANIL1/EVI-1. Oncogene 2004;23:4263–4269.
  • Mochizuki N, Shimizu S, Nagasawa T, Tanaka H, Taniwaki M, Yokota J, Morishita K. A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36;q21)-positive leuke-mia cells. Blood 2000;96: 3209–3214.
  • Lahortiga I, Agirre X, Belloni E, Vazquez I, Larrayoz MJ, Gasparini P, et al. Molecular characterization of a t(1;3)(p36;q21) in a patient with MDS. MEL1 is widely expressed in normal tissues, including bone marrow, and it is not overexpressed in the t(1;3) cells. Oncogene 2004; 23:311–316.
  • Arber DA, Chang KL, Lyda MH, Bedell V, Spielberger R, Slovak ML. Detection of NPM/MLF1 fusion in t(3;5)-positive acute myeloid leukemia and myelodysplasia. Hum Pathol 2003;34:809–813.
  • Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ, et al. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 1996;12: 265–275.
  • Cordell JL, Pulford KA, Bigerna B, Roncador G, Banham A, Colombo E, et al. Detection of normal and chimeric nucleophosmin in human cells. Blood 1999;93:632–642.
  • Falini B, Pileri S, Zinzani PL, Carbone A, Zagonel V, Wolf-Peeters C, et al. ALK+ lymphoma: Clinico-pathological findings and outcome. Blood 1999;93:2697–2706.
  • Zelent A, Guidez F, Melnick A, Waxman S, Licht JD. Translocations of the RARalpha gene in acute promyelocytic leukemia. Oncogene 2001;20:7186–7203.
  • Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005;352:254–266.
  • Winteringham LN, Kobelke S, Williams JH, Ingley E, Klinken SP. Myeloid Leukemia Factor 1 inhibits erythro-poietin-induced differentiation, cell cycle exit and p27Kip 1 accumulation. Oncogene 2004;23: 5105–5109.
  • Xie J, Briggs JA, Morris SW, Olson MO, Kinney MC, Briggs RC. MNDA binds NPM/B23 and the NPM-MLF1 chimera generated by the t(3;5) associated with myelodysplastic syndrome and acute myeloid leukemia. Exp Hematol 1997;25:1111–1117.
  • Yoneda-Kato N, Fukuhara S, Kato J. Apoptosis induced by the myelodysplastic syndrome-associated NPM-MLF1 chi-meric protein. Oncogene 1999;18: 3716–3724.
  • Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A. The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood 2000;96:3932–3938.
  • Lam DH, Aplan PD. NUP98 gene fusions in hematologic malignancies. Leukemia 200115:1689-1695.
  • Lin YW, Slape C, Zhang Z, Aplan PD. NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelo-dysplastic syndrome that progresses to acute leukemia. Blood 2005;.
  • Baxter EJ, Kulkarni S, Vizmanos JL, Jaju R, Martinelli G, Testoni N, et al. Novel translocations that disrupt the platelet-derived growth factor receptor beta (PDGFRB) gene in BCR-ABL-negative chronic myeloproliferative disorders. Br J Haematol 2003;120:251–256.
  • Odero MD, Grand FH, Iqbal S, Ross F, Roman JP, Vizmanos JL, et al. Disruption and aberrant expression of HMGA2 as a consequence of diverse chromosomal translocations in myeloid malignancies. Leukemia 2005;19:245–252.
  • Bloomfield CD, Archer KJ, Mrozek K, Lillington DM, Kaneko Y, Head DR, et al. 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: Report from an international workshop. Genes Chromosomes Cancer 2002;33:362–378.
  • Harris SL, Levine AL The p53 pathway: positive and negative feedback loops. Oncogene 2005;24:2899–2908.
  • Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991;253:49–53.
  • Imamura N, Abe K, Oguma N. High incidence of point mutations of p53 suppressor oncogene in patients with myelodysplastic syndrome among atomic-bomb survivors: A 10-year follow-up. Leukemia 2002;16: 154–156.
  • Kaneko H, Misawa S, Horiike S, Nakai H, Kashima K. TP53 mutations emerge at early phase of myelodysplastic syndrome and are associated with complex chromosomal abnormalities. Blood 1995;85: 2189–2193.
  • Sugimoto K, Hirano N, Toyoshima H, Chiba S, Mano H, Takaku F, et al. Mutations of the p53 gene in myelodysplastic syndrome (MDS) and MDS-derived leukemia. Blood 1993;81:3022–3026.
  • Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol 2001;19: 1405–1413.
  • Side LE, Curtiss NP, Teel K, Kratz C, Wang PW, Larson RA, et al. RAS, FLT3, and TP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7. Genes Chromosomes Cancer 2004;39:217–223.
  • Andersen MK, Christiansen DH, Pedersen-Bjergaard J. Centromeric breakage and highly rearranged chromosome derivatives associated with mutations of TP53 are common in therapy-related MDS and AML after therapy with alkylating agents: an M-FISH study. Genes Chromosomes Cancer 2005;42: 358–371.
  • Andersen MK, Christiansen DH, Kirchhoff M, Pedersen-Bjergaard J. Duplication or amplification of chromosome band 11q23, including the unrearranged MLL gene, is a recurrent abnormality in therapy-related MDS and AML, and is closely related to mutation of the TP53 gene and to previous therapy with alkylating agents. Genes Chromosomes Cancer 2001;31: 33–41.
  • Andersen MK, Christiansen DH, Pedersen-Bjergaard J. Amplification or duplication of chromosome band 21q22 with multiple copies of the AML1 gene and mutation of the TP53 gene in therapy-related MDS and AML. Leukemia 2005;19: 197–200.
  • Reuter CW, Morgan MA, Bergmann L. Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood 2000;96:1655–1669 .
  • de Souza FT. Menezes de SJ, edo Silva ML, Tabak D, Abdelhay E. Correlation of N-ras point mutations with specific chromosomal abnormalities in primary myelo-dysplastic syndrome. Leuk Res 1998;22:125–134.
  • Paquette RL, Landaw EM, Pierre RV, Kahan J, Lubbert M, Lazcano ON, et al. N-ras mutations are associated with poor prognosis and increased risk of leukemia in myelodysplastic syndrome. Blood 1993;82:590–599.
  • Shih LY, Huang CF, Wang PN, Wu JH, Lin TL, Dunn P, Kuo MC. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 2004;18: 466–475.
  • MacKenzie KL,, Dolnikov A, Millington M, Shounan Y, Symonds G. Mutant N-ras induces myeloproliferative disorders and apoptosis in bone marrow repopulated mice. Blood 1999;93:2043–2056.
  • Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH, et al. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood 2004; 103:2325–2331.
  • Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003;34:148–150.
  • Lu D, Nounou R, Beran M, Estey E, Manshouri T, Kantarjian H, et al. The prognostic significance of bone marrow levels of neurofibromatosis-1 protein and ras oncogene mutations in patients with acute myeloid leukemia and myelodysplastic syndrome. Cancer 2003;97:441–449.
  • Loh ML, Martinelli S, Cordeddu V, Reynolds MG, Vattikuti S, Lee CM, et al. Acquired PTPN11 mutations occur rarely in adult patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Res 2005;29:459–462.
  • Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromo-some arm 7q and with subsequent leukemic transformation. Blood 2004;104: 1474–1481.
  • Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T. High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 2004;103:2316–2324.
  • Nakao M, Horiike S, Fukushima-Nakase Y, Nishimura M, Fujita Y, Taniwaki M, Okuda T. Novel loss-of-function mutations of the haematopoiesis-related transcription factor, acute myeloid leukaemia 1/runt-related transcription factor 1, detected in acute myeloblastic leukaemia and myelodysplastic syndrome. Br J Haematol 2004;125: 709–719.
  • Steensma DP, Gibbons RJ, Mesa RA, Tefferi A, Higgs DR. Somatic point mutations in RUNX1/CBFA2/AML1 are common in high-risk myelodysplastic syndrome, but not in myelofibrosis with myeloid metaplasia. Eur J Haematol 2005;74: 47–53.
  • Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002;100:1532–1542.
  • Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: Association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002;99:4326–4335.
  • Au WY, Fung AT, Ma ES, Liang RH, Kwong YL. Low frequency of FLT3 gene internal tandem duplication and activating loop mutation in therapy-related acute myelocytic-leukemia and myelodysplastic syndrome. Cancer Genet Cytogenet 2004;149: 169–172.
  • Horiike S, Yokota S, Nakao M, Iwai T, Sasai Y, Kaneko H, et al. Tandem duplications of the FLT3 receptor gene are associated with leukemic transformation of myelodysplasia. Leukemia 1997;11:1442–1446.
  • Li ZY, Liu DP, Liang CC. New insight into the molecular mechanisms of MLL-associated leukemia. Leukemia 2005;19:183–190.
  • Pappa V, Young BD, Economopoulos T, Papageorgiou E, Panani A, Lilington D, et al. Absence of MLL gene rearrangement in de novo myelodysplastic syndromes (MDS). Ann Hematol 2004;83:170–175.
  • Yamamoto K, Hato A, Minagawa K, Yakushijin K, Urahama N, Gomyo H, et al. Unbalanced translocation der (11 ) t(11;12) (q23;q13): A new recurrent cytogenetic aberration in myelodysplastic syndrome with a complex karyotype. Cancer Genet Cytogenet 2004;155:67–73.
  • Poppe B, Vandesompele J, Schoch C, Lindvall C, Mrozek K, Bloomfield CD, et al. Expression analyses identify MLL as a prominent target of 11q23 amplification and support an etiologic role for MLL gain of function in myeloid malignancies. Blood 2004;103:229–235.
  • Steensma DP, Gibbons RJ, Higgs DR. Acquired alpha-thalassemia in association with myelodysplastic syndrome and other hematologic malignancies. Blood 2005; 105:443–452.
  • Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2003;17: 1813–1819.
  • Lubbert. Gene silencing of the p15/INK4B cell-cycle inhibitor by hypermethylation: An early or later epigenetic alteration in myelodysplastic syndromes? Leukemia 200317:1762-1764.
  • Quesnel B, Guillerm G, Vereecque R, Wattel E, Preud-homme C, Bauters F, et al. Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood 1998;91: 2985–2990.
  • Tien HF, Tang JH, Tsay W, Liu MC, Lee FY, Wang CH, et al. Methylation of the p15(INK4B) gene in myelodysplastic syndrome: It can be detected early at diagnosis or during disease progression and is highly associated with leukaemic transformation. Br J Haematol 2001;112:148–154.
  • Uchida T, Kinoshita T, Nagai H, Nakahara Y, Saito H, Hotta T, Murate T. Hypermethylation of the p 15INK4B gene in myelodysplastic syndromes. Blood 1997;90: 1403–1409.
  • Langer F, Dingemann J, Kreipe H, Lehmann U. Up-regulation of DNA methyltransferases DNMT1, 3A, and 3B in myelodysplastic syndrome. Leuk Res 2005;29:325–329.
  • Voso MT, Scardocci A, Guidi F, Zini G, et al. Aberrant methylation of DAP-kinase in therapy-related acute myeloid leukemia and myelodysplastic syndromes. [see comment]. Blood 2004;103:698–700.
  • Malins DC, Anderson KM, Polissar NL, Ostrander GK, Knobbe ET, Green VM, et al. Models of granulocyte DNA structure are highly predictive of myelodysplastic syndrome. Proc Natl Acad Sci USA 2004;101:5008–5011.
  • Gattermann N. From sideroblastic anemia to the role of mitochondrial DNA mutations in myelodysplastic syndromes. Leuk Res 2000;24:141–151.
  • Gattermann N, Wulfert M, Junge B, Germing U, Haas R, Hofhaus G. Ineffective hematopoiesis linked with a mito-chondrial tRNA mutation (G3242A) in a patient with myelodysplastic syndrome. Blood 2004;103:1499–1502.
  • Reddy PL, Shetty VT, Dutt D, York A, Dar S, Mundle SD, et al. Increased incidence of mitochondrial cytochrome c-oxidase gene mutations in patients with myelodysplastic syndromes. Br J Haematol 2002;116:564–575.
  • Gattermann N, Wulfert M, Hofhaus G. How frequent is mutation in the mitochondrial cytochrome c oxidase gene in patients with myelodysplastic syndromes? Br J Haematol 2002;119:1139–1140.
  • Shin MG, Kajigaya S, Levin BC, Young NS, Mitochondrial DNA. mutations in patients with myelodysplastic syndromes. Blood 2003;101:3118–3125.
  • Pedersen-Bjergaard J, Andersen MK, Christiansen DH, Nerlov C. Genetic pathways in therapy-related myelodys-plasia and acute myeloid leukemia. Blood 2002;99: 1909–1912.
  • Hofmann WK, de VS, Komor M, Hoelzer D, Wachsman W, Koeffier HP. Characterization of gene expression of CD34+ cells from normal and myelodysplastic bone marrow. Blood 2002;100:3553–3560.
  • Miyazato A, Ueno S, Ohmine K, Ueda M, Yoshida K, Yamashita Y, et al. Identification of myelodysplastic syndrome-specific genes by DNA microarray analysis with purified hematopoietic stem cell fraction. Blood 2001;98:422–427.
  • Pellagatti A, Watkins F, Campbell LJ, Esoof N, Cross NC, Eagleton H, et al. Gene expression profiling in the myelodysplastic syndromes using cDNA microarray techno-logy. Br J Haematol 2004;126:508–511.
  • Ueda M, Ota J, Yamashita Y, Choi YL, Ohki R, Wada T, et al. DNA microarray analysis of stage progression mechanism in myelodysplastic syndrome. Br J Haematol 2003; 123:288–296.
  • Chen G, Zeng W, Miyazato A, Billings E, Maciejewski JP, Kajigaya S, et al. Distinctive gene expression profiles of CD34 cells from patients with myelodysplastic syndrome characterized by specific chromosomal abnormalities. Blood 2004;104:4210–4218.
  • Langer F, Stickel J, Tessema M, Kreipe H, Lehmann U. Overexpression of delta-like (Dlk) in a subset of myelo-dysplastic syndrome bone marrow trephines. Leuk Res 2004; 28:1081–1083.
  • Fern L, Pallis M, Ian CG, Seedhouse C, Russell N, Byrne J. Clonal haemopoiesis may occur after conventional chemo-therapy and is associated with accelerated telomere short-ening and defects in the NQ01 pathway; possible mechanisms leading to an increased risk of t-AML/MDS. Br J Haematol 2004;126:63–71.
  • Naoe T, Takeyarna K, Yokozawa T, Kiyoi H, Seto M, Uike N, et al. Analysis of genetic polymorphism in NQ01, GST-M1, GST-T1, and CYP3A4 in 469 Japanese patients with therapy-related leukemia/ myelodysplastic syndrome and de novo acute myeloid leukemia. Clin Cancer Res 2000;6: 4091–4095.
  • Wolfler A, Erkeland SJ, Bodner C, Valkhof M, Renner W, Leitner C, et al. A functional single-nucleotide polymorphism of the G-CSF receptor gene predisposes individuals to high-risk myelodysplastic syndrome. Blood 2005;105: 3731–3736.
  • List A, Kurtin S, Roe DJ, Buresh A, Mahadevan D, Fuchs D, et al. Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 2005;352:549–557.
  • Pitini V, Arrigo C, Teri D, Barresi G, Righi M, Alo G. Response to STI571 in chronic myelomonocytic leukemia with platelet derived growth factor beta receptor involvement: A new case report. Haematologica 2003;88: ECR18.
  • Apperley JF, Gardembas M, Melo JV, Russell-Jones R, Bain BJ, Baxter EJ, et al. Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med 2002;347:481–487.
  • Cortes J, Faderl S, Estey E, Kurzrock R, Thomas D, Beran M, et al. Phase I study of BMS-214662, a farnesyl transferase inhibitor in patients with acute leukemias and high-risk myelodysplastic syndromes. J Clin Oncol 2005;23: 2805–2812.
  • Karninskas E, Farrell AT, Wang YC, Sridhara R, Pazdur R. FDA drug approval summary: Azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist 2005;10: 176–182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.