87
Views
2
CrossRef citations to date
0
Altmetric
Malignancy

CD34 Selection and EX Vivo Expansion of Haemopoietic Progenitor Cells: A Review of Laboratory Methodology

, &
Pages 261-280 | Received 07 May 1997, Published online: 13 Jul 2016

References

  • Ploemacher, R. E., van der Sluijs, J. P., Voerman, J. S. A. and Brons, N. H. C. (1989). An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood, 74, 2755–63.
  • Ploemacher, R. E., van der Sluijs, J. P., van Beurden, C. A. J., Baert, M. R. M. and Chan, P. L. (1991). Use of limiting-dilution type long-term marrow cultures in frequency analysis of marrow-repopulating and spleen colony-forming hematopoietic stem cells in the mouse. Blood, 78, 2527–33.
  • Van der Sluijs, J. P., de Jong, J.P., Brons, N. H. C. and Ploemacher, R. E. (1990). Marrow repopulating cells, but not CFU-S, establish long-term in vitro hemopoiesis on a marrow-derived stromal layer. Exp. Hematol., 18, 893–6.
  • Sutherland, H. J., Lansdorp, P. M., Henkelman, D. H., Eaves, A. C. and Eaves, C. J. (1990). Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc. Nat. Acad. Sci. USA, 87, 3584–8.
  • Dexter, T. M., Allen, T. D. and Lajtha, L. G. (1977). Conditions controlling the proliferation of haemopoietic stem cells in vitro. J. Cell. Physiol., 91, 335–44.
  • Civin, C. I., Strauss, L. C., Brovall, C., Fackler, M. J., Schwartz, J. F. and Shaper, J. H. (1984). Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-la cells. J. Immunol., 133, 157–65.
  • Andrews, R. G., Singer, J. W. and Bernstein, I. D. (1986). Monoclonal antibody 12–8 recognizes a 115 kd molecule present on both unipotent and multipotent colony-forming cells and their precursors. Blood, 67, 842–5.
  • Tindle, R. W., Nichols, R. A. B., Chan, L., Campano, D., Catovsky, D. and Birnie, G. D. (1985). A novel monoclonal antibody BI-3C5 recognizes myeloblasts and non-B non-T lymphoblasts in acute leukaemias and CGL blast crises, and reacts with immature cells in normal bone marrow. Leuk. Res., 1, 1–9.
  • Katz, F., Tindle, R. W., Sutherland, D. R. and Greaves, M. F. (1985). Identification of a membrane glycoprotein associated with haematopoietic progenitor cells. Leuk. Res., 9, 191–8.
  • Watt, S. M., Karhi, K., Gatter, K. et al. (1987). Distribution and epitope analysis of the cell membrane glycoprotein (HPCA-1) associated with human hemopoietic cells. Leukemia, 1, 417–26.
  • Hogg, N. and Horton, M. A. (1987). Myeloid antigens: new and previously defined clusters. In Leucocyte Typing III, edited by A. McMichael, pp. 576–602 Oxford: Oxford University Press.
  • Briddell, R. A., Brandt, J. E., Straneva, J. E. et al. (1989). Characterization of the human burst-forming unitmegakaryocyte. Blood, 74, 145–51.
  • Lu, L., Walker, D., Broxmeyer, H. E. et al. (1987). Characterization of adult bone marrow hematopoietic progenitors highly enriched by two-colour sorting with MY-10 and major histocompatibility class II monoclonal antibodies. J. Immunol., 139, 1823–9.
  • Katz, F. E., Watt, S. M., Martin, H. et al. (1986). Coordinate expression of BI-3C5 and HLA-DR antigens on haemopoietic progenitors from chronic myeloid leukaemia. Leuk. Res., 10, 961–71.
  • Ryan, D., Kossover, S., Mitchell, S. et al. (1986). Subpopulations of common acute lymphoblastic leukemia antigen-positive lymphoid cells in normal bone marrow identified by hematopoietic differentiation antigens. Blood, 68, 417–25.
  • Loken, M. R., Shah, V. O., Dattillio, K. L. et al. (1987). Flow cytometric analysis of human bone marrow: II. Normal B lymphocyte development. Blood, 70, 1316–24.
  • Holyoake, T. L., Alcorn, M. J. and Franklin, I. M. (1996). The CD34 antigen: potential clinical advantages of CD34 selection. Clinical Oncology, 8, 214–21.
  • Gazitt, Y., Reading, C. C., Hoffman, R. et al. (1995). Purified CD34 positive Lin-Thy positive stem cells do not contain clonal myeloma cells. Blood, 86, 381–9.
  • Vescio, R. A., Hong, C. H., Cao, J. et al. (1994). The hematopoietic stem cell antigen CD34, is not expressed on the malignant cells in multiple myeloma. Blood, 84, 3283–90.
  • Berenson, R. J., Andrews, W. I., Bensinger, D. et al. (1988). Antigen CD34-positive marrow cells engraft lethally irradiated baboons. J. Clin. Invest., 81, 951–5.
  • Brugger, W., Henschler, R., Heimfeld, S. et al. (1994). Positively selected autologous blood CD34+ cells and unseparated peripheral blood progenitor cells mediate identical hematopoietic engraftment following high-dose VP16, ifosfamide, carboplatin, and epirubicin. Blood, 84, 1421–6.
  • Schiller, G., Vescio, R., Freytes, C. et al. (1995). Transplantation of CD34+ peripheral blood progenitor cells after high-dose chemotherapy for patients with advanced multiple myeloma. Blood, 86, 390–7.
  • Negrin, R. S., Kusnierz-Glaz, C. R., Still, B. J. et al. (1995). Transplantation of enriched and purged peripheral blood progenitor cells from a single apheresis product in patients with non-Hodgkin's lymphoma. Blood, 85, 3334–41.
  • Gorin, N. C., Lopez, M., Laporte, J. P. et al. (1995). Preparation and successful engraftment of purified CD34+ bone marrow progenitor cells in patients with non-Hodgkin's lymphoma. Blood, 85, 1647–54.
  • Shpall, E. J., Jones, R. B., Bearman, S. I. et al. (1994). Transplantation of enriched CD34-positive autologous marrow into breast cancer patients following high-dose chemotherapy: Influence of CD34-positive peripheral blood progenitors and growth factors on engraftment. J. Clin. Oncol., 12, 28–36.
  • Holyoake, T. L., Alcorn, M. J., Richmond, L. J. et al. (1994). Efficient isolation of CD34+ hemopoietic progenitor cells by immune panning. Stem Cells, 12,114–24.
  • Berenson, R. J., Bensinger, W. I., Hill, R. S. et al. (1991). Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma. Blood, 1717–22.
  • Fruehauf, S., Haas, R., Zeller, W. J. et al. (1994). CD34 selection for purging in multiple myeloma and analysis of CD34+B cell precursors. Stem Cells, 12, 95–102.
  • Miltenyi, S., Muller, W., Weichel, W. et al. (1990). High gradient magnetic separation with MACS. Cytometry, 11, 231–8.
  • Kessinger, A. and Armitage, J. O. (1991). The evolving role of autologous peripheral stem cell transplantation following high-dose therapy for malignancies. Blood, 77, 211–3.
  • Dreger, P., Viehmann, K., Steinmann, J. et al. (1995). GCSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: Comparison of T cell depletion strategies using different CD34+ selection systems or CAMPATH-1. Exp. Hematol., 23, 147–54.
  • Vogel, W., Behringer, D., Scheding, S., Kanz, L. and Brugger, W. (1996). Ex vivo expansion of CD34+peripheral blood progenitor cells: Implications for the expansion of contaminating epithelial tumor cells. Blood, 88, 2707–2713.
  • Williams, S. F., Lee, W. J., Bender, J. G. et al. (1996). Selection and expansion of peripheral blood CD34+cells in autologous stem cell transplantation for breast cancer. Blood, 87, 1687–91.
  • Alcorn, M. J., Holyoake, T. L., Richmond, L. et al. (1996). CD34-positive cells isolated from cryopreserved peripheral blood progenitor cells can be expanded ex vivo and used for transplantation with little or no toxicity. J. Clin. Oncol., 14, 1839–47.
  • Brugger, W., Heimfeld, S., Berenson, R. J., Mertelsmann, R. and Kanz, L. (1995). Reconstitution of hematopoiesis after high-dose chemotherapy by autologous progenitor cells generated ex vivo. N. Eng. J. Med., 333, 283–7.
  • Nolta, J. A., Smogorzewska, E. M. and Kohn, D. B. (1995). Analysis of optimal conditions for retroviralmediated transduction of primitive human hematopoietic cells. Blood, 86, 101–10.
  • Muench, M. O. and Moore, M. A. S. (1992). Accelerated recovery of peripheral blood cell counts in mice transplanted with in vitro cytokine-expanded hematopoietic progenitors. Exp. Hematol., 20, 611–8.
  • Muench, M. O., Firpo, M. T. and Moore, M. A. S. (1993). Bone marrow transplantation with interleukin-1 plus kit-ligand ex vivo expanded bone marrow accelerates hematopoietic reconstitution in mice without the loss of stem cell lineage and proliferation potential. Blood, 81, 3463–73.
  • Serrano, F., Varas, F., Bernad, A. and Bueren, J. A. (1994). Accelerated and long-term hematopoietic engraftment in mice transplanted with ex vivo expanded bone marrow. Bone Marrow Transplant, 14, 855–62.
  • Holyoake, T. L., Freshney, M. G., McNair, L. et al. (1996). Ex vivo expansion with SCF and IL-11 augments both short term recovery post-transplant and the ability to serially transplant marrow. Blood, 87, 4589–95.
  • Rebel, V. I., Dragowska, W., Eaves, C. J., Humphries, R. K. and Lansdorp, P. M. (1994). Amplication of Sca-1+ Lin-WGA+ cells in serum-free cultures containing Steel factor, interleukin-6, and erythropoietin with maintenance of cells with long-term in vivo reconstituting potential. Blood, 83, 128–36.
  • Brandt, J., Briddell, R. A., Srour, E. F, Leemhuis, T. B. and Hoffman, R. (1992). Role of c-kit ligand in the expansion of human hematopoietic progenitor cells. Blood, 79, 634–41.
  • Haylock, D. N., To, L. B., Dowse, T. L., Juttner, C. A. and Simmons, P. J. (1992). Ex vivo expansion and maturation of peripheral blood CD34+ cells into the myeloid lineage. Blood, 80, 1405–12.
  • Leary, A. G., Ikebuchi, K., Hirai, Y. et al. (1988). Synergism between intereleukin-6 and interleukin-3 in supporting proliferation of human hematopoietic stem cells: comparison with interleukin-lα. Blood, 71, 1759–63.
  • Brugger, W., Möcklin, W., Heimfeld, S., Berenson, R. J., Mertelsmann, R. and Kanz, L. (1993). Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1β (IL-lβ), IL-6, IL-3, interferon-γ and erythropoietin. Blood, 81, 2579–84.
  • Shapiro, F., Yao, T.-J., Raptis, G., Reich, L., Norton, L. and Moore, M. A. S. (1994). Optimization of conditions for ex vivo expansion of CD34+cells from patients with stage IV breast cancer. Blood, 84, 3567–74.
  • Srour, E. F, Brandt, J. E., Briddell, R. A., Grigsby, S., Leemhuis, T. and Hoffman, R. (1993). Long-term generation and expansion of human primitive hematopoietic progenitor cells in vitro. Blood, 81, 661–9.
  • Varfaillie, C. M. (1993). Soluble factor(s) produced by human bone marrow stroma increase cytokine-induced proliferation and maturation of primitive hematopoietic progenitors while preventing their terminal differentiation. Blood, 82, 2045–53.
  • Lyman, S. D., James, L., Bos, T. V., et al. (1993). Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: A proliferative factor for primitive hematopoietic cells. Cell, 75, 1157–67.
  • Hannum, C., Culpepper, J., Campbell, D. et al. (1994). Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of hematopoietic stem cells and is encoded by variant RNAs. Nature, 368, 643–8.
  • Petzer, A. L., Hogge, D. E., Lansdorp, P. M., Reid, D. S. and Eaves, C. J. (1996). Self-renewal of primitive human hematopoietic cells (long-term-culture-initiating cells) in vitro and their expansion in defined medium. Proc. Nat. Acad. Sci., USA, 93, 1470–4.
  • Szilvassy, S. J., Humphries, R. K., Lansdorp, P. M., Eaves, A. C. and Eaves, C. J. (1990). Quantitative assay for totipotent reconstituting hemopoietic stem cells by a competitive repopulation strategy. Proc. Nat. Acad. Sci., USA, 87, 8736–40.
  • Goan, S.-R., Schwarz, K., von Harsdof, S., von Schilling, C., Fichtner, I., Junghahn, I., Just, U. and Herrmann, F. (1996). Fibroblasts retrovirally transfected with the human IL-3 gene initiate and sustain multilineage human hematopoiesis in SCID mice: comparison of CD34-enriched vs CD34-enriched and in vitro expanded grafts. Bone Marrow Transplant., 18, 513–9.
  • Dick, J. E. (1991). Immune-deficient mice as models of normal and leukemic hematopoiesis. Cancer Cells, 3, 39–48.
  • Lapidot, T., Pflumio, F., Doedens, M., Murdoch, B., Williams, D. E. and Dick, J. E. (1992). Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science, 255, 1137–41.
  • Vormoor, J., Lapidot, T., Pflumio, F., Risdon, G., Patterson, B., Broxmeyer, H. E. and Dick, J. E. (1994). Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immuno-deficient mice. Blood, 83, 2489–97.
  • Schwartz, R., Emerson, S. G., Clarke, M. F. and Palsson, B. O. (1991). In vitro myelopoiesis stimulated by rapid medium exchange and supplementation with hematopoietic growth factors. Blood, 78, 3155–61.
  • Koller, M. R., Emerson, S. G. and Palsson, B. O. (1993). Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion culture. Blood, 82, 378–84.
  • Koller, M. R., Palsson, M. A., Manchel, I. and Palsson, B. (1995). Long-term culture initiating cell expansion is dependent on frequent medium exchange combined with stromal and other accessory cell effects. Blood, 86, 1784–93.
  • Zandstra, P. W., Eaves, C. J., Cameron, G. and Piret, J. M. (1995). Cytokine depletion in long-term stirred suspension cultures of normal human marrow. J. Hematother., 4, 235a.
  • Verfaillie, C. M., Catanzarro, P. M. and Li, W.-N. (1994). Macrophage inflammatory protein 1 alpha, interleukin 3 and diffusible marrow stromal factors maintain human hematopoietic stem cells for at least eight weeks in vitro. J. Exp. Med., 179, 643–9.
  • Gupta, P., McCarthy, J. B. and Verfaillie, C. M. (1996). Stromal fibroblast heparan sulfate is required for cytokine-mediated ex vivo maintenance of human long-term culture-initiating cells. Blood, 87, 3229–36.
  • Bhatia, R., McGlave, P. B., Lin, W., Wissink, S., Miller, J. S. and Verfaillie, C. M. (1995). Ex vivo expansion of LTCIC and CFC present in CD34+ HLA-DR- cells is possible in a clinically suitable stroma conditioned medium culture supplemented with one or two cytokines. Blood, 86, (suppl. 1), 294a.
  • Holyoake, T. L., Freshney, M. G., Konwalinka, G. et al. (1993). Mixed colony formation in vitro by the heterogeneous compartment of multipotential progenitors in human bone marrow. Leukemia, 7, 207–13.
  • Holyoake, T. L. and Alcorn, M. J. (1994). CD34 positive haemopoietic cells: biology and clinical applications. Blood Reviews, 8, 113–24.
  • Mason, D. Y. and Erber, W. N. (1991). Immunocytochemical labeling of leukemia samples with monoclonal antibodies by the APAAP procedure. In The Leukemic Cell, edited by D. Catovsky, pp. 196–214. Edinburgh: Churchill Livingstone.
  • Silver, S. M., Adams, P. T., Hutchinson, R. J. et al. (1993). Phase I evaluation of ex vivo expanded hematopoietic cells produced by perfusion cultures in autologous bone marrow transplantation. Blood, 82, (Suppl 1), 295a.
  • Champlin, R., Mehra, R., Gajewski, L. et al. (1995) Ex vivo expanded progenitor cell transplantation in patients with breast cancer. Blood, 86, (Suppl 1), 295a.
  • Holyoake, T. L., Alcorn, M. J. and Richmond, L. et al. (1995). A phase I study to evaluate the saftey of reinfusing CD34 cells expanded ex vivo as part or all of a PBPC transplant procedure. Blood, 86, (Suppl 1), 294a.
  • Shultz, L. D., Schweitzer, P. A., Christianson, S. W., Gott, B., Schweitzer, I. B., Tennent, B., McKenna, S., Mobraaten, L., Rajan, T. V., Greiner, D. L. and Leiter, E. H. (1995). Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol., 154, 180–191.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.