50
Views
0
CrossRef citations to date
0
Altmetric
Gene Therapy

The Scope of Viral Vectors for the Transduction of Haemopoietic Cells

&
Pages 37-53 | Received 10 Mar 1998, Published online: 13 Jul 2016

References

  • Coffin, J. M. (1990). Retroviridae and their replication. In: Fields B N, Kipe D M, eds. Virology 2nd ed. New York, N. Y. Raven Press, Ltd; 1437–1489.
  • Vile, R. G. and Russell, S. J. (1995). Retroviruses as vectors. Br Med Bull, 51, 12–30.
  • Albritton, L. M., Tseng, L., Scadden, D. and Cunningham, J. M. (1989). A putative murine ectoropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell, 57, 659–666.
  • Albritton, L. M., Kim, J. W., Tseng, L. and Cunningham, J. M. (1993). Envelope-binding domain in the cationic amino acid transporter determines the host range of ecotropic murine retroviruses. J. Virol., 67, 2091–2096.
  • Miller, D. G., Edwards, R. H. and Miller, A. D. (1994). Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proc. Natl. Acad. Sci. USA, 91, 78–82.
  • Kavanaugh, M. P., Miller, D. G., Zhang, W., Law, W., Kozak, S. L., Kabat, D. et al. (1994). Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate transporters. Proc. Natl. Acad. Sci. USA, 91, 7071–7075.
  • Markowitz, D., Goff, S. and Bank, A. (1988). A safe packaging line for gene transfer: separating viral genes on two different plasmids. J. Virol., 62, 1120–1124.
  • Cornetta, K., Morgan, R. A. and Anderson, W. F. (1991). Safety issues related to retroviral-mediated gene transfer in humans. Hum Gene Ther., 2, 5–14.
  • Mulligan, R. C. (1993). The basic science of gene therapy. Science, 260, 926–932.
  • Ogawa, M. (1993). Differentiation and proliferation of hematopoietic stem cells. Blood, 81, 2844–2853.
  • Roe, T., Reynolds, T. C., Yu, G. and Brown, P. O. (1993). Integration of murine leukemia virus DNA depends on mitosis. EMBO J, 12, 2099–2108.
  • Miller, D. G., Adam, M. A. and Miller, A. D. (1990). Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection [published erratum appears in Mol Cell Biol 1992 Jan; 12(1), 433]. Mol. Cell Biol., 10, 4239–4242.
  • Hughes, P. F., Thacker, J. D., Hogge, D., Sutherland, H. J., Thomas, T. E., Landsorph, P. M., et al. (1992). Retroviral gene transfer to primitive normal and leukemic hematopoietic cells using clinically applicable procedures. J. Clin. Invest., 89, 1817–1824.
  • Bender, M. A., Palmer, T. D., Gelinas, R. E. and Miller, A. D. (1987). Evidence that the packaging signal of Moloney murine leukemia virus extends into the gag region. J. Virol., 61, 1639–1646.
  • Spangrude, G. J., Smith, L., Uchida, N., Ikuta, K., Heimfeld, S., Friedman, J., et al. (1991). Mouse hematopoietic stem cells. Blood, 78, 1395–1402.
  • Spangrude, G. J., Heimfeld, S. and Weissman, I. L. (1988). Purification and characterization of mouse hematopoietic stem cells [published erratum appears in Science 1989 Jun 2; 244(4908), 1030]. Science, 241, 58–62.
  • Orlic, D., Fischer, R., Nishikawa, S., Nienhuis, A. W. and Bodine, D. M. (1993). Purification and characterization of heterogeneous pluripotent hematopoietic stem cell populations expressing high levels of c-kit receptor. Blood, 82, 762–770.
  • Hirst, W., Buggins, A., Darling, D., Gaken, J., Farzaneh, F. and Mufti, G. (1997). Enhanced immune costimulatory activity of primary acute myeloid leukaemia blasts after retrovirus mediated gene transfer of B7.1 Gene Ther., 4, 691–699.
  • Orlic, D., Girard, L. J., Jordan, C. T., Anderson, S. M., Cline, A. P. and Bodine, D. M. (1996). The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction. Proc. Natl. Acad. Sci. USA, 93, 11097–11102.
  • Donahue, R. E., Kessler, S. W., Bodine, D., McDonagh, K., Dunbar, C., Goodman, S., et al. (1992). Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J. Exp. Med., 176, 1125–1135.
  • Hayward, W. S., Neel, B. G. and Astrin, S. M. (1981). Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature, 290, 475–480.
  • Burns, J. C., Friedmann, T., Driever, W., Burrascano, M. and Yee, J. K. (1993). Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells [see comments]. Proc. Natl. Acad. Sci. U. S. A., 90, 8033–8037.
  • Medin, J. A., Migita, M., Pawliuk, R., Jacobson, S., Amiri, M., Kluepfel Stahl, S., et al. (1996). A bicistronic therapeutic retroviral vector enables sorting of transduced CD34 + cells and corrects the enzyme deficiency in cells from Gaucher patients. Blood, 87, 1754–1762.
  • Horwitz, M. S. (1990). Adenoviruses. In: Fields B N, Kipe D M, eds. Virology 2nd ed. New York, N Y Raven Press, Ltd; 1723–1741.
  • Tooze, J. (1980). DNA Tumour Viruses. Cold Spring Harbor, NY: Cold Spring Harbour Lab.
  • Greber, U. F., Willetts, M., Webster, P. and Helenius, A. (1993). Stepwise dismantling of adenovirus 2 during entry into cells. Cell, 75, 477–486.
  • Gooding, L. R. and Wold, W. S. (1990). Molecular mechanisms by which adenoviruses counteract antiviral immune defenses. Crit. Rev. Immunol., 10, 53–71.
  • Berkner, K. L. (1988). Development of adenovirus vectors for the expression of heterologous genes. Bitotechniques, 6, 616–629.
  • Graham, F. L. and Prevec, L. (1994). Adenovirus-based expression vectors and recombinant vaccines. In: Vaccines: New Approaches to Immunological Problems. Boston: Butterworth-Heinemann, 363–390.
  • Graham, F. L., Smiley, J., Russell, W. C. and Nairn, R. (1977). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol., 36, 59–74.
  • Brody, S. L. and Crystal, R. G. (1994). Adenovirus-mediated in vivo gene transfer. Ann. N. Y. Acad. Sci., 716, 90–101.
  • Bramson, J. L., Graham, F. L. and Gauldie, J. (1995). The use of adenoviral vectors for gene therapy and gene transfer in vivo. Curr. Opin. Biotechnol., 6, 590–595.
  • Takafuji, E. T., Gaydos, J. C., Allen, R. G. and Top, F. H. (1979). Simultaneous adminstration of live, enteric-coated adenovirus types 4, 7 and 21 vaccines: safety and immunogenicity. J. Infect Dis., 140, 48–53.
  • Philipson, L., Lonberg Holm, K. and Pettersson, U. (1968). Virus-receptor interaction in an adenovirus system. J. Virol., 2, 1064–1075.
  • Wickham, T. J., Mathias, P., Cheresh, D. A. and Nemerows, G. R. (1993). Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell, 73, 309–319.
  • Huang, S., Endo, R. I. and Nemerow, G. R. (1995). Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery. J. Virol., 69, 2257–2263.
  • Stevenson, S. C., Rollence, M., Marshall Neff, J. and McClelland, A. (1997). Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein. J. Virol, 71, 4782–4790.
  • Wickham, T. J., Roelvink, P. W., Brough, D. E. and Kovesdi, I. (1996). Adenovirus targeted to heparin-containing receptors increases its gene delivery efficiency to multiple cell types. Nat. Biotechnol. 14, 1570–1573.
  • Doerfler, W. (1991). Abortive infection and malignant transformation by adenoviruses: integration of viral DNA and control of viral gene expression by specific patterns of DNA methylation. Adv. Virus. Res., 39, 89–128.
  • Vincent, N., Ragot, T., Gilgenkrantz, H., Couton, D., Chafey, P., Gregoire, A., et al. (1993). Long-term correction of mouse dystrophic degeneration by adenovirus-mediated transfer of a minidystrophin gene. Nat. Genet., 5, 130–134.
  • Yang, Y., Xiang, Z., Ertl, H. C. and Wilson, J. M. (1995). Upregulation of class I major histocompatibility complex antigens by interferon gamma is necessary for T- cell-mediated elimination of recombinant adenovirus-infected hepatocytes in vivo. Proc. Natl. Acad. Sci. USA, 92, 7257–7261.
  • Schneider, S. D., Rusconi, S., Seger, R. A. and Hossle, J. P. (1997). adenovirus-mediated gene transfer into monocyte-derived macrophages of patients with X-linked chronic granulomatous disease: Ex vivo correction of deficient respiratory burst. Gene Ther., 4, 524–532.
  • Amalfitano, A., Begy, C. R. and Chamberlain, J. S. (1996). Improved adenovirus packaging cell lines to support the growth or replication-defective genedelivery vectors. Proc. Natl. Acad. Sci. USA, 93, 3352–3356.
  • Berns, K. I. (1990). P1. Parviridae and their replication. In: Fields B N, Kipe D M, eds. Virology 2nd ed. New York, NY Raven Press, Ltd; 1743–1759.
  • Flotte, T. R., Afione, S. A., Solow, R., Drumm, M. L., Markakis, D., Guggino, W. B., et al. (1993). Expression of the cystic fibrosis transmembrane conductance regulator from a novel adeno-associated virus promoter. J. Biol. Chem., 268, 3781–3790.
  • Kotin, R. M., Linden, R. M. and Berns, K. I. (1992). Characterization of a preferred site on human chromosome 19 q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J, 11, 5071–5078.
  • Kotin, R. M., Siniscalco, M., Samulski, R. J., Zhu, X. D., Hunter, L., Laughlin, C. A., et al. (1990). Site-specific integration by adeno-associated virus. Proc. Natl. Acad. Sci. USA, 87, 2211–2215.
  • Linden, R. M., Ward, P., Giraud, C., Winocour, E. and Berns, K. I. (1996). Site-specific integration by adeno-associated virus. Proc. Natl. Acad. Sci. USA, 93, 11288–11294.
  • Muzyczka, N. (1992). Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr. Top Microbiol. Immunol., 158, 97–129.
  • Samulski, R. J., Chang, L. S. and Shenk, T. (1989). Helper-free stocks of reombinant adeno-associated viruses: normal integration does not reuire viral gene expression. J. Virol, 63, 3822–3828.
  • Lebkowski, J. S., McNally, M. M., Okarma, T. B. and Lerch, L. B. (1988). Adeno-associated virus: a vector system for efficient introduction and integration of DNA into a variety of mammalian cell types. Mol. Cell Biol., 8, 3988–3996.
  • Fisher Adams, G., Wong, K.K. Jr., Podsakoff, G., Forman, S. J. and Chatterjee, S. (1996). Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after trnasduction. Blood, 88, 492–504.
  • Podsakoff, G., Wong, K. K. Jr. and Chatterjee, S. (1994). Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors. J. Virol., 68, 5656–5666.
  • Ferrari, F. K., Samulski, T., Shenk, T. and Samulski, R. J. (1996). Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J. Virol., 70, 3227–3234.
  • Tamayose, K., Hirai, Y. and Shimada, T. (1996). A new strategy for larg-scale preparation of high-titer recombinant adeno-associated virus vectors by using packaging cell lines and sulfonated cellulose column chromatogrphy. Hum. Gene. Ther., 7, 507–513.
  • Clark, K. R., Voulgaropoulou, F., Fraley, D. M. and Johnson, P. R. (1995). Cell lines for the production of recombinant adeno-associated virus. Hum. Gene. Ther., 6, 1329–1341.
  • Thrasher, A. J., de Alwis, M., Casimir, C. M., Kinnon, C., Page, K., Lebkowski, J., et al. (1995). Generation of recombinant adeno-associated virus (rAAV) from an adenoviral vector and functional resonstitution of the NADPH-oxidase. Gene. Ther., 2, 481–485.
  • Mizukami, H., Young, N. S. and Brown, K. E. (1996). Adeno-associated virus type 2 binds to a 150-kilodalton cell membrane glycoprotein. Virology, 217, 124–130.
  • Conrad, C. K., Allen, S. S., Afione, S. A., Reynolds, T. C., Beck, S. E., Fee Maki, M., et al. (1996). Safety of single-dose adminstration of an adeno-associated virus (AAV)-CFTR vector in the primate lung. Gene. Ther., 3, 658–668.
  • Walsh, C. E., Nienhuis, A. W., Samulski, R. J., Brown, M. G., Miller, J. L., Young, N. S., et al. (1994). Phenotypic correction of Fanconi anemia in human hematopoietic cells with a recombinant adeno-associated virus vector [see comments], J Clin Invest, 94, 1440–1448.
  • McGeoch, D. J., Dalrymple, M. A., Davison, A. J., Dolan, A., Frame, M. C., McNab, D., et al. (1988). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol., 69, 1531–1574.
  • Roizmann, B., Desrosiers, R. C., Fleckenstein, B., Lopez, C., Minson, A. C. and Studdert, M. J. (1992). The family Herpesviridae: an update. The Herpesvirus Study Group of the International Committee on Taxonomy of Viruses. Arch. Virol., 123, 425–449.
  • Roizman, B. (1996). The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors. Proc. Natl. Acad. Sci. USA, 93, 11307–11312.
  • Roizman, B. and Sears, A. E. (1990). Herpes simplex viruses and their replication. In: Fields B N, Kipe D M, eds. Virology 2nd ed. New York, NY Raven Press, Ltd; 1795–1841.
  • Marconi, P., Krisky, D., Oligino, T., Poliani, P. L., Ramakrishnan, R., Goins, W. F., et al. (1996). Replication-defective herpes simplex virus vectors for gene transfer in vivo. Proc. Natl. Acad. Sci. USA, 93, 11319–11320.
  • Dilloo, D., Rill, D., Entwistle, C., Boursnell, M., Zhong, W., Holden, W., et al. (1997). A novel herpes vector for the high-efficiency transduction of normal and malignant human hematopoietic cells. Blood, 89, 119–127.
  • Lewis, P., Hensel, M. and Emerman, M. (1992). Human immunodeficiency virus Infection of cells arrested in the cell cycle [published erratum appears in EMBO J 1992 Nov; 11(11), 4249]. EMBO J, 11, 3053–3058.
  • Weinberg, J. B., Matthews, T. J., Cullen, B. R. and Malim, M. H. (1991). Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J. Exp. Med., 174, 1477–1482.
  • Miyake, K., Tohyama, T. and Shimada, T. (1996). Two-step gene transfer using an adenoviral vector carrying the CD4 gene and human immunodeficiency viral vectors. Hum. Gene. Ther., 7, 2281–2286.
  • Naldini, L., Bolmer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., et al. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector [see comments]. Science, 272, 263–267.
  • Loyter, A., Scangos, G. A. and Ruddle, F. H. (1982). Mechanisms of DNA uptake by mammalian cells: fate of exogenously added DNA monitored by the use of fluorescent dyes. Proc. Natl. Acad. Sci. USA, 79, 422–426.
  • Li, H. J., Chang, C. and Weiskopf, M. (1973). Helix-coil transition in nucleoprotein-chromatin structure. Biochemistry, 12, 1763–1772.
  • Wu, G. Y. and Wu, C. H. (1987). Receptor-mediated in vitro gene transformation by a soluble DNA carrier system [published erratum appears in J Biol Chem 1988 Jan 5; 263(1): 588], J. Biol. Chem., 262, 4429–4432.
  • Curiel, D. T., Agarwal, S., Wagner, E. and Cotten, M. (1991). Adenovirus enhancement of transferrin-polylysine-mediated gene delivery. Proc. Natl. Acad. Sci. USA., 88, 8850–8854.
  • Wanger, E., Plank, C., Zatloukal, K., Cotten, M. and Birnstiel, M. L. (1992). Influenza virus hemagglutinin HA-2- N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehilce. Proc. Natl. Acad. Sci. USA, 89, 7934–7938.
  • Cristiano, R. J., Smith, L. C., Kay, M. A., Brinkley, B. R. and Woo, S. L. (1993). Hepatic gene therapy: efficient gene delivery and expression in primary hepatocytes utilizing a conjugated adenovirus-DNA complex. Proc. Natl. Acad. Sci. USA, 90, 11548–11552.
  • Schwarzenberger, P., Spence, S. E., Gooya, J. M., Michiel, D., Curiel, D. T., Ruscetti, F. W., et al. (1996). Targeted gene transfer to human hematopoietic progenitor cell lines through the c-kit receptor. Blood, 87, 472–478.
  • Floch, V., Le Bolc'h, G., Audrezet, M. P., Yaouanc, J. J., Clement, J. C., Abbayes, H., et al. (1997). Cationic phosphonolipids as non viral vectors for DNA transfection in Hematopoietic cell lines and CD34+cells. Blood cells. Molecules, and disease, 23(5) 69–87.
  • Darling, D., Galea-Lauri, J., Gaken, J., et al. (1997). In vitro immune modulation by antibodies coupled to tumour cells. Gene Ther., 4, 1350–1360.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.