139
Views
20
CrossRef citations to date
0
Altmetric
The Hematopoietic Microenvironment

Stromal Extracellular Matrix Components As Growth Regulators For Human Hematopoietic Progenitors

, , , , &
Pages 321-333 | Received 14 Jul 1999, Published online: 13 Jul 2016

References

  • Shofield, R. (1978). The relationship between the spleen colony-forming cell and the hematopoietic stem cell: a hypothesis, Blood Cells, 4, 7–25.
  • Yoder, M. C. and Williams, D. A. (1995). Matrix molecule interactions with hematopoietic stem cells, Experimental Hematology, 23, 961–7.
  • Dexter, T. M., Coutinho, L. H., Spooncer, E., Heyworth, C. M., Daniel, C. P., Schiro, R., Chang, J. and Allen, T. D. (1990). Stromal cells in haemopoiesis. In: Molecular control of haemopoiesis. Wiley, Chichester, [Ciba Found Symp 148] 76–95.
  • Cashman, J. D., Eaves, A. C., Raines, E. W., Ross, R. and Eaves, C. J. (1990). Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. I. Stimulatory role of a variety of mesenchymal cell activators and inhibitory role of TGF-β, Blood, 75, 96–101.
  • Coloumbel, L., Eaves, A. C. and Eaves, C. J. (1983). Enzymatic treatment of long-term marrow cultures reveals the preferential location of primitive hematopoietic progenitors in the adherent layer, Blood, 62, 291–299.
  • Fraser, C., Szilvassy, S., Eaves, C. and Humphries, R. (1992). Proliferation of totipotent hematopoietic stem cells in vitro with retention of long-term competitive in vivo reconstituting ability, Proc Natl Acad Sci USA, 89, 1968–1972.
  • Barnett, M. J., Eaves, C. J., Philips, G. L., Kalousek, K. D., Klingeman, H. G., Landsdorp, P. M., Reece, D. E., Sheperd, J. D., Shaw, G. J. and Eaves, A. C. (1989). Successful autografting in chronic myelogenous leukemia after maintenance of marrow in culture, Bone Marrow Transpl, 4, 345.
  • Verfaillie, C. M. (1992). Direct contact between human primitive hematopoietic progenitors and marrow stroma is not required for long-term in vitro hematopoiesis, Blood, 79, 2821–2826.
  • Verfaillie, C. M. (1993). Soluble factor(s) produced by human marrow stroma increase cytokine induces proliferation and maturation of primitive hematopoietic progenitors while preventing their terminal differentiation, Blood, 82, 2045–2054.
  • Verfaillie, C. M. MIP-1α combined with IL3 maintains primitive human LTBMC-IC for at least 8 weeks in ex vivo stroma-non-contact cultures, J. Exp. Med.
  • Verfaillie, C. and Miller, J. (1994). CD34 +/CD33—cells reselected from stroma-non-contact cultures contain more than 20 percent primitive progenitors capable of long-term in vitro hematopoiesis, Blood.
  • Sutherland, H. J., Eaves, C. J., Landsdorp, P. M, Thaker, J. D. and Hogge, D. E. (1991). Differential regulation of primitive human hematopoietic cells in long-term marrow cultures maintained on genetically engineered murine stromal cells, Blood, 78, 666–672.
  • Burrhoughs, J. M., Gupta, P. and Verfaillie, C. M. (1994). Soluble factors from the mouse fibroblast cell line M210-B4 support in vitro hematopoiesis, Exp. Hematol., 22, 095–1101.
  • Bathia, R., Dewald, G., McGlave, P. and Verfaillie, C. M. (1995). Abnormalities of the bone marrow microenvironment in chronic myelogenous leukemia are related to maliganant macrophages, Blood, 85, 3636–3645.
  • Gupta, P., McCarthy, J. B. and Verfaillie, C. M. (1996). Marrow Stroma Derived Proteoglycans Combined With Physiological Concentrations Of Cytokines Are Required For LTC-IC Maintenance, Blood, 87, 3229–3236.
  • Templeton, D. M. (1992). Proteoglycans in cell regulation, Crit Rev Clin Lab Sci, 29, 141–184.
  • Ruoslahti, E., Yamaguchi, Y., Hildegrand, A. and Border, W. A. (1992). Extracellular matrix/growth factor interactions, Cold Springs Harbor Symposia on Quantitative Biology, 57, 309–315.
  • Burgess, W. H. and Maciag, T. (1989). The heparin-binding (fibroblast) growth factor family of proteins, Annu Rev Biochem, 58, 575.
  • Ishai-Michaeli, R., Eldor, A. and Vlodavsky, I. (1990). Heraranase activity expressed by platelets, neutrophils, and lymphoma cells releases active fibroblast growth factor from extracellular matrix, Cell Reg, 1, 833.
  • Gordon, M. Y., Riley, G. P., Watt, S. M. and Greaves, M. F. (1987). Compartmentalization of a haematopoietic growth factor [GM-CSF] by glycosaminoglycans in the bone marrow microenvironment, Nature, 326, 403–405.
  • Roberts, R., Gallagher, J., Spooncer, E., Allen, T. D., Bloomfield, F. and Dexter, T. M. (1988). Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis, Nature, 332, 376–378.
  • Perin, J.-P., Bonnet, F., Maillet, P. and Jolles, P. (1988). Characterization and N-terminal sequence of human platelet factor proteoglycan, Biochem J, 255, 1007.
  • Wright, T. N., Kinsella, M. G., Keating, A. and Singer, J. W. (1986). Proteoglycans in human long-term marrow cultures: biochemical and ultrastructural analyses, Blood, 67, 1333–1343.
  • Gallagher, J. T., Spooncer, E. and Dexter, T. M. (1983). Role of the cellular matrix in haemopoiesis. I. Synthesis of glycosaminoglycans by mouse marrow cell cultures, J. Cell. Sci, 63, 155–171.
  • Gordon, M. Y., Dowdling, C. R., Riley, G. P., Goldman, J. M. and Greaves, M. F. (1984). Altered adhesive interactions with marrow stroma of hematopoietic progenitor cells in chronic myeloid leukaemia, Nature, 328, 342–344.
  • Gordon, M. Y., Riley, G. P. and Clarke, D. (1988). Heparan-sulfate is necessary for adhesive interactions between human early hemopoietic progenitors cells and the extracellular matrix of the marrow microenvironment, Leukemia, 2, 804–809.
  • Siczkowski, M., Clarke, D. and Gordon, M. Y. (1992). Binding of primitive hematopoietic progenitor cells to marrow stromal cells involves heparan-sulfate, Blood, 80, 912–919.
  • Spooncer, E., Gallagher, J. T., Krizsa, F. and Dexter, T. M. (1988). Regulation of haemopoiesis in longterm marrow cultures. IV. Glycosaminoglycan synthesis and the stimulation of haemopoiesis by β-D-xylosides, J Cell. Biol, 96, 510–514.
  • Luikart, S. D., Maniglia, C. A., Furcht, J. T., McCarthy, J. B. and Oegema Jr, T. R. (1990). A heparan-sulfate-containing fraction of marrow stroma induces maturation of HL-60 cells, in vitro, Cancer Res, 50, 3781–3785.
  • Tanaka, Y., Adams, D. H., Hunsher, S., Hirano, H., Siebenlist, U. and Shaw, S. (1993). T-cell adhesion induced by proteoglycan immobilized cytokine MI P-1β, Nature, 361, 79–82.
  • Hurley, R. W., McCarthy, J. B. and Verfaillie, C. M. (1995). Direct adhesion to bone marrow stroma via fibronectin receptors inhibits hematopoietic progenitor proliferation, J. Clin.lnvest, 96, 511–519.
  • Verfaillie, C., Blakolmer, K. and McGlave, P. (1990). Purified primitive hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectively to irradiated bone marrow stroma, J. Exp. Med, 172, 509–520.
  • Verfaillie, C. M., McCarthy, J. B. and McGlave, P. B. (1991). Differentiation of primitive human multipotent hematopoietic progenitors into single lineage clonogenic progenitors is accompanied by alterations in their interaction with fibronectin, J. Exp. Med, 174, 693–703.
  • Verfaillie, C. M., Benis, A., Iida, G., McGlave, P. B. and McCarthy, J. (1994). Adhesion of committed human hematopoietic progenitors to synthetic peptides in the C-terminal heparin-binding domain of fibronectin: Cooperation between the integrin α4β1 and the CD44 adhesion receptor, Blood, 84, 1802–1812.
  • Verfaillie, C. M., McCarthy, J. B. and McGlave, P. B. (1992). Mechanisms underlying abnormal trafficking of malignant progenitors in chronic myelogenous leukemia. Decreased adhesion to stroma and fibronectin but increased adhesion to the basement membrane components laminin and collagen type IV, J. Clin. Invest, 90, 1232–1241.
  • Simmons, P. J., Masinovsky, B., Longenecker, B. M., Berenson, R., Torok-Storb, B. and Gallatin, W. M. (1992). Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells, Blood, 80, 388–395.
  • Teixidó, J., Hemler, M. E., Greenberger, J. S. and Anklesaria, P. (1992). Role of β1 and β2 integrins in the adhesion of human CD34hi stem cells to bone marrow stroma, J. Clin. Invest, 90, 358–367.
  • Kerst, J. M., Sanders, J. B., Slaper-Cortenbach, I. C. M., Doorakkers, M. C., Hooibrink, B., van Oers, R. H. J., von dem Borne, A. E. G. K. and van der Schoot, C. E. (1993). α4β1 and α5β1 are differentially expressed during myelopoiesis and mediate the adherence of human CD34+ cells to fibronectin in an activation-dependent way, Blood, 81, 344–351.
  • Hurley, R., McCarthy, J. B. and Verfaillie, C. M. (1996). Clustering Of Integrins Results In Proliferation Inhibition Of Committed Hematopoietic Progenitors Through Mechanisms Involving The Cell Cytoskeleton, Experimental Hematology, Exp. Hematology In Press.
  • Albelda, S. M. and Buck, C. A. (1990). Integrins and other cell adhesion molecules, FASEB J, 4, 2868–2880.
  • Hemler, M. E., Huang, C. and Schwarz, L. (1987). The VLA protein family, J. Biol. Chem, 262, 3300–3309.
  • Pavalko, F. M. and Otey, C. A. (1994). Role of the adhesion molecule cytoplasmatic domains in mediating interactions with the cytoskeleton, Proc Soc Exp Biol Med, 205, 282.
  • Clark, E. A. and Brugge. J. S. (1995). Integrins and signal transduction pathways: The road taken. Science, 268, 233–239.
  • Miyamoto, S., Akiyama, S. K. and Yamada, K. M. (1995). Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function, Science, 267, 883–5.
  • Chen, H. C., Appeddu, P. A., Parsons, J. T., Hildebrand, J. D., Schaller, M. D. and Guan, J. L. (1995). Interaction of focal adhesion kinase with cytoskeletal protein talin, J. Biol. Chem, 270, 16995–9.
  • Kornberg, L. T., Earp, H. S., Turner, C. E., Prockop, C. and Juliano, R. L. (1992). Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of β1 integrins, Proc. Natl. Acad. Sci, USA, 157, 105–132.
  • Guan, J.-L. and Trevithick, J. E., (1991). Hynes RO Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein, Cell Regulation, 2, 951–964.
  • Burridge, K., Turner, C. E. and Romer, L. H. (1992). Tyrosine phosphorylation of paxillin and p125 FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly, J. Cell Biol, 119, 893–903.
  • Calalb, M. B., Polte, T. R. and Hanks, S. K. (1995). Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol. & Cell, Biology, 15, 954–63.
  • Bellis, S. L. Miller, J. T. and Turner, C. E. (1995). Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase, J. Biol. Chem, 270, 17437–17441.
  • Schaller, M. D. and Parsons, J. T. (1995). Pp125FAK-dependent tyrosine phosphorylation of paxillin creates a high-affinity binding site for Crk, Mol & Cell Biol, 15, 2635–45.
  • Schlaepfer, D. D. Hanks, S. K. Hunter, T. and van der Geer, P. (1994). Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase, Nature, 372, 786–789.
  • Kharbanda, S., Saleem, A., Yuan, Z., Emoto, Y., Prasad, K. V. and Kufe, D. (1995). Stimulation of human monocytes with macrophage colony-stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp125FAK and dynamin, Proc. Natl. Acad. Sci. USA, 92, 6132–6136.
  • Saxton, T. M., van Oostveen, I., Bowtell, D., Aebersold, R. and Gold, M. R. (1994). B cell antigen receptor cross-linking induces phosphorylation of the p21ras oncoprotein activators SHC and mSOS1 as well as assembly of complexes containing SHC, GRB-2. mSOS1. and a 145-kDa tyrosine-phosphorylated protein, J. of Imm, 153, 623–36.
  • Teng, K. K., Lander, H., Fajardo, J. E., Hanafusa, H., Hempstead, B. L. and Birge, R. B. (1995). v-Crk modulation of growth factor-induced PC12 cell differentiation involves the Src homology 2 domain of v-Crk and sustained activation of the Ras/mitogen-activated protein kinase pathway, J. Biol. Chem, 270, 20677–85.
  • Yurochko, A. D., Liu, D. Y., Eierman, D. and Haskill, S. (1992). Integrins as a primary signal transduction molecule regulating monocyte immediate-early gene induction, Proc. Natl. Acad. Sci, USA, 89, 9034–9038.
  • Shaw, R. J., Doherty, D. E., Ritter, A. G., Benedict, S. H. and Clark, R. A. F. (1990). Adherence dependent increase in human monocyte PDGF(B) mRNA is associated with increases in c-fos, c-jun and EGR2 mRNA, J Cell Biol, 111, 2139.
  • Guadagno, T. M., Ohtsubo, M., Roberts, J. M. and Assosian, R. K. (1993). A link between cyclin A expression and adhesion-dependent cell cycle progression, Science, 262, 1572–5.
  • Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G. and Cheresh, D. A. (1994). Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels, Cell, 79, 1157–64.
  • Davis, L. S., Oppenheimer-Marks, N., Bednarczyk, J. L., McIntyre, B. W. and Lipsky, P. E. (1990). Fibronectin promotes proliferation of naive and memory T cells by signaling through both the VLA-4 and VLA-5 integrin molecules, J. Immunol, 145, 785–793.
  • Dike, L. E. and Farmer, S. E. (1988). Cell adhesion induces expression of growth-associated genes in suspension arrested fibroblasts, Proc. Natl. Acad. Sci, USA, 85, 6792–6797.
  • Rowley, J. D. (1990). The Philadelphia chromosome translocation: A paradigm for understanding leukemia, Cancer, 65, 2178.
  • Bartram, C. R., deKlein, A., Hagemeijer, A., van Agthoven, T., Geurts van Kessel, A., Bootsma, D., Grosveld, G., Ferguson-Smith, M. A., Davies, T. and Stone, M. (1983). Translocation of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukemia, Nature, 306, 277–80.
  • Kantarjian, H. M., Smith, T. L., McCredie, K. B., Keating, M. J., Walters, R. S., Talpaz, M., Hester, J. P., Bligham, G., Gehan, E. and Freireich, E. J. (1985). Chronic myelogenous leukemia: a multivariate analysis of the associations of patient characteristics and therapy with survival, Blood, 66, 1326–1335.
  • Daley, G. Q., Van Etten, R. A. and Baltimore, D. (1990). Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome, Science, 247, 824–829.
  • Gishizky, M. L. and Witte, O. N. (1992). Initiation of dysregulated growth of multipotent progenitor cells by bcr-abl in vitro, Science, 256, 836–839.
  • Bhatia, R., Wayner, E., McGlave, P. and Verfaillie, C. M. (1994). Interferon-α restores adhesion of malignant progenitors in CML by restoring β1 integrin function, J. Clin. Invest, 94, 384–391.
  • Bhatia, R., McGlave, P. B. and Verfaillie, C. M. (1995). Interferon-α treatment of normal bone marrow stroma results in enhanced adhesion of CML hematopoietic progenitors via mechanisms involving MIP-1α, J. Clin. Invest, 96, 931–939.
  • Gordon, M. Y., Dowdling, C. R., Riley, G. P., Goldman, J. M. and Greaves, M. F. (1984). Altered adhesive interactions with marrow stroma of hematopoietic progenitor cells in chronic myeloid leukaemia, Nature, 328, 342–344.
  • Lundell, B. I., McCarthy, J. B., Kovach, N. L. and Verfaillie, C. M. (1996). Adhesion to fibronectin (FN) induced by the activating anti-integrin-β1 antibody, 8A2, restores adhesion mediated inhibition of CML progenitor proliferation, Blood, 87, 2450–2458.
  • Bhatia, R., McCarthy, J. B. and Verfaillie, C. M. (1996). Interferon-α restores normal β1 -integrin mediated negative regulation of chronic myelogenous leukemia progenitor proliferation, Blood, 87, 3883–3891.
  • Eaves, A. C., Cashman, J. D., Gaboury, L. A., Kalousek, D. K. and Eaves, C. J. (1986). Unregulated proliferation of primitive chronic myeloid leukemia progenitors in the presence of normal marrow adherent cells, Proc. Natl. Acad. Sci. USA, 83, 5306–10.
  • Ghaffari, S., Dougherty, G. J., Lansdorp, P. M., Eaves, A. C. and Eaves, J. C. (1995). Differentiation associated changes in CD44 isoform expression during normal hematopoiesis and their alteration in chronic myeloid leukemia, Blood, 86, 2976–2985.
  • Kovach, N. L., Carlos, T. M. Yee, E. and Harlan. J. M. (1992). A monoclonal antibody to β1 integrin (CD29) stimulates VLA-dependent adhesion of leukocytes to human umbilical vein endothelial cells and matrix components, J. Cell Biol, 116, 499–509.
  • Faull, R. J., Kovach, N. L. Harlan, J. M. and Ginsberg. M. H. (1994). Stimulation of integrin-mediated adhesion of T lymphocytes and monocytes: Two mechanisms with divergent biological consequences, J. Exp. Med, 179, 1307–1316.
  • Phillips, D. R., Charo, I. F. and Scarborough, R. M. (1991). GPIIb-IIIa: the responsive integrin, Cell, 65, 359–362.
  • Coller, B. S. (1986). Activation affects access to the platelet receptor for adhesive glycoproteins, J. Cell Biol, 103, 451–456.
  • Sànchez-Madrid, F. and Corbí, A. L. (1992). Leukocyte integrins: structure, function and regulation of their activity, Seminars in Cell Biol, 3, 199–210.
  • Levesque, J. P., Leavesley, D. I., Niutta, S., Vadas, M. and Simmons, P. J. (1995). Cytokines increase human hemopoietic cell adhesiveness by activation of very late antigen (VLA)-4 and VLA-5 integrins, J. Exp. Med, 181, 1805–15.
  • Kovach, N. L., Lin, N., Yednock, T., Harlan, J. M. and Broudy, V. C. (1995). Stem cell factor modulates avidity of alpha 4 beta 1 and alpha 5 beta 1 integrins expressed on hematopoietic cell lines, Blood, 85, 159–67.
  • Aneskievich, B. J., Haimovich, B. and Boettiger, D. (1991). Phosphorylation of integrin in differentiating ts-Rous sarcoma virus-infected myogenic cells, Oncogene, 6, 1381–90.
  • Johansson, M. W., Larsson, E., Luning, B., Pasquale, A. B. and Ruoslahti, E. (1994). Altered localization and cytoplasmic domain-binding properties of tyrosine-phosphorylated β1 Integrin, J. Cell Biol, 126, 1299–309.
  • Renshaw, M. W., McWhirter, J. R. and Wang, J. Y. (1995). The human leukemia oncogene bcr-abl abrogates the anchorage requirement but not the growth factor requirement for proliferation, Mole. & Cell, Biology, 15, 1286–93.
  • Pendergast, A. M., Gishizky, M. L., Havlik, M. H. and Witte, O. N. (1993). SH1 domain autophosphorylation of p210 bcr/abl is required for transformation but not growth factor independence, Mol Cell Biol, 13, 1728–32.
  • Pendergast, A. M., Muller, A.J., Havlik, M. H., Maru, Y. and Witte, O. N. (1991). BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner, Cell, 66, 161–71.
  • Pendergast, A. M., LA Quilliam, Cripe, L. D. Bassing, C. H., Dai, Z., Li N. Batzer, A., Rabun, K. M., Der, C. J. and Schlessinger, J. (1993). BCR-ABL-Induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein, Cell, 75, 175–85.
  • Sawyers, C. L., McLaughlin, J. and Witte, O. N. (1995). Genetic requirement for RAS in the transformation of fibroblasts and hematopoietic cells by the Bcr-Abl oncogene, J Exp Med., 181, 307–313.
  • Oda, T., Heaney, C., Hagopian, J. R., Okuda, K., Griffin, J. D. and Druker, B. J. (1994). Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia, J. Biol. Chem, 269, 22925–8.
  • de Jong, R., ten Hoeve, J., Heisterkamp, N. and Groffen, J. (1995). Crkl is complexed with tyrosine-phosphorylated Cbl in Ph-positive leukemia, J. Biol. Chem, 270, 21468–71.
  • Ihle, J. N., Witthuhn, B. A., Quelle, F. W., Yamamoto, K. and Silvennoinen, O. (1995). Signaling through the hematopoietic cytokine receptors, Annual Review of Immunology, 13, 369–98.
  • Hirano, T., Matsuda, T. and Nakajima, K. (1994). Signal transduction through gp130 that is shared among the receptors for the interleukin 6 related cytokine subfamily, Stem Cells, 12, 262–77.
  • Salgia, R., Li, J. L., Lo, S. H., Brunkhorst, B., Kansas, G. S. Sobhany, E. S. Sun, Y., Pisick, E., Hallek, M. and Ernst, T. (1995). Molecular cloning of human paxillin, a focal adhesion protein phosphorylated by P210BCR/ABL, J. Biol. Chem, 270, 5039–47.
  • Van Etten, R. A., Jackson, P. K., Baltimore, D., Sanders, M. C., Matsudaira, P. T. and Janmey, P. A. (1994). The COOH-terminus of the c-abl tyrosine kinase contains distinct F-actin and G-acting binding domains with bundling activity, J. Cell. Biol, 124, 325–40.
  • McWhirter, J. R. and Wang, J. Y. (1993). An actin-binding function contributes to transformation by the bcr/abl oncoprotein in Philadelphia chromosome positive human leukemias, EMBO J, 12, 1533–46.
  • Prosper, F., Stronceck, D. and Verfaillie, C. M. (1996). Phenotypic And Functional Characterization Of Long-Term Culture Initiating Cells (LTC-IC) Present In Peripheral Blood Progenitor Collections Of Normal Donors Treated With G-CSF, Blood, 88, 2033–2042.
  • Sutherland, H. J., Eaves, C. J., Lansdorp, P. M., Phillips, G. L. and Hogge, D. E. (1994). Kinetics of committed and primitive blood progenitor mobilization after chemotherapy and growth factor treatment and their use in autotransplants, Blood, 83, 3808–14.
  • Vose, J. M. and Armitage, J. O. (1995). Clinical applications of hematopoietic growth factors, J. of Clin. Oncol, 13, 1023–35.
  • Scheding, S., Brugger, W., Mertelsmann, R. and Kanz, L. (1994). Peripheral blood stem cells: in vivo biology and therapeutic potential, Stem Cells, 12 Suppl, 1, 203–10.
  • Dercksen, M. W., Gerritsen, W. R., Rodenhuis, S., Dirkson, M. K., Slaper-Cortenbach, I. C., Schaasberg, W. P. Pinedo, H. M., von dem Borne, A. E. and van der Schoot, C. E. (1995). Expression of adhesion molecules on CD34+ cells: CD34 + L-selectin+ cells predict a rapid platelet recovery after peripheral blood stem cell transplantation, Blood, 85, 3313–9.
  • Turner, M. L., McIlwaine, K., Anthony, R. S. and Parker, A. C. (1995). Differential expression of cell adhesion molecules by human hematopoietic progenitor cells from bone marrow and mobilized adult peripheral blood, Stem Cells, 13, 311–6.
  • Mohle, R., Murea, S., Kirsch, M. and Haas, R. (1995). Differential expression of L-selectin, VLA-4. and LFA-1 on CD34+ progenitor cells from bone marrow and peripheral blood during G-CSF-enhanced recovery, Exp Hemat, 23, 1535–42.
  • Roberts, A. W. and Metcalf, D. (1995). State of peripheral blood progenitor cells mobilized by granulocyte colony-stimulating factor and other cytokines, Blood, 86, 1600–5.
  • Ponchio, L., Conneally, E. and Eaves, C. (1995). Quantitation of the quiescent fraction of long-term culture-initiating cells in normal human blood and marrow and the kinetics of their growth factor-stimulated entry into S-phase in vitro, Blood, 86, 3314–21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.