74
Views
2
CrossRef citations to date
0
Altmetric
Erythropoiesis

Slow and Steady Wins The Race? Progress in the Development of Vectors for Gene Therapy of β-Thalassemia and Sickle Cell Disease

, &
Pages 437-455 | Received 09 Jun 1999, Accepted 23 Jun 1999, Published online: 13 Jul 2016

References

  • Weatherall, D. (1999). Disorders of the synthesis or function of haemoglobin. In: Oxford Textbook of Medicine, Edited by Weatherall, D., Ledingham, J. and Warrell, D., Oxford University Press.
  • Stamatoyannopoulos, G. and Nienhuis, A. (1994). Hemoglobin Switching. In: The Molecular Basis of Blood Diseases, Edited by Stamatoyannopoulos, G., Neinhuis, A., Majerus, P., and Varmus, H., 107–155. W. B. Saunders Co.
  • Eaton, J. (1994). Malaria and the sickle cell gene. In: Sickle Cell Disease Basic Principles and Clinical Practice, Edited by Embury, S., Hebbel, R., Mohandas, N. and Steinberg, M., 13–18. Raven Press.
  • Weatherall, D. (1994). The thalassemias. In: The Molecular Basis of Blood Diseases., Edited by Stamatoyannopoulos, G., Nienhuis, A., Majerus, P. and Varmus, H., 157–206. W. B. Saunders Co.
  • Noguchi, C., Rodgers, G. and Schecter, A. (1989). Intracellular polymerization; disease severity and therapeutic predictions. Ann. NY Acad. Sci., 565, 75–82.
  • Perrine, R., Brown, M., Clegg, J., Weatherall, D. and May, A. (1972). Benign sickle-cell anaemia. Lancet, 2, 1163–1167.
  • Weatherall, D., Clegg, J. and Wood, W. (1976). A model for the persistence or reactivation of fetal haemoglobin production. Lancet, 25, 660–663.
  • Wood, W., Weatherall, D. and Clegg, J. (1976). Interaction of heterocellular hereditary persistence of foetal haemoglobin with beta thalassaemia and sickle cell anaemia. Nature, 18, 247–249.
  • Olivieri, N. (1996). Reactivation of fetal hemoglobin in patients with beta-thalassemia. Semin. Hematol., 33, 24–42.
  • Bunn, H. (1999). Induction of fetal hemoglobin in sickle cell disease. Blood, 15, 1787–1789.
  • Walters, M., Patience, M., Leisenring, W., Eckman, J., Scott, J., Mentzer, W., Davies, S., Ohene-Frempong, K., Bemaudin, F., Matthews, D., Storb, R. and Sullivan, K. (1996). Bone marrow transplantation for sickle cell disease. N. Engl. J. Med., 8, 369–376.
  • Platt, O. and Guinan, E. (1996). Bone marrow transplantation in sickle cell anemia—the dilemma of choice. N. Engl. J. Med., 8, 426–428.
  • Lawn, R., Fitsch, E., Parker, R., Blake, G. and Maniatis, T. (1978). The isolation and characterization of linked delta- and beta-globin genes from a cloned library of human DNA. Cell, 15, 1157–1174.
  • Smithies, O., Blechl, A., Denniston-Thompson, K., Newel, N., Richards, J., Slightom, J., Tucker, P. and Blattner, F. (1978). Cloning human fetal gamma globin and mouse alpha-type globin DNA: characterization and partial sequencing. Science, 202, 1284–1289.
  • Proudfoot, N. and Baralle, F. (1979). Molecular cloning of human epsilon-globin gene. Proc. Natl. Acad. Sci., 76, 5435–5439.
  • Office of Recombinant DNA Activities (ORDA); Update 2/10/99. ORDA Website. http://www.nih.gov/od/orda/index.html
  • Wiley Gene Medicine Website Database; Update 3/1/99. http://www.wiley.co.uk/wileychi/genmed/clinical/index.html#copy
  • Anderson, W. F. (1998). Human gene therapy. Nature, 392 (Suppl), 25–30.
  • Smith, A. E. (1995). Viral vectors in gene therapy. Annu. Rev. Microbiol., 49, 807–838.
  • Orlic, D., Girard, L. J., Jordan, C. T., Anderson, S. M., Cline, A. P. and Bodine, D. M. (1996). The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction. Proc. Natl. Acad. Sci., 93, 11097–102.
  • Kohn, D., Weinberg, K., Nolta, J., Heiss, L., Lenarsky, C., Crooks, G., Hanley, M., Annett, G., Brooks, J. and el-Khoureiy, A. (1995). Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat. Med., 1, 1017–1023.
  • Dunbar, C., Cottler-Fox, M., O'Shaughnessy, J., Doren, S., Carter, C., Berenson, R., Brown, S., Moen, R., Greenblatt, J. and Stewart, F. (1995). Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood, 85, 3048–3057.
  • Orlic, D., Girard, L. J., Anderson, S. M., Pyle, L. C., Yoder, M. C., Broxmeyer, H. E. and Bodine, D. M. (1998). Identification of human and mouse hematopoietic stem cell populations expressing high levels of mRNA encoding retrovirus receptors. Blood, 91, 3247–54.
  • Bodine, D. M., Crosier, P. S. and Clark, S. C. (1991). Effects of hematopoietic growth factors on the survival of primitive stem cells in liquid suspension culture. Blood, 78, 914–20.
  • Bodine, D. M., McDonagh, K. T., Seidel, N. E. and Nienhuis, A. W. (1991). Survival and retrovirus infection of murine hematopoietic stem cells in vitro: effects of 5-FU and method of infection. Exp. Hematol., 19, 206–12.
  • Burns, J. C., Friedmann, T., Driever, W., Burrascano, M. and Yee, J. K. (1993). Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci., 90, 8033–8037.
  • Uchida, N., Sutton, R., Friera, A., He, D., Reitsma, M., Chang, W., Veres, G., Scollay, R. and Weissman, I. (1998). HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc. Natl. Acad. Sci., 95, 11939–11944.
  • Jane, S. M., Ney, P. A., Vanin, E. F., Gumucio, D. L. and Nienhuis, A. W. (1992). Identification of a stage selector element in the human gamma-globin gene promoter that fosters preferential interaction with the 5′ HS2 enhancer when in competition with the beta-promoter. EMBO J., 11, 2961–9.
  • Jane, S., Amrolia, P. and Cunningham, J. (1995). Developmental regulation of the human beta-globin cluster. Aust. NZ J. Med., 25, 865–869.
  • Orkin, S. H. and Motulsky, A. G. (1995). Report and recommendations of the panel to assess the NIH investment in research on gene therapy. Office of Recombinant DNA activites, NIH.
  • Wolffe, A. (1995). Chromatin: Structure and Function. Academic Press.
  • Felsenfeld, G. (1992). Chromatin as an essential part of the transcriptional mechanism. Nature, 355, 219–24.
  • Rivella, S. and Sadelain, M. (1998). Genetic treatment of severe hemoglobinopathies: the combat against transgene variegation and transgene silencing. Sem. Hematol, 35, 112–25.
  • Ng, H. and Bird, A. (1999). DNA methylation and chromatin modification. Curr. Opin. Genet. Dev., 9, 158–163.
  • Hoeben, R. C., Migchielsen, A. A. J., Jagt, R. C. M. v. d., Ormondt, H. v. and Eb, A. J. v. D. (1991). Inactivation of the Moloney murine leukemia virus long terminal repeat in murine fibroblast cell lines is associated with methylation and dependent on its chromosomal position. J. Virol., 65, 904–912.
  • Palmer, T. D., Rosman, G. J., Osborne, W. R. A. and Miller, A. D. (1991). Genetically modified skin fibroblasts persist long after transplantation but gradually inactivate introduced genes. Proc. Natl. Acad. Sci., 88, 1330–1334.
  • St. Louis, D. and Verma, I. (1988). An alternative approach to somatic cell gene therapy. Proc. Natl. Acad. Sci., 85, 3150–3154.
  • Chada, K., Magram, J., Raphael, K., Radice, G., Lacy, E. and Costani, F. (1985). Specific expression of a foreign beta-globin in erythroid cells of transgenic mice. Nature, 314, 377–380.
  • Antoniou, M., deBoer, E., Habets, G. and Grosveld, F. (1988). The human, β-globin gene contains multiple regulatory regions: identification of one promoter and two downstream enhancers. EMBO J., 7, 377–384.
  • Tuan, D., Solomon, W., Li, Q. and London, I. (1985). The beta-like-globin gene domain in human erythroid cells. Proc. Natl. Acad. Sci., 82, 6384–6388.
  • Grosveld, F., Blom van Assendelft, G., Greaves, D. and Kollias, G. (1987). Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell, 51, 975–985.
  • Curtin, P., Liu, D., Liu, W., Chang, J. and Kan, Y. (1989). Human beta-globin gene expression in transgenic mice is enhanced by a distant DNase I hypersensitive site. Proc. Natl. Acad. Sci., 86, 7082–7086.
  • Collis, P., Antoniou, M. and Grosveld, F. (1990). Definition of the minimal requirements within the human beta-globin gene and the dominant control region for high level expression. EMBO J., 9, 233–240.
  • Caterina, J. J., Ryan, T. M., Pawlik, K. M., Palmiter, R. D., Brinster, R. L., Behringer, R. R. and Townes, T. M. (1991). Human beta-globin locus control region: analysis of the 5′ DNase I hypersensitive site HS 2 in transgenic mice. Proc. Natl. Acad. Sci., 88, 1626–30.
  • Caterina, J. J., Ciavatta, D. J., Donze, D., Behringer, R. R. and Townes, T. M. (1994). Multiple elements in human beta-globin locus control region 5′ HS 2 are involved in enhancer activity and position-independent, transgene expression. Nucleic Acids Res., 22, 1006–11.
  • Liu, D., Chang, J. C., Moi, P., Liu, W., Kan, Y. W. and Curtin, P. T. (1992). Dissection of the enhancer activity of beta-globin 5′ DNase I-hypersensitive site 2 in transgenic mice. Proc. Natl. Acad. Sci., 89, 3899–903.
  • Lowrey, C. H., Bodine, D. M. and Nienhuis, A. W. (1992). Mechanism of DNase I hypersensitive site formation within the human globin locus control region. Proc. Natl. Acad. Sci., 89, 1143–7.
  • Philipsen, S., Talbot, D., Frase, P. and Grosveld, F. (1990). The beta-globin dominant control region: hypersensitive site 2. EMBO J., 9, 2159–2167.
  • Philipsen, S., Pruzina, S. and Grosveld, F. (1993). The minimal requirements for activity in transgenic mice of hypersensitive site 3 of the beta globin locus control region. EMBO J., 12, 1077–85.
  • Pruzina, S., Hanscombe, O., Whyatt, D., Grosveld, F. and Philipsen, S. (1991). Hypersensitive site 4 of the human beta globin locus control region. Nucleic Acids Res., 19, 1413–9.
  • Talbot, D., Collis, P., Antoniou, M., Vidal, M., Grosveld, F. and Greaves, D. (1989). A dominant control region from the human beta-globin locus conferring integration site-independent gene expression. Nature, 338, 352–355.
  • Talbot, D., Philipsen, S., Fraser, P. and Grosveld, F. (1990). Detailed analysis of the site 3 region of the human beta-globin dominant control region. EMBO J., 9, 2169–2178.
  • Orkin, S. H. (1995). Regulation of globin gene expression in erythroid cells. Eur. J. Biochem., 231, 271–81.
  • Pomerantz, O., Goodwin, A. J., Joyce, T. and Lowrey, C. H. (1998). Conserved elements containing NF-E2 and tandem GATA binding sites are required for erythroid-specific chromatin structure reorganization within the human beta-globin locus control region. Nucleic Acids Res., 26, 5684–91.
  • Stamatoyannopoulos, J. A., Goodwin, A., Joyce, T. and Lowrey, C. H. (1995). NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region. EMBO J., 14, 106–16.
  • Fraser, P., Hurst, J., Collis, P. and Grosveld, F. (1990). DNaseI hypersensitive sites 1, 2 and 3 of the human beta-globin dominant control region direct position-independent expression. Nucleic Acids Res., 18, 3503–3508.
  • Forrester, W. C., Novak, U., Gelinas, R. and Groudine, M. (1989). Molecular analysis of the human β-globin locus activation region. Proc. Natl. Acad. Sci., 86, 5439–5443.
  • Ellis, J., Tan-Un, K. C., Harper, A., Michalovich, D., Yannoutsos, N., Philipsen, S. and Grosveld, F. (1996). A dominant chromatin-opening activity in 5′ hyper-sensitive site 3 of the human beta-globin locus control region. EMBO J., 15, 562–8.
  • Tuan, D., Solomon, W., Cavallesco, R., Huang, G. and London, I. (1989). Characterization of a human globin enhancer element. Prog. Clin. Biol. Res., 316A, 63–72.
  • Chang, J. C., Liu, D. and Kan, Y. W. (1992). A 36-base-pair core sequence of locus control region enhances retrovirally transferred human beta-globin gene expression. Proc. Natl. Acad. Sci., 89, 3107–10.
  • Ney, P., Sorrentino, B., McDonagh, K. and Nienhuis, A. (1990). Tandem AP-l-binding sites within the human beta-globin dominant control region function as an inducible enhancer in erythroid cells. Genes Dev., 4, 993–1006.
  • Pasceri, P., Pannell, D., Wu, X. and Ellis, J. (1998). 5′ HS1 and the distal beta-globin promoter functionally interact in single copy beta-globin transgenic mice. Ann. NY Acad. Sci., 850, 377–81.
  • Li, Q. and Stamatoyannopoulos, G. (1994). Hypersensitive site 5 of the human beta locus control region functions as a chromatin insulator. Blood, 84, 1399–401.
  • Grosveld, F., Antoniou, M., Berry, M., de Boer, E., Dillon, N., Ellis, J., Fraser, P., Hurst, J., Imam, A., Meijer, D. et al. (1993). Regulation of human globin gene switching. Cold Spring Harb. Symp. Quant, Biol., 58, 7–13.
  • Hunter, E. (1997). Viral entry and receptors. In: Retroviruses, Edited by Coffin, J. M., Hughes, S. H. and Varmus, H. E., 71–121, Cold Spring Harbor Laboratory Press.
  • Brown, P. O (1997). Integration. In: Retroviruses, Edited by Coffin, J. M, Hughes, S. H and Varmus, H. E, 161–205, Cold Spring Harbor Laboratory Press.
  • Miller, A. D. (1997). Development and application of retroviral vectors. In: Retroviruses, Edited by Coffin, J.M, Hughes, S. H and Varmus, H. E, 437–473, Cold Spring Harbor Laboratory Press.
  • Wivel, N. A. and Wilson, J. M. (1998). Methods of gene delivery. Hematol. Oncol. Clin. North Am., 12, 483–501.
  • Walsh, C. E., Liu, J. M., Xiao, X., Young, N. S., Nienhuis, A. W. and Samulski, R. J. (1992). Regulated high level expression of a human gamma-globin gene introduced into erythroid cells by an adeno-associated virus vector. Proc. Natl. Acad. Sci., 89, 7257–61.
  • Hargrove, P. W., Vanin, E. F., Kurtzman, G. J. and Nienhuis, A. W. (1997). High-level globin gene expression mediated by a recombinant adeno-associated virus genome that contains the 3′ gamma globin gene regulatory element and integrates as tandem copies in erythroid cells. Blood, 89, 21–775.
  • Bertran, J., Yang, Y., Hargrove, P., Vanin, E. F. and Nienhuis, A. W. (1998). Targeted integration of a recombinant globin gene adeno-associated viral vector into human chromosome 19. Ann. NY Acad. Sci. 850, 163–77.
  • Kafri, T., Van Praag, H., Ouvang, L., Gage, F. H. and Verma, I. M. (1999). A packaging cell line for lentivirus vectors. J. Virol., 73, 576–584.
  • Cone, R., Weber-Benarous, A., Baorto, D. and Mulligan, R. (1987). Regulated expression of a complete human beta-globin gene encoded by a transmissible retrovirus vector. Mol. Cell. Biol., 7, 887–897.
  • Lerner, N., Brigham, S., Goff, S. and Bank, A. (1987). Human beta-globin gene expression after gene transfer using retroviral vectors. DNA, 6, 573–582.
  • Karlsson, S., Papayannopoulou, T., Schweiger, S., Stamatoyannopoulos, G. and Nienhuis, A. (1987). Retroviral-mediated transfer of genomic globin genes leads to regulated production of RNA and protein. Proc. Natl. Acad. Sci., 84, 2411–2415.
  • Dzerizak, E., Papayannopoulou, T. and Mulligan, R. (1988). Lineage-specific expression of a human beta-globin gene in murine bone marrow transplant recipients reconstituted with retrovirus-transduced stem cells. Nature, 331, 35–41.
  • Karlsson, S., Bodine, D., Perry, L., Papayannopoulou, T. and Nienhuis, A. (1988). Expression of the human beta-globin gene following retroviral-mediated transfer into multipotential hematopoietic stem cells. Proc. Natl. Acad. Sci., 85, 6062–6066.
  • Bender, M., Miller, A. and Gelinas, R. (1988). Expression of the human beta-globin gene after retroviral transfer into murine ervthroleukemia cells and human BFU-E cells. Mol. Cell. Biol., 8, 1725–1735.
  • Miller, A., Bender, M., Harris, E., Kaleko, M. and Gelinas, R. (1988). Design of retrovirus vectors for transfer and expression of the human beta-globin gene. J. Virol., 62, 4337–4345.
  • Sadelain, M., Wang, C. H., Antoniou, M., Grosveld, F. and Mulligan, R. C. (1995). Generation of a high-titer retroviral vector capable of expressing high levels of the human beta-globin gene. Proc. Natl. Acad. Sci. 92, 6728–32.
  • Leboulch, P., Huang, G. M., Humphries, R. K., Oh, Y. H., Eaves, C.J., Tuan, D. Y. and London, I. M. (1994). Mutagenesis of retroviral vectors transducing human beta-globin gene and beta-globin locus control region derivatives results in stable transmission of an active transcriptional structure. EMBO J., 13, 3065–76.
  • Shimotohno, K. and Temin, H. M. (1982). Loss of intervening sequences in genomic mouse α-globin DNA inserted in an infectious retroviral vector. Nature, 299, 265–268.
  • Bender, M., Gelinas, R. and Miller, A. (1989). A majority of mice show long-term expression of a human beta-globin gene after retrovirus transfer into hematopoietic stem cells. Mol. Cell. Biol., 9, 1426–1434.
  • Behringer, R., Hammer, R., Brinster, R., Palmiter, R. and Townes, T. (1987). Two 3′ sequences direct erythroid-specific expression of human beta-globin genes in transgenic mice. Proc. Natl. Acad. Sci., 84, 7056–7060.
  • Kollias, G., Hurst, J., de Boer, E. and Grosveld, F. (1987). The human beta-globin gene contains a downstream developmental specific enhancer. Nucleic Acids Res., 15, 5379–5747.
  • Trudell, M. and Costantini, F. (1987). A 3′ enhancer contributes to the stage-specific expression of the human beta-globin gene. Genes Dev., 1, 954–961.
  • Novak, U., Harris, E., Forrester, W., Groudine, M. and Gelinas, R. (1990). High level beta-globin expression after retroviral transfer of locus activation region-containing human beta-globin gene derivatives into murine erythroleukemia cells. Proc. Natl. Acad. Sci., 87, 3386–3390.
  • Ryan, T., Behringer, R., Martin, N., Townes, T., Palmiter, R. and Brinster, R. (1989). A single ervthroid-specific DNase I super-hypersensitive site activates high levels of human beta-globin gene expression in transgenic mice. Genes Dev., 3, 314–323.
  • Gelinas, R., Frazier, A. and Harris, E. (1992). A normal level of beta-globin expression in erythroid cells after retroviral transfer. Bone Marrow Transplant., 9 (suppl. 1), 154–157.
  • Plavec, I., Papayannopoulou, T., Maury, C. and Meyer, F. (1993). A human beta-globin gene fused to the human beta-globin locus control region is expressed at high levels in erythroid cells of mice engrafted with retrovirus-transduced hematopoietic stem cells. Blood, 81, 1384–92.
  • Raftopoulos, H., Ward, M., Leboulch, P. and Bank, A. (1997). Long-term transfer and expression of the human beta-globin gene in a mouse transplant model. Blood, 90, 3414–22.
  • Raftopoulos, H., Ward, M. and Bank, A. (1998). High-level transfer and long-term expression of the human beta-globin gene in a mouse transplant model. Ann. NY Acad. Sci., 850, 178–90.
  • Karpen, G. (1994). Position-effect variegation and the new biology of heterochromatin. Curr. Opin. Gen. Dev., 4, 281–291.
  • Martin, D. and Whitelaw, E. (1996). The vagaries of variegating transgenes. Bioessays, 18, 919–923.
  • Challita, P. M. and Kohn, D. B. (1994). Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo. Proc. Natl. Acad. Sci., 91, 2567–71.
  • Challita, P. M., Skelton, D., el-Khoueiry, A., Yu, X.J., Weinberg, K. and Kohn, D. B. (1995). Multiple modifications in cis elements of the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells. J. Virol., 69, 748–55.
  • Petersen, R., Kempler, G. and Barklis, E. (1991). A stem cell-specific silencer in the primerbinding site of a retrovirus. Mol. Cell. Biol., 11, 1214–1221.
  • Jahner, D. and Jaenisch. (1985). Retrovirus-induced de novo methylation of flanking host sequences correlates with gene activity. Nature, 315, 594–597.
  • Wang, L., Robbins, P. B., Carbonaro, D. A. and Kohn, D. B. (1998). Highresolution analysis of cytosine methylation in the 5 long terminal repeat of retroviral vectors. Hum. Gene Ther., 9, 2321–30.
  • Chen, W. Y., Bailey, E. C., McCune, S. L., Dong, J. Y. and Townes, T. M. (1997). Reactivation of silenced, virally transduced genes by inhibitors of histone deacetylase. Proc. Natl. Acad. Sci., 94, 5798–803.
  • Grez, M., Akgun, E., Hilberg, F. and Ostertag, W. (1990). Embryonic stem cell virus, a recombinant murine retrovirus with expression in embryonic stem cells. Proc. Natl. Acad. Sci., 87, 9202–9206.
  • Robbins, P. B., Skelton, D. C., Yu, X. J., Halene, S., Leonard, E. H. and Kohn, D. B. (1998). Consistent, persistent expression from modified retroviral vectors in murine hematopoietic stem cells. Proc. Natl. Acad. Sci., 95, 10182–7.
  • Nolta, J., Dao, M., Wells, S., Smogorzewska, E. and Kohn, D. (1996). Transduction of pluripotent human hematopoietic stem cells demonstrated by clonal analysis after engraftment in immune-deficient mice. Proc. Natl. Acad. Sci., 93, 2414–2419.
  • Cheng, L., Du, C., Lavau, C., Chen, S., Tong, J., Chen, B. P., Scollay, R., Hawley, R. G. and Hill, B. (1998). Sustained gene expression in retrovirally transduced, engrafting human hematopoietic stem cells and their lympho-myeloid progeny. Blood, 92, 83–92.
  • Kioussis, D., Vanin, E., deLange, T., Flavell, R. and Grosveld, F. (1983). Betaglobin gene inactivation by DNA translocation in γβ-thalassemia. Nature, 306, 662–666.
  • Driscoll, M., Dobkin, C. and Alter, B. (1989). γδβ thalassemia due to a de novo mutation deleting the 5′ β-globin gene activation region hypersensitive sites. Proc. Natl. Acad. Sci., 86, 7470–7474.
  • Curtin, P., Piratsu, M., Kan, Y., Gobert-Jones, J., Stephens, S. and Lehmann, H. (1985). A distant gene deletion affects β-globin in an atypical γδβ thalassemia. J. Clin. Invest., 76, 1554–1558.
  • Forrester, W. C., Epner, E., Driscoll, M. C., Enver, T., Brice, M., Papayannopoulou, T. and Groudine, M. (1990). A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. Genes Dev., 4, 1637–1649.
  • Ellis, J., Pasceri, P., Tan-Un, K. C., Wu, X., Harper, A., Fraser, P. and Grosveld, F. (1997). Evaluation of beta-globin gene therapy constructs in single copy transgenic mice. Nucleic Acids Res., 25, 1296–302.
  • Ellis, J., Osborne, C., Pannell, D., Rubin, J., Pasceri, P., Karaiskakis, A., Sukonnik, T., Wu, T. and Lipshitz, H. (1998). Breaking the code of silence (abstract). Blood Cells Mol. Dis., 24, 471.
  • Pawlik, K. M. and Townes, T. M. (1995). Autonomous, erythroid-specific DNase I hypersensitive site formed by human beta-globin locus control region (LCR) 5′ HS 2 in transgenic mice. Dev. Biol, 169, 728–32.
  • Fraser, P., Pruzina, S., Antoniou, M. and Grosveld, F. (1993). Each hypersensitive site of the human beta-globin locus control region confers a different developmental pattern of expression on the globin genes. Genes Dev., 7, 106–13.
  • Armstrong, J, and Emerson, B. (1996). NF-E2 disrupts chromatin structure at human beta-globin locus control region hypersensitive site 2 in vitro. Mol. Cell. Biol., 16, 5634–5644.
  • Gong, Q., McDowell, J. and Dean, A. (1996). Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the epsilon-globin gene in vivo by 5′ hypersensitive site 2 of the beta-globin locus control region. Mol. Cell. Biol., 16, 6055–6064.
  • Boyes, J., Omichinski, J., Clark, D., Pikaart, M. and Felsenfeld, G. (1998). Perturbation of nucleosome structure by the erythroid transcription factor GATA-1. J. Mol. Biol., 279, 529–544.
  • Iler, N., Goodwin, A., McInerney, J., Nemeth, M., Pomerantz, O., Layon, M. and Lowrey, C. (1999). Targeted remodeling of human beta-globin promoter chromatin structure produces increased expression and decreased silencing. Blood Cells Mol. Dis., 25, 47–60.
  • Hebbes, T. R., Clayton, A. L., Thorne, A. W. and Crane-Robinson, C. (1994). Core histone hyperacetylation comaps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J., 13, 1823–1830.
  • Reitman, M., Lee, E., Westphal, H. and Felsenfeld, G. (1990). Site-independent expression of the chicken beta A-globin gene in transgenic mice. Nature, 348, 749–752.
  • Chung, J. H., Whiteley, M. and Felsenfeld, G. (1993). A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell, 74, 505–14.
  • Chung, J. H., Bell, A. C. and Felsenfeld, G. (1997). Characterization of the chicken beta-globin insulator. Proc. Natl. Acad. Sci., 94, 575–80.
  • Pikaart, M. J., Recillas-Targa, F. and Felsenfeld, G. (1998). Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev., 12, 2852–62.
  • Walters, M., Fiering, S., Bouhassira, E., Scalzo, D., Goeke, S., Magis, W., Garrick, D., Whitelaw, E. and Martin, D. (1999). The chicken beta-globin 5′ HS4 boundary element blocks enhancer-meditated suppression of silencing. Mol. Cell. Biol., 19, 3714–3726.
  • Rivella, S., Callegari, J., May, C. and Sadelain, M. (1998). The insulator element cHS4 increases expression and prevents promotor methylation of integrated retroviral vectors (abstract). Blood Cells Mol. Dis., 24, 483.
  • Emery, D., Knibbe, M., Felsenfeld, G., Bell, A. and Stamatoyannopoulos, G. (1998). Investigation of genetic insulators in retrovirus vectors. Blood Cells Mol. Dis., 24, 494–495.
  • Jarman, A. P. and Higgs, D. R. (1989). Sites of attachment to the nuclear scaffold in the human alpha and beta globin gene complexes. Prog. Clin. Biol. Res., 316B, 33–45.
  • Berezney, R. and Coffey, D. (1974). Identification of a nuclear protein matrix. Biochem. Biophys. Res. Commun., 60, 1410–1417.
  • Benyajati, C. and Worcel, A. (1976). Isolation, characterization and structure of the folded interphase genome of Drosophila melanogaster. Cell, 9, 393–407.
  • Cook, P. and Brazell, I. (1975). Supercoils in human DNA. J. Cell Sci. 19, 261–279.
  • Laemmli, U., Kas, E., Poljak, L. and Adachi, Y. (1992). Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains. Curr. Opin. Genet. Dev., 2, 275–285.
  • Guyre, C., Goodwin, A., Stamatoyannopoulos, G. and Lowrey, C. (1995). Long range chromatin structure of the human β-globin gene locus (abstract). Blood, 86, 6a.
  • Yu, J., Bock, J., Slighton, J. and Villeponteau, B. (1994). A 5′ beta-globin matrix attachment region and the polyoma enhancer together confer position-independent transcription. Gene, 139, 139–145.
  • Jackson, J., Petrykowska, H., Philipsen, S., Miller, W. and Hardisson, R. (1996). Role of DNA sequences outside the cores of DNase hypersensitive sites in functions of the beta-globin locus control region. J. Biol. Chem., 271, 11871–11878.
  • Zafarana, G., Raguz, S., Pruzina, S., Grosveld, F. and Meijer, D. (1995). The regulation of human beta-globin gene expression: the analysis of hypersensitive site 5 (HS5) in the LCR. In: Molecular Biology of Hemoglobin Switching, Edited by Stamatoyannopoulos, G., 39–44, Intercept.
  • Kellum, R. and Schedl, P. (1992). A group of scs elements function as domain boundaries in an enhancerblocking assay. Mol. Cell. Biol., 12, 2424–2431.
  • Cunningham, J. M., Purucker, M. E., Jane, S. M., Safer, B., Vanin, E. F., Ney, P. A., Lowrey, C. H. and Nienhuis, A. W. (1994). The regulatory element 3′ to the A gamma globin gene binds to the nuclear matrix and interacts with special A-T-rich binding protein 1 (SATB1), an SAR/MAR-associating region DNA binding protein. Blood, 84, 1298–308.
  • Bodine, D. M. and Ley, T. J. (1987). An enhancer element lies 3′ to the human A gamma globin gene. EMBO J., 6, 2997–3004.
  • Li, Q. and Stamatoyannopoulos, J. A. (1994). Position independence and proper developmental control of gamma-globin gene expression require both a 5′ locus control region and a downstream sequence element. Mol. Cell. Biol., 14, 6087–96.
  • Stamatoyannopoulos, J. A., Clegg, C. H. and Li, Q. (1997). Sheltering of gamma globin expression from position effects requires both an upstream locus control region and a regulatory element 3′ to the A gamma-globin gene. Mol. Cell. Biol., 17, 240–7.
  • Liu, Q., Tanimoto, K., Bungert, J. and Engel, J. D. (1998). The A gamma-globin 3′ element provides no unique function(s) for human beta-globin locus gene regulation. Proc. Natl. Acad. Sci., 95, 9944–9.
  • Langdon, S. and Kaufman, R. (1998). Gamma-globin gene promoter elements required for interaction with globin enhancers. Blood, 91, 309–318.
  • Jarman, A. P., Wood, W. G., Sharpe, J. A., Gourdon, G., Ayyub, H. and Higgs, D. R. (1991). Characterization of the major regulatory element upstream of the human alpha globin gene cluster. Mol. Cell. Biol., 11, 4679–89.
  • Ren, S., Luo, X. and Atweh, G. (1993). The major regulatory element upstream of the alpha-globin gene has classical and inducible enhancer activity. Blood, 81, 1058–1066.
  • Sharpe, J. A., Wells, D. J., Whitelaw, E., Vyas, P., Higgs, D. R. and Wood, W. G. (1993). Analysis of the human alpha-globin gene cluster in transgenic mice. Proc. Natl. Acad. Sci., 90, 11262–6.
  • Ren, S., Wong, B., Li, J., Luo, X., Wong, P. and Atweh, G. (1996). Production of genetically stable high-titer retroviral vectors that carry a human gamma-globin gene under the control of the alpha-globin locus control region. Blood, 87, 2518–2524.
  • Emery, D., Morrish, F., Li, Q. and Stamatoyannopoulos, G. (1999). Analysis of gamma-globin expression cassettes in retrovirus vectors. Hum. Gene Ther., 10, 877–888.
  • Sabatino, D. E., Cline, A. P., Gallagher, P. G., Garrett, L. J., Stamatoyannopoulos, G., Forget, B. G. and Bodine, D. M. (1998). Substitution of the human beta-spectrin promoter for the human agamma-globin promoter prevents silencing of a linked human beta globin gene in transgenic mice. Mol. Cell. Biol., 18, 6634–40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.