127
Views
30
CrossRef citations to date
0
Altmetric
The Hematopoietic Microenvironment

Matrix Metalloproteinases in the Hematopoietic Microenvironment

, &
Pages 515-527 | Received 14 Jul 1999, Published online: 13 Jul 2016

References

  • Birkedal-Hansen, H., Moore, W. G. I., Bodden, M. K., Windsor, L. J., Birkedal-Hansen, B., DeCarlo, A. and Engler, J. A. (1993). Matrix metalloproteinases: a review, Crit Rev Oral Biol Med, 4, 197.
  • Birkedal-Hansen, H. (1995). Proteolytic remodeling of extracellular matrix, Curr Opin Cell Biol, 7, 728.
  • Murphy, G. (1995). Matrix metalloproteinases and their inhibitors, Acta Orthop Scan (Suppl 226), 66, 55.
  • Murphy, G. and Knä;uper, V. (1997). Relating matrix metalloproteinase structure to function: why the “hemopexin” domain?, Matrix Biol, 15, 511.
  • Stetler-Stevenson, W. G., Hewitt, R. and Corcoran, M. (1996). Matrix metalloproteinases and tumor invasion: from correlation and causality to the clinic, Sem Cancer Biol, 7, 147.
  • Chambers, A. F. and Matrisian, L. M. (1997). Changing views of the role of matrix metalloproteinases in metastasis, J Natl Cancer Inst, 89, 1260.
  • Sato, H. and Seiki, M. (1996). Membrane-type matrix metalloproteinases (MT-MMPs) in tumor metastasis, J Biochem, 119, 209.
  • Stetler-Stevenson, M., Mansoor, A., Lim, M., Fukushima, P., Kehrl, J., Marti, G., Ptaszynski, K., Wang, J. and Stetler-Stevenson, W. G. (1997). Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in reactive and neoplastic lymphoid cells, Blood, 89, 1708.
  • Kossakowska, A. E., Urbanski, S. J., Huchcroft, S. A. and Edwards, D. R. (1992). Relationship between the clinical aggressiveness of large cell immunoblastic lymphomas and expression of 92 kDa gelatinase (type IV collagenase) and tissue inhibitor of metalloproteinase-1 (TIMP-1) RNAs, Oncol Res, 4, 233.
  • Matsuzaki, A. and Janowska-Wieczorek, A. (1997). Unstimulated human acute myelogenous leukemia blasts secrete matrix metalloproteinases, J Cancer Res Clin Oncol, 123, 100.
  • Sawicki, G., Matsuzaki, A. and Janowska-Wieczorek, A. (1998). Expression of the active form of MMP-2 on the surface of leukemic cells accounts for their in vitro invasion, J Cancer Res Clin Oncol, 124, 245.
  • Janowska-Wieczorek, A., Marquez, L. A., Matsuzaki, A., Hashmi, H. R., Larratt, L., Boshkov, L., Turner, A. R., Zhang, M. C., Edwards, D. R. and Kossakowska, A. E. (1999). Expression of matrix metalloproteinases (MMP-2 and -9) and tissue inhibitors of metalloproteinases (TIMP-1 and -2) in acute myelogenous leukemia blasts: comparison with normal bone marrow cells, Brit J Haematol, 105, 402.
  • Kossakowska, A. E., Urbanski, S. J. and Edwards, D. R. (1991). Tissue inhibitor of metalloproteinases-1 (TIMP-1) RNA is expressed at elevated levels in malignant non-Hodgkin's lymphomas, Blood, 77, 2475.
  • Kossakowska, A. E., Edwards, D. R., Prusinkiewicz, C., Zhang, M. C., Guo, D., Urbanski, S. J., Grogan, T., Marquez, L. A. and Janowska-Wieczorek, A. (1999). Interleukin-6 regulation of matrix metalloproteinase (MMP-2 and MMP-9) and tissue inhibitor of metalloproteinase (TIMP-1) expression in malignant non-Hodgkin's lymphomas, Blood, 94, 2080.
  • Werb, Z. (1997). ECM and cell surface proteolysis: regulating cellular ecology, Cell, 91, 439.
  • Llano, E., Pendas, A. M., Freije, J. P., Nakano, A., Knäuper, V., Murphy, G. and Lopez-Otin, C. (1999). Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase A overexpressed in brain tumors, Cancer Res, 59, 2570.
  • Cossins, J., Dudgeon, T. J., Catlin, G., Gearing, A. J. H. and Clements, J. M. (1996). Identification of MMP-18, a putative novel human matrix metalloproteinase, Biochem Biophys Res Comm, 228, 494.
  • Pendas, A. M., Knauper, V., Puente, X. S., Llano, E., Mattei, M.-G., Apte, S., Murphy, G. and Lopez-Otin, C. (1997). Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location and tissue distribution, J Biol Chem, 272, 4281.
  • Van Wart, H. E. and Birkedal-Hansen, H. (1990). The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family, Proc Natl Acad Sci USA, 87, 5578.
  • Hasty, K. A., Pourmotabbed, T. F., Goldberg, G. I., Thompson, J. P., Spinella, D. G., Stevens, R. M. and Mainardi, C. (1994). Human neutrophil collagenase, J Biol Chem, 265, 11421.
  • Stetler-Stevenson, W. G. (1994). Progelatinase A activation during tumor cell invasion, Invasion Metastasis, 14, 259.
  • Sato, H., Takino, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E. and Seiki, M. (1994). A matrix metalloproteinase expressed on the surface of invasive tumor cells, Nature, 370, 61.
  • Imai, K., Ohuchi, E., Aoki, T., Nomura, H., Fujii, Y., Sato, H., Seiki, M. and Okada, Y. (1996). Membrane-type matrix metalloproteinase 1 is a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinses 2, Cancer Res, 56, 2707.
  • Strongin, A. Y., Collier, I., Bannikov, G., Marmer, B. L., Grants, G. A. and Goldberg, G. I. (1995). Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of membrane metalloproteinase, J Biol Chem, 270, 5331.
  • Emmert-Buck, M. R., Emonard, H. P., Corcoran, M. L., Krutzsch, H. C., Fiodart, J. M. and Stetler-Stevenson, W. G. (1995). Cell surface binding of TIMP-2 and proMMP-2/TIMP-2 complex, FEBS Lett, 364, 28.
  • Morgunova, E., Tuuttila, A., Bergmann, U., Isupov, M., Lindqvist, Y., Schneider, G. and Tryggvason, K. (1999). Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed, Science, 284, 1667.
  • Okada, A., Bellocq, J. P., Rouyer, N., Chenard, M. P., Rio, M. C., Chambon, P. and Basset, P. (1995). Membrane-type matrix metalloproteinases (MT-MMP) gene is expressed in stromal cells of human colon, breast and head and neck carcinomas, Proc Natl Acad Sci USA, 92, 2730.
  • Apte, S. S., Olsen, B. R. and Murphy, G. (1995). The gene structure of tissue inhibitor of metalloproteinase (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family, J Biol Chem, 270, 14313.
  • Greene, J., Wang, M., Liu, Y. E., Raymond, L. A., Rosen, C. and Shi, Y. E. (1996). Molecular cloning and characterization of human tissue inhibitor of metalloproteinase-4, J Biol Chem, 271, 30375.
  • Hayakawa, T. (1994). Tissue inhibitors of metalloproteinases and their cell-growth-promoting activity, Cell Struct Funct, 19, 109.
  • Avalos, B. R., Kaufman, S. E., Tomonaga, M., Williams, R. E., Golde, D. W. and Gasson, J. C. (1988). K562 cells produce and respond to human erythroid-potentiating activity, Blood, 71, 1720.
  • Stetler-Stevenson, W. G., Bersch, N. and Golde, D. W. (1992). Tissue inhibitor of metalloproteinase-2 (TIMP-2) has erythroid-potentiating activity, FEBS Letters, 296, 231.
  • Hayakawa, T., Yamashita, K., Tanzawa, K., Uchijima, E. and Iwata, K. (1992). Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells, FEBS Letters, 298, 29.
  • Edwards, D. R., Beaudry, P. P., Laing, T. D., Kowal, V., Leco, K. J., Leco, P. A. and Lim, M. S. (1996). The role of tissue inhibitors of metalloproteinases in tissue remodelling and cell growth, Int J Obesity, 20, 59.
  • Zaoui, P., Barro, C. and Morel, F. (1996). Differential expression and secretion of gelatinases and tissue inhibitor of metalloproteinase-1 during neutrophil adhesion, Biochim Biophys Acta, 1290, 101.
  • Leppert, D., Waubant, E., Galardy, R., Bunnett, N. W. and Hauser, S. L. (1995). T cell gelatinases mediate basement membrane transmigration in vitro, J Immunol, 154, 4379.
  • Shimizu, Y., Newman, W., Tanaka, Y. and Shaw, S. (1992). Lymphocyte interactions with endothelial cells, Immunol Today, 13, 106.
  • Lauffenburger, D. A. and Horwitz, A. F. (1996). Cell migration: a physically integrated molecular process, Cell, 84, 359.
  • Kjeldsen, L., Bjerrum, O. W., Hovgaard, D., Johnsen, A. H., Sehested, M. and Borregaard, N. (1992). Human neutrophil gelatinase: a marker for circulating blood neutrophils. Purification and quantitation by enzyme-linked immunosorbent assay, Eur J Haematol, 49, 180.
  • Borregaard, N., Sehested, M., Nielsen, B. S., Sebgelov, H. and Kjeldsen, L. (1995). Biosynthesis of granule proteins in normal human bone marrow cells. Gelatinase is a marker of terminal neutrophil differentiation, Blood, 85, 812.
  • Hanlon, W. A., Stolk, J., Davies, P., Humes, J. L., Mumford, R. and Bonney, R. J. (1991). rTNF alpha facilitates human polymorphonuclear leukocyte adherence to fibrinogen matrices with mobilization of specific and tertiary but not azurophilic granule markers, J Leukocyte Biol, 50, 43.
  • Masure, S., Proost, P., Van Damme, J. and Opdenakker, G. (1991). Purification and identification of 91-kDa neutrophil gelatinase. Release by the activating peptide interleukin-8, Eur J Biochem, 198, 391.
  • Welgus, H. G., Senior, R. M., Parks, W. C., Kahn, A. J., Ley, T. J., Shapiro, S. D. and Campbell, E. J. (1992). Neutral proteinase expression by human mononuclear phagocytes: a prominent role of cellular differentiation, Matrix Suppl, 1, 363.
  • Opdenakker, G., Masure, S., Grillet, B. and Van Damme, J. (1991). Cytokine-mediated regulation of human leukocyte gelatinases and role in arthritis, Lymphokine and Cytokine Res, 10, 317.
  • Wahl, S. M., Allen, J.B., Weeks, B. S., Wong, H. L. and Klotman, P. E. (1993). Transforming growth factor beta enhances integrin expression and type IV collagenase secretion in human monocytes, Proc Natl Acad Sci USA, 90, 4577.
  • Mertz, P. M., DeWitt, D. L., Stetler-Stevenson, W. G. and Wahl, L. M. (1994). Interleukin 10 suppression of monocyte prostaglandin H synthase-2. Mechanism of inhibition of prostaglandin-dependent matrix metalloproteinase production, J Biol Chem, 269, 21322.
  • Wahl, L. M. and Corcoran, M. L. (1993). Regulation of monocyte/macrophage metalloproteinase production by cytokines, J Periodontol, 64, 467.
  • Montgomery, A. M., Sabzevari, H. and Reisfeld, R. A. (1993). Production and regulation of gelatinase B by human T-cells, Biochim Biophys Acta, 1176, 265.
  • Xia, M., Leppert, D., Hauser, S. L., Sreedharan, S. P., Nelson, P. J., Krensky, A. M. and Goetzl, E. J. (1996). Stimulus specificity of matrix metalloproteinase dependence of human T cell migration through a model basement membrane, J Immunol, 156, 160.
  • Leppert, D., Hauser, S. L., Kishiyama, J. L., An, S., Zeng, L. and Goetzl, E. J. (1995). Stimulation of matrix metalloproteinase-dependent migration of T cells by eicosanoids, FASEB J, 9, 1473.
  • Johnatty, R. N., Taub, D. D., Reeder, S. P., TurcovskiCorrales, S. M., Cottam, D. W., Stephenson, T. J. and Rees, R. R. (1997). Cytokine and chemokine regulation of proMMP-9 and TIMP-1 production by human peripheral blood lymphocytes, J Immunol, 158, 2327.
  • Leppert, D., Waubant, E., Burk, M. R., Oksenberg, J. R. and Hauser, S. L. (1996). Interferon beta-1b inhibits gelatinase secretion and in vitro migration of human T cells: a possible mechanism for treatment efficacy in multiple sclerosis, Annals Neurol, 40, 846.
  • Stuve, O., Dooley, N. P., Uhm, J. H., Antel, J. P., Francis, G. S., Williams, G. and Yong, V. W. (1996). Interferon β-1b decreases the migration of T lymphocytes in vitro: effects on matrix metalloproteinase-9, Annals Neurol, 40, 853.
  • Janowska-Wieczorek, A., Marquez, L. A., Nabholtz, J.-M., Cabuhat, M. L., Montañ;o, J., Chang, H., Rozmus, J., Russell, J. A., Edwards, D. R. and Turner, A. R. (1999). Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34+ cells and their transmigration through reconstituted basement membrane, Blood, 93, 3379.
  • Simmons, P. J., Leavesley, D. I., Levesque, J. P., Swart, B. W., Haylock, D. N., To, L. B., Ashman, L. K. and Juttner, C. A. (1994). The mobilization of primitive hematopoietic progenitors into the peripheral blood, in Murphy MJ (ed): Polyfunctionality of Hemopoietic Regulators: The Metcalf Forum, Stem Cells, 12 (Suppl 1), 187.
  • Möhle, R., Moore, M. A. S., Nachman, R. L. and Rafii, S. (1997). Transendothelial migration of CD34+ and mature hematopoietic cells: an in vitro study using a human bone marrow endothelial cell line, Blood, 89, 72.
  • Papayannopoulou, T., Priestley, G. V. and Nakamoto, B. (1998). Anti-VLA4/VCAM-1-induced mobilization requires cooperative signalling through the kit/mkit ligand pathway, Blood, 91, 2231.
  • Brooks, P. C., Stromblad, S., Sanders, L. C., vonSchalscha, T. L., Aimes, R. T., Stetler-Stevenson, W. G., Quigley, J. P. and Cheresh, D. A. (1996). Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrins αvβ3, Cell, 85, 683.
  • Shimizu, Y., van Seventer, G. A., Horgan, K. J. and Shaw, S. (1990). Costimulation of proliferative responses of resting CD4+ T cells by the interaction of VLA-4 and VLA-5 with fibronectin or VLA-6 with laminin, J Immunol, 145, 59.
  • Romanic, A. M. and Madri, J. A. (1994). The induction of 72-kD gelatinase in T cells upon adhesion to endothelial cells is VCAM-1 dependent, J Cell Biol, 125, 1165.
  • Huhtala, P., Humphries, M. J., McCarthy, J. B., Tremble, P. M., Werb, Z. and Damsky, C. H. (1995). Cooperative signaling by α5β1 and α4β1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin, J Cell Biol, 129, 867.
  • Ray, J. M. and Stetler-Stevenson, W. G. (1995). Gelatinase A activity directly modulates melanoma cell adhesion and spreading, EMBO J, 14, 908.
  • Levesque, J. P., Leavesley, D. I., Niutta, S., Vardas, M. and Simmon, P. J. (1995). Cytokines increase human hematopoietic cell adhesiveness by activation of very late antigen (VLA)-4 and VLA-5 integrins, J Exp Med, 181, 1805.
  • Mayani, H., Guilbert, L., Sych, I. and Janowska-Wieczorek, A. (1992). Production of tumor necrosis factor-alpha in human long term marrow cultures from normal subjects and patients with acute myelogenous leukemia: effect of macrophage colony-stimulating factor, Leukemia, 6, 1148.
  • Gearing, A. J. H., Beckett, P., Christodoulou, M., Churchill, M., Clements, J., Davidson, A. H., Drummond, A. H., Galloway, W. A., Gilbert, R., Gordon, J. L., Leber, T. M., Mangan, M., Miller, K., Nayee, P., Owen, K., Pate, S., Thomas, W., Wells, G., Wood, L. M. and Woolley, K. (1994). Processing of tumour necrosis factor-α precursor by metalloproteinases, Nature, 370, 55.
  • McGeehan, G. M., Becherer, J. D., Vast, Jr., R. C., Boyer, C. M., Champion, B., Connolly, K. M., Conway, J. G., Furdon, P., Karp, S., Kidao, S., McElroy, A. B., Nichols, J., Pryzwansky, K. M., Schoenen, F., Sekut, L., Truesdale, A., Verghese, M., Warner, J. and Ways, J. P. (1994). Regulation of tumour necrosis factor-α processing by a metalloproteinase inhibitor, Nature, 370, 558.
  • Crowe, P. D., Walter, B. N., Mohler, K. M., Otten-Evans, C., Black, R. A. and Ware, C. F. (1995). A metalloproteases inhibitor blocks shedding of the 80-kD TNF receptor and TNF processing in T lymphocytes, J Exp Med, 181, 1205.
  • Suda, T., Takahashi, T., Golstein, P. and Nagata, S. (1993). Molecular cloning and expression of the Fas ligand: a novel member of the tumour necrosis factor family, Cell, 75, 1169.
  • Kayagaki, N., Kawasaki, A., Ebata, T., Ohmoto, H., Ikeda, S., Inoue, S., Yoshino, K., Okumura, K. and Yagita, H. (1995). Metalloproteinase-mediated release of human Fas ligand, J Exp Med, 182, 1777.
  • Hattari, K., Hirano, T., Ushiyama, C., Miyajima, H., Yamakawa, N., Ebata, T., Wada, Y., Ikeda, S., Yoshino, K., Tateno, M., Oshimi, K., Kayagaki, N., Yagita, H. and Okumura, K. (1997). A metalloproteinase inhibitor prevents lethal acute graft-versus-host disease in mice, Blood, 90, 542.
  • Tanaka, M., Suda, T., Haze, N., Nakamura, N., Sato, K., Kimura, F., Motoyoshi, K., Mizuki, M., Tagawa, S., Ohg, S., Hatake, K., Drummond, A. H. and Nagata, S. (1996). Fas ligand in human serum, Nature Med, 2, 317.
  • Cimino, G., Amadori, S., Cava, M. C., De Sanctics, V., Petti, M. C., Di Gregorio, A. O., Sgadari, C., Vegna, L., Cimino, G. and Mandelli, F. (1990). Serum interleukin-2 (IL-2), soluble IL-2 receptors and tumor necrosis factor-alpha levels are significantly increased in acute myelogenous leukemia patients, Leukemia, 5, 32.
  • Janiak, M., Hashmi, H. R. and Janowska-Wieczorek, A. (1994). Use of the Matrigel-based assay to measure the invasiveneness of leukemic cells, Exp Hematol, 22, 559.
  • Ray, J. M. and Stetler-Stevenson, W. G. (1994). The role of matrix metalloproteinases and their inhibitors in tumor invasion, metastasis and angiogenesis, Eur Respir J, 7, 2062.
  • Tryggvason, K., Hoyhtya, M. and Pyke, C. (1993). Type IV collagenases in invasive tumors, Breast Cancer Res Treat, 24, 209.
  • Goetzl, E. J., Banda, M. J. and Leppert, D. (1996). Matrix metalloproteinases in immunity, J Immunol, 156, 1.
  • Saren, P., Welgus, H. G. and Kovanen, P. T. (1996). TNF-α and IL-1β selectively induce expression of 92-kDa gelatinase by human macrophages, J Immunol, 157, 4159.
  • Adams, D. O. and Hamilton, P. A. (1987). Molecular transductional mechanisms by which IFN-gamma and other signals regulate macrophage development, Immunol Rev, 97, 5.
  • Lacraz, S., Nicod, L. P., Chicheportiche, R., Welgus, H. G. and Dayer, J.-M. (1995). IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes, J Clin Invest, 96, 2304.
  • Lacraz, S., Nicod, L. P., Galve-de Rochemonteix, B., Baumberger, C., Dayer, J.-M. and Welgus, H. G. (1992). Suppression of metalloproteinase biosynthesis in human alveolar macrophages by interleukin-4, J Clin Invest, 90, 382.
  • Shapiro, S. D., Kobayashi, D. K., Pentland, A. P. and Welgus, H. G. (1993). Induction of macrophage metalloproteinases by extracellular matrix, J Biol Chem, 268, 8170.
  • Corcoran, M. L., Kibbey, M. C., Kleinman, H. K. and Wahl, L. M. (1995). Laminin SIKVAV peptide induction of monocyte/macrophage prostaglandin E2 and matrix metalloproteinases, J Biol Chem, 270, 10365.
  • Miltenburg, A. M. M., Lacraz, S., Welgus, H. G. and Dayer, J.-M. (1995). Immobilized anti-CD3 antibody activates T cell clones to induce the production of interstitial collagenase, but not tissue inhibitor of metalloproteinases, in monocytic THP-1 cells and dermal fibroblasts, J Immunol, 154, 2655.
  • Salo, T., Makela, M., Kylmaniemi, M., Autio-Harmainen, H. and Larjava, H. (1994). Expression of matrix metalloproteinase-2 and -9 during early wound healing, Lab Invest, 70, 176.
  • Rawdanowicz, T. J., Hampton, A. L., Nagase, H., Woolley, D. E. and Salamonsen, L. A. (1994). Matrix metalloproteinases production by cultured human endometrial stromal cells: identification of interstitial collagenase, gelatinase-A, gelatinase-B and stromelysin-1 and their differential regulation by interleukin-1α and tumor necrosis factor-α, J Clin Endocrinol Met, 79, 530.
  • Rodgers, W. H., Matrisian, L. M., Giudice, L. L., Dsupin, B., Cannon, P., Svitek, C., Gorstein, F. and Osteen, K. G. (1994). Patterns of matrix metalloproteinase expression in cycling endometrium imply differential functions and regulation by steroid hormones, J Clin Invest, 94, 946.
  • Rifas, L., Halstead, L. R., Peck, W. A., Avioli, L. V. and Welgus, H. G. (1989). Human osteoblasts in vitro secrete tissue inhibitor of metalloproteinases and gelatinase but not interstitial collagenase as major cellular products, J Clin Invest, 84, 686.
  • Lyons, J. G., Birkedal-Hansen, B., Pierson, M. C., Whitelock, J. M. and Birkedal-Hansen, H. (1993). Interleukin-1 beta and transforming growth factor-alpha/epidermal growth factor induce expression of M(r) 95000 type IV collagenase/gelatinase and interstitial fibroblast-type collagenase by rat mucosal keratinocvtes, J Biol Chem, 268, 19143.
  • Kerr, L. D., Holt, J. T. and Matrisian, L. M. (1988). Growth factors regulate transin gene expression by c-fos-dependent and c-fos-independent pathways, Science, 242, 1424.
  • Edwards, D. R., Murphy, G., Reynolds, J. J., Whitham, S. E., Docherty, A. J., Angel, P. and Heath, J. K. (1987). Transforming growth factor beta modulates expression of collagenase and metalloproteinase inhibitor, EMBO J, 6, 1899.
  • Okada, Y., Morodomi, T., Enghild, J. J., Suzuki, K., Yasui, A., Nakanishi, I., Salvesen, G. and Nagase, H. (1990). Matrix metalloproteinase 2 from human rheumatoid synovial fibroblasts. Purification and activation of the precursor and enzymic properties, Eur J Biochem, 194, 721.
  • Barillé, S., Akhoundi, C., Collette, M., Mellerin, M.-P., Rapp, M.-J., Harousseau, J.-L., Bataille, R. and Amiot, M. (1997). Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells, Blood, 90, 1649.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.