58
Views
9
CrossRef citations to date
0
Altmetric
Malignancy

Tumor Suppressor Gene Aberrations in Acute Myelogenous Leukemia

&
Pages 15-25 | Received 26 Aug 1999, Accepted 12 Oct 1999, Published online: 13 Jul 2016

References

  • Finch, C.E. and Schneider, E. L. (1996). Aging and geriatrie medicine: biology of aging. In Cecil Textbook of Medicine, edited by J. C. Bennett and F. Plum, pp. 12–15, Philadelphia. W. B. Saunders Co.
  • Scheinberg, D. A., Maslak, P. and Weiss, M. (1997). Acute Leukemias. In Cancer: Principles & Practice of Oncology, edited by T. Vincent, J. DeVita, S. Hellman and S. Rosenberg, pp. 2293–2321, Cancer: Principles & Practice of Oncology. Philadelphia. Lippincott-Raven.
  • Mayer, R. J., Davis, R. B., Schiffer, C. A., Berg, D. T., Powell, B. L., Schulman, P., Omura, G. A., Moore, J. o., Mcintyre, O. R. and Frei, E. 3rd. (1994). Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B, N Engl J Med, 331, 896–903.
  • Jehn, U. (1994). Phase II-trial of double-consolidation following intensive induction treatment for improvement of survival in elderly patients with acute myeloid leukemia, Leuk Lymphoma, 12, 435–40.
  • Heyll, A., Aul, C., Gogolin, F., Runde, V., Sohngen, D., Meckenstock, G., Wolf, H. H., Zahner, J., Burk, M., Winkelmann, M. and Schneider, W. (1994). Results of conventional-dose cytosine arabinoside and idarubicin in elderly patients with acute myeloid leukemia, Ann Henmtol, 68, 279–83.
  • Ryan, D. H., Kopecky, K. J., Head, D., Grever, M. R., Shiaer, S. M., Lipschitz, D. A., Hynes, H. E., Vial, R. H., Veith, R. W. and Gumbart, C. H. (1992). Analysis of treatment failure in acute nonlymphocytic leukemia patients over fifty years of age. A Southwest Oncology Group study, Am J Clin Oncol, 15, 69–75.
  • Rowley, J. D. (1990). Recurring chromosome abnormalities in leukemia and lymphoma, Semin Hematol, 27, 122–36.
  • Smith, M. A., McCaffrey, R. P. and Karp, J. E. (1996). The secondary leukemias: challenges and research directions, J Natl Cancer Inst, 88, 407–418.
  • Radich, J. P., Kopecky, K. J., Appelbaum, F., Willman, C. L. and Collins, S. J. (1992). N-ras mutations in acute myelogenous leukemia: a review of the current literature and an update of the Southwest Oncology Group experience, Leak Lymphoma, 6, 325–334.
  • Neubauer, A., Dodge, R. K., George, S. L., Davey, F. R., Silver, R. T., Schiffer, C. A., Mayer, R. J., Ball, E. D., Wurster-Hill, D., Bloomfield, C. D. and Liu, E. T. (1994). Prognostic importance of mutations in the ras proto-oncogenes in de novo acute myeloid leukemia, Blood, 83, 1603–11.
  • Coghlan, D. W., Morley, A. A., Matthews, J. P. and Bishop, J. F. (1994). The incidence and prognostic signficance of mutations in codon 13 on the N-ras gene in Acute Myeloid Leukemia, Leukemia, 8, 1682–1687.
  • Fourth International Workshop on Chromosomes in Leukemia. (1984). Cancer Genet Cytogenet, 11, 249–360.
  • Kiyoi, H., Naoe, T., Nakano, Y., Yokota, S., Minami, S., Miyawaki, S., Asou, N., Kuriyama, K., Jinnai, I., Shimazaki, C., Akiyama, H., Saito, K., Oh, H., Motoji, T., Omoto, E., Saito, H., Ohno, R. and Ueda, R. (1999). Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia, Blood, 93, 3074–80.
  • Brashem-Stein, C., Flowers, D. A. and Bernstein, I. D. (1996). Regulation of colony forming cell generation by flt-3 ligand, Br J Haematol, 94, 17–22.
  • Chang, F., Syrjänen, S. and Syränen, K. (1995). Implications of the p53 tumorsuppressor gene in clinical oncology, J Clin Oncol, 13, 1009–1022.
  • Shieh, S.-Y., Ikeda, M., Taya, Y. and Prives, C. (1997). DNA damage-induced phosphorylation pf p53 alleviates inhibition by MDM2, Cell, 91, 325–334.
  • Levine, A. J. (1997). p53, the cellular gatekeeper for growth and division, Cell, 88, 323–331.
  • Banker, D. E., Groudine, M., Norwood, T. and Appelbaum, F. R. (1997). Measurement of spontaneous and therapeutic agent-induced apoptosis with BCL-2 protein expression in acute myeloid leukemia, Blood, 89, 243–55.
  • Felix, C. A., Hosier, M. R., Provisor, D., Salhany, K., Sexsmith, E. A., Slater, D. J., Cheung, N. K., Winick, N. J., Strauss, E. A., Heyn, R., Lange, B. J. and Malkin, D. (1996). The p53 gene in pediatric therapyrelated leukemia and myelodysplasia, Blood, 87, 4376–81.
  • Ludwig, L., Schulz, A. S., Janssen, J. W. G., Grünewald, K. and Bartram, C. R. (1992). P53 mutations in Myelodysplastic Syndromes, Leukemia, 6, 1302–1304.
  • Abo, J., Inokuchi, K., Dan, K. and Nomura, T. (1993). p53 and N-ras mutations in two new leukemia cell lines established from a patient with multilineage CD7-positive acute leukemia, Blood, 82, 2829–2836.
  • Sugimoto, K., Hirano, N., Toyoshima, H., Chiba, S., Mano, H., Takaku, F., Yazaki, Y. and Hirai, H. (1993). Mutations of the p53 gene in Myelodysplastic Syndrome (MDS) and MDS-derived leukemia, Blood, 81, 3022–3026.
  • Fenaux, P., Jonveaux, P., Quiquandon, I., Laï, J. L., Pignon, J. M., Loucheux-Lefebvre, M. H., Bauters, F., Berger, R. and Kerckaert, J. P. (1991). P53 gene mutations in acute myeloid leukemia with 17p monosomy, Blood, 78, 1652–1657.
  • Zhang, W., Hu, G., Estey, E., Hester, J. and Deisseroth, A. (1992). Altered conformation of the p53 protein in myeloid leukemia cells and mitogen-stimulated normal blood cells, Oncogene, 7, 1645–1647.
  • Parry, T. E. (1997). The non-random distribution of point mutations in leukaemia and myelodysplasia—a possible pointer to their aetiology, Leukemia Res, 21, 559–74.
  • Sakai, E. and Tsuchida, N. (1992). Most human squamous cell carcinomas in the oral cavity contain mutated p53 tumor-suppressor genes, Oncogene, 7, 927–33.
  • Nylander, K., Nilsson, P., Mehle, C. and Roos, G. (1995). p53 mutations, protein expression and cell proliferation in squamous cell carcinomas of the head and neck, Br J Cancer, 71, 826–830.
  • D'Amico, D., Carbone, D., Mitsudomi, T., Nau, M., Fedorko, J., Russell, E., Johnson, B., Buchhagen, D., Bodner, S., Phelps, R., Gazdar, A. and Minna, J. (1992). High frequency of somatically acquired p53 mutations in small-cell lung cancer cell lines and tumors, Oncogene, 7, 339–46.
  • Fagin, J. A., Matsuo, K., Karmakar, A., Chen, D. L., Tang, S.-H. and Koeffler, H. P. (1993). High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas, J Clin Invest, 91, 179–184.
  • Lassus, P., Ferlin, M., Piette, J. and Hibner, U. (1996). Anti-apoptotic activity of low levels of wild-type p53, EMBO J, 15, 4566–73.
  • Venkatachalam, S., Shi, Y. P., Jones, S. N., Vogel, H., Bradley, A., Pinkel, D. and Donehower, L. A. (1998). Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation, EMBO J, 17, 4657–67.
  • Wattel, E., Preudhomme, C., Hecquet, B., Vanrumbeke, M., Quesnel, B., Dervite, I., Morel, P. and Fenaux, P. (1994). p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies, Blood, 84, 3148–57.
  • Head, D. R. (1996). Revised classification of acute myeloid leukemia, Leukemia, 10, 1826–31.
  • Kaneko, H., Misawa, S., Horiike, S., Nakai, H. and Kashima, K. (1995). TP53 mutations emerge at early phase of myelodysplastic syndrome and are associated with complex chromosomal abnormalities, Blood, 85, 2189–93.
  • Kelman, Z., Prokocimer, M., Pellar, S., Kahn, Y., Rechavi, G., Manor, Y., Cohen, A. and Rotter, V. (1989). Rearrangements in the p53 gene in Philadelphia chromosome positive chronic myelogenous leukemia, Blood, 74, 2318–2324.
  • Ahuja, H., Bar-Eli, M., Advani, S. H., Benchimol, S. and Cline, M. J. (1989). Alterations in the p53 gene and the clonal evolution of the blast crisis of chronic myelocytic leukemia, Proc. Natl. Acad. Sci. USA, 86, 6783–6787.
  • Sameshima, Y., Akiyama, T., Mori, N., Mizoguchi, H., Toyoshima, K., Sugimura, T., Terada, M. and Yokota, J. (1990). Point mutation of the p53 gene resulting in splicing inhibition in small cell lung carcinoma, Biochem Biophys Res Commun, 173, 697–703.
  • Lai, M. Y., Chang, H. C., Li, H. P., Ku, C. K., Chen, P.J., Sheu, J. C., Huang, G. T., Lee, P. H. and Chen, D. S. (1993). Splicing mutations of the p53 gene in human hepatocellular carcinoma, Cancer Res, 53, 1653–6.
  • Jolly, K. W., Malkin, D., Douglass, E. C., Brown, T. F., Sinclair, A. E. and Look, A. T. (1994). Splice-site mutation of the p53 gene in a family with hereditary breast-ovarian cancer, Oncogene, 9, 97–102.
  • Kressner, U., Inganas, M., Byding, S., Blikstad, I., Pahlman, L., Glimelius, B. and Lindmark, G. (1999). Prognostic value of p53 genetic changes in colorectal cancer, J Clin Oncol, 17, 593–9.
  • Zhang, W. and Deisseroth, A. B. (1994). Conformational change of p53 protein in growth factor-stimulated human myelogenous leukemia cells, Leuk Lymphoma, 14, 251–255.
  • Schneider-Stock, R., Oda, Y. and Roessner, A. (1997). New splicing mutation in exon 5–6 of the p53-tumor suppressor gene in a malignant schwannoma, Hum Mutat, 9, 91–4.
  • Wolf, D. and Rotter, V. (1984). Inactivation of p53 gene expression by an insertion of Moloney murine leukemia virus-like DNA sequence, Mol Cell Biol, 4, 1402–1410.
  • Mowat, M., Cheng, A., Kimura, N., Bernstein, A. and Benchimo, S. (1985). Rearrangements of the cellular p53 gene in erythroleukaemic cells transformed by Friend virus, Nature, 314, 633–636.
  • Szekely, L., Selivanova, G., Magnusson, K. P., Klein, G. and Wiman, K. G. (1993). EBNA-5, and Epstein-Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53, Proc Natl Acad Sci USA, 90, 5455–5459.
  • Sarnow, P., Ho, Y. S., Williams, J. and Levine, A. J. (1982). Adenovirus E1b-58kd tumor antigen and SV40 large tumor antigen are physically asociated with the same 54 kd cellular protein in transformed cells, Cell, 28, 387–394.
  • Oliner, J. D., Kinzler, K. W., Meltzer, P. S., George, D. L. and Vogelstein, B. (1992). Amplification of a gene encoding a p53-associated protein in human sarcomas, Nature, 358, 80–83.
  • Leach, F. S., Tokino, T., Meltzer, P., Burrell, M., Oliner, J. D., Smith, S., Hill, D. E., Sidransky, D., Kinzler, K. W. and Vogelstein, B. (1993). p53 mutation and MDM2 amplification in human soft tissue sarcomas, Cancer Res, 53, 2231–2234.
  • Sheikh, M. S., Shao, Z.-M., Hussain, A. and Fontana, J. (1993). The p53-binding protein MDM2 gene is differentially expressed in human breast carcinoma, Cancer Res, 53, 3226–3228.
  • Bueso-Ramos, C. E., Yang, Y., deLeon, E., McCown, P., Stass, S. A. and Albitar, M. (1993). The human MDM-2 oncogene is overexpressed in leukemias, Blood, 82, 2617–2623.
  • Momand, J., Zambetti, G. P., Olson, D. C., George, D. and Levine, A. J. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transformation, Cell, 69, 1237–1245.
  • Kaghad, M., Bonnet, H., Yang, A., Creancler, L., Biscan, J.-C., Valent, A., Minty, A., Chalon, P., Lelias, J.- M., Durmont, X., Ferrara, P., McKeon, F. and Caput, D. (1997). Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other cancers, Cell, 90, 809–819.
  • Brodeur, G. M., Sekhon, G. and Goldstein, M. N. (1977). Chromosomal aberrations in human neuroblastomas, Cancer, 40, 2256–63.
  • Dracopoli, N. C., Harnett, P., Bale, S. J., Stanger, B. Z., Tucker, M. A., Housman, D. E. and Kefford, R. F. (1989). Loss of alleles from the distal short arm of chromosome 1 occurs late in melanoma tumor progression, Proc Natl Acad Sci USA, 86, 4614–8.
  • Sozzi, G., Bertoglio, M. G., Pilotti, S., Rilke, F., Pierotti, M. A. and Della Porta, G. (1988). Cytogenetic studies in primary and metastatic neuroendocrine Merkel cell carcinoma, Cancer Genet Cytogenet, 30, 151–8.
  • Genuardi, M., Tsihira, H., Anderson, D. E. and Saunders, G. F. (1989). Distal deletion of chromosome Ip in ductal carcinoma of the breast, Am J Hum Genet, 45, 73–82.
  • Clurman, B. and Groudine, M. (1997). Killer in search of a motive?, Nature, 389, 122–123.
  • Jost, C. A., Marin, M. C. and Kaelin, W. G. Jr., (1997). p73 is a human p53-related protein that can induce apoptosis, Nature, 389, 191–4.
  • Mai, M., Yokomizo, A., Qian, C., Yang, P., Tindall, D. J., Smith, D. I. and Liu, W. (1998). Activation of p73 silent allele in lung cancer, Cancer Res, 58, 2347–9.
  • Nomoto, S., Haruki, N., Kondo, M., Konishi, H. and Takahashi, T. (1998). Search for mutations and examination of allelic expression imbalance of the p73 gene at 1p36.33 in human lung cancers, Cancer Res, 58, 1380–3.
  • Mai, M., Huang, H., Reed, C., Qian, C., Smith, J. S., Alderete, B., Jenkins, R., Smith, D. I. and Liu, W. (1998). Genomic organization and mutation analysis of p73 in oligodendrogliomas with chromosome 1 p-arm deletions, Genomics, 51, 359–63.
  • Sunahara, M., Ichimiya, S., Nimura, Y., Takada, N., Sakiyama, S., Sato, Y., Todo, S., Adachi, W., Amano, J. and Nakagawara, A. (1998). Mutational analysis of the p73 gene localized at chromosome 1p36.3 in colorectal carcinomas, Int J Oncol, 13, 319–23.
  • Takahashi, H., Ichimiya, S., Nimura, Y., Watanabe, M., Furusato, M., Wakui, S., Yatani, R., Aizawa, S. and Nakagawara, A. (1998). Mutation, allelotyping, and transcription analyses of the p73 gene in prostatic carcinoma, Cancer Res, 58, 2076–7.
  • Fero, M. L., Randel, E., Gurley, K. E., Roberts, J. M. and Kemp, C. J. (1998). The murine gene p27Kip1 is haploinsufficient for tumor suppression, Nature, 396, 177–180.
  • Lee, W. H., Bookstein, R., Hong, F., Young, L. J., Shew, J. Y. and Lee, E. Y. (1987). Human retinoblastoma susceptibility gene: cloning, identification, and sequence, Science, 235, 1394–9.
  • Ludlow, J. W., Shon, J., Pipas, J. M., Livingston, D. M. and DeCaprio, J. A. (1990). The retinoblastoma susceptibility gene product undergoes cell cycle-dependent dephosphorylation and binding to and release from SV40 large T, Cell, 60, 387–96.
  • Shew, J. Y., Ling, N., Yang, X. M., Fodstad, O. and Lee, W. H. (1989). Antibodies detecting abnormalities of the retinoblastoma susceptibility gene product (pp110RB) in osteosarcomas and synovial sarcomas, Oncogene Res, 4, 205–14.
  • Toguchida, J., Ishizaki, K., Sasaki, M. S., Nakamura, Y., Ikenaga, M., Kato, M., Sugimot, M., Kotoura, Y. and Yamamuro, T. (1989). Preferential mutation of paternally derived RB gene as the initial event in sporadic osteosarcoma, Nature, 338, 156–8.
  • Huang, H. J., Yee, J. K., Shew, J. Y., Chen, P. L., Bookstein, R., Friedmann, T., Lee, E. Y. and Lee, W. H. (1988). Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells, Science, 242, 1563–6.
  • Lee, E. Y., Bookstein, R., Young, L. J., Lin, C. J., Rosenfeld, M. G. and Lee, W. H. (1988). Molecular mechanism of retinoblastoma gene inactivation in retinoblastoma cell line Y79, Proc Natl Acad Sci USA, 85, 6017–21.
  • Lee, E. Y., To, H., Shew, J. Y., Bookstein, R., Scully, P. and Lee, W. H. (1988). Inactivation of the retinoblastoma susceptibility gene in human breast cancers, Science, 241, 218–21.
  • Harbour, J. W., Lai, S. L., Whang-Peng, J., Gazdar, A. F., Minna, J. D. and Kaye, F. J. (1988). Abnormalities in structure and expression of the human retinoblastoma gene in SCLC, Science, 241, 353–7.
  • Goddard, A. D., Balakier, H., Canton, M., Dunn, J., Squire, J., Reyes, E., Becker, A., Phillips, R. A. and Gallie, B. L. (1988). Infrequent genomic rearrangement and normal expression of the putative RB1 gene in retinoblastoma tumors, Mol Cell Biol, 8, 2082–8.
  • Toguchida, J., Ishizaki, K., Sasaki, M. S., Ikenaga, M., Sugimoto, M., Kotoura, Y. and Yamamuro, T. (1988). Chromosomal reorganization for the expression of recessive mutation of retinoblastoma susceptibility gene in the development of osteosarcoma, Cancer Res, 48, 3939–43.
  • Mendoza, A. E., Shew, J. Y., Lee, E. Y., Bookstein, R. and Lee, W. H. (1988). A case of synovial sarcoma with abnormal expression of the human retinoblastoma susceptibility gene, Hum Pathol, 19, 487–9.
  • Ahuja, H. G., Jat, P. S., Foti, A., Bar-Eli, M. and Cline, M. J. (1991). Abnormalities of the retinoblastoma gene in the pathogenesis of acute leukemia, Blood, 78, 3259–68.
  • Jamal, R., Gale, R. E., Shaun, N., Thomas, B., Wheatley, K. and Linch, D. C. (1996). The retinoblastoma gene (rb1) in acute myeloid leukaemia: analysis of gene rearrangements, protein expression and comparison of disease outcome, Br J Haematol, 94, 342–51.
  • Barbosa de Melo, M., Costa, F. F., Saad, S. T., Lorand-Metze, I., Bordin, S. and Ahmad, N. N. (1998). Molecular analysis of the retinoblastoma (RB1) gene in acute myeloid leukemia patients, Leukemia Res, 22, 787–92.
  • Wallace, M. R., Marchuk, D. A., Andersen, L. B., Letcher, R., Odeh, H. M., Saulino, A. M., Fountain, J. W., Brereton, A., Nicholson, J., Mitchell, A. L., et al. (1990). type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients, Science, 249, 181–6.
  • Li, Y., O'Connell, P., Breidenbach, H. H., Cawthon, R., Stevens, J., Xu, G., Neil, S., Robertson, M., White, R. and Viskochil, D. (1995). Genomic organization of the neurofibromatosis 1 gene (NF1), Genomics, 25, 9–18.
  • Matsui, I., Tanimura, M., Kobayashi, N., Sawada, T., Nagahara, N. and Akatsuka, J. (1993). Neurofibromatosis type 1 and childhood cancer, Cancer, 72, 2746–54.
  • Xu, G. F., Lin, B., Tanaka, K., Dunn, D., Wood, D., Gesteland, R., White, R., Weiss, R. and Tamanoi, F. (1990). The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae, Cell, 63, 835–41.
  • Hettich, L. and Marshall, M. (1994). Structural Analusis of the Ras GTPase Activating Protein catalytic domain by semirandom mutagenesis: implications for a mechanism of interaction with Ras-GTP, Cancer Res, 54, 5438–5444.
  • Martin, G. A., Viskochil, D., Bollag, G., McCabe, P. C., Crosier, W. J., Haubruck, H., Conroy, L., Clark, R., O'Connell, P., Cawthon, R. M., Innis, M. A. and McCormick, F. (1990). The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21, Cell, 63, 843–9.
  • Largaespada, D. A., Brannan, C. I., Jenkins, N. A. and Copeland, N. G. (1996). Nf1 deficiency causes Rasmediated granulocyte/macrophage colony stimulating factor hypersensitivity and chronic myeloid leukaemia, Nat Genet, 12, 137–43.
  • Side, L., Taylor, B., Cayouette, M., Conner, E., Thompson, P., Luce, M. and Shannon, K. (1997). Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders, N Engl J Med, 336, 1713–20.
  • Niemeyer, C. M., Arico, M., Basso, G., Biondi, A., Cantu Rajnoldi, A., Creutzig, U., Haas, O., Harbott, J., Hasle, H., Kerndrup, G., Locatelli, F., Mann, G., Stollmann-Gibbels, B., van't Veer-Korthof, E. T., van Wering, E. and Zimmermann, M. (1997). Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS), Blood, 89, 3534–43.
  • Li, Y., Bollag, G., Clark, R., Stevens, J., Conroy, L., Fults, D., Ward, K., Friedman, E., Samowitz, W., Robertson, M., Bradley, P., McCormick, F., White, R. and Cawthon, R. (1992). Somatic mutations in the neurofibromatosis 1 gene in human tumors, Cell, 69, 275–81.
  • Luria, D., Avigad, S., Cohen, I. J., Stark, B., Weitz, R. and Zaizov, R. (1997). p53 mutation as the second event in juvenile chronic myelogenous leukemia in a patient with neurofibromatosis type 1, Cancer, 80, 2013–8.
  • Lee, Y. Y., Kim, W. S., Bang, Y. J., Jung, C. W., Park, S., Yoon, W. J., Cho, K. S., Kim, I. S., Jung, T. J., Choi, I. Y., Kim, B. K., Kim, N. K. and Koeffler, H. P. (1995). Analysis of mutations of neurofibromatosis type 1 gene and N-ras gene in acute myelogenous leukemia, Stem Cells, 13, 556–63.
  • Preudhomme, C., Vachee, A., Quesnel, B., Wattel, E., Cosson, A. and Fenaux, P. (1993). Rare occurrence of mutations of the FLR exon of the neurofibromatosis 1 (NF1) gene in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), Leukemia, 7, 1071.
  • Kamijo, T., Zindy, F., Roussel, M. F., Quelle, D. E., Downing, J. R., Ashmun, R. A., Grosveld, G. and Sherr, C. J. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF, Cell, 91, 649–59.
  • Hall, M. and Peters, G. (1996). Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer, Advances in Cancer Research, 68, 67–108.
  • Kamb, A., Gruis, N. A., Weaver-Feldhaus, J., Liu, Q., Harshman, K., Tavtigian, S. V., Stockert, E., Day, R. S., 3rd, Johnson, B. E. and Skolnick, M. H. (1994). A cell cycle regulator potentially involved in genesis of many tumor types, Science, 264, 436–40.
  • Serrano, M., Hannon, G. J. and Beach, D. (1993). A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4, Nature, 366, 704–707.
  • Quelle, D. E., Zindy, F., Ashmun, R. A. and Sherr, C. J. (1995). Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest, Cell, 83, 993–1000.
  • Mao, L., Merlo, A., Bedi, G., Shapiro, G. I., Edwards, C. D., Rollins, B. J. and Sidransky, D. (1995). A novel p16INK4A transcript, Cancer Res, 55, 2995–7.
  • Stone, S., Jiang, P., Dayananth, P., Tavtigian, S. V., Katcher, H., Parry, D., Peters, G. and Kamb, A. (1995). Complex structure and regulation of the P16 (MTS1) locus, Cancer Res, 55, 2988–94.
  • Hannon, G. J. and Beach, D. (1994). p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest, Nature, 371, 257–61.
  • Kamijo, T., Weber, J. D., Zambetti, G., Zindy, F., Roussel, M. F. and Sherr, C. J. (1998). Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2, Pro Natl Acad Sci USA, 95, 8292–7.
  • Della Valle, V., Duro, D., Bernard, O. and Larsen, C. J. (1997). The human protein p19ARF is not detected in hemopoietic human cell lines that abundantly express the alternative beta transcript of the p16INK4a/MTS1 gene, Oncogene, 15, 2475–81.
  • Bates, S., Phillips, A. C., Clark, P. A., Scott, F., Peters, G., Ludwig, R. L. and Vousden, K. H. (1998). p14ARF links the tumour suppressor RB and p53, Nature, 395, 124–125.
  • Palmero, I., Pantoja, C. and Serrano, M. (1998). p19ARF links the tumour suppressor p53 to RAS, Nature, 395, 125–126.
  • Radfar, A., Unnikrishnan, I., Lee, H. W., DePinho, R. A. and Rosenberg, N. (1998). p19(Arf) induces p53-dependent apoptosis during abelson virus-mediated pre-B cell transformation, Proc. Natl. Acad. Sci. USA, 95, 13194–9.
  • Herman, J. G., Jen, J., Merlo, A. and Baylin, S. B. (1996). Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B, Cancer Res, 56, 722–7.
  • Nakamaki, T., Kawamata, N., Schwaller, J., Tobler, A., Fey, M., Pakkala, S., Lee, Y. Y., Kim, B. K., Fukuchi, K., Tsuruoka, N., Kahan, J., Miller, C. W. and Koeffler, H. P. (1995). Structural integrity of the cyclin-dependent kinase inhibitor genes, p15, p16 and p18 in myeloid leukaemias, Br J Haematol, 91, 139–49.
  • Sill, H., Goldman, J. M. and Cross, N. C. (1995). Homozygous deletions of the p16 tumor-suppressor gene are associated with lymphoid transformation of chronic myeloid leukemia, Blood, 85, 2013–6.
  • Drexler, H. G. (1998). Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells, Leukemia, 12, 845–59.
  • Zion, M., Ben-Yehuda, D., Avraham, A., Cohen, O., Wetzler, M., Melloul, D. and Ben-Neriah, Y. (1994). Progressive de novo DNA methylation at the bcr-abl locus in the course of chronic myelogenous leukemia, Proc Natl Acad Sci USA, 91, 10722–10726.
  • Litz, C. E., Vos, J. A. and Copenhaver, C. M. (1996). Aberrant methylation of the major breakpoint cluster region in chronic myeloid leukemia, Blood, 88, 2241–2249.
  • Felgner, J., Kreipe, H., Heidorn, K., Jaquet, K., Zschunke, F., Radzun, H. J. and Parwaresch, M. R. (1991). Increased methylation of the c-fms protooncogene in acute myelomonocytic leukemias, Pathobiology, 59, 293–8.
  • Wu, H.-K., Weksberg, R., Minden, M. D. and Squire, J. A. (1997). Loss of imprinting of human insulin-like growth factor II gene, IGF2, in acute myeloid leukemia, Biochem Biophys Res Commun, 231, 466–472.
  • Ogawa, S., Hangaishi, A., Miyawaki, S., Hirosawa, S., Miura, Y., Takeyama, K., Kamada, N., Ohtake, S., Uike, N., Shimazaki, C., Toyama, K., Hirano, M., Mizoguchi, H., Kobayashi, Y., Shinpe, F., Saito, M., Emi, N., Yazaki, Y., Ueda, R. and Hirai, H. (1995). Loss of the cyclin-dependent kinase 4-inhibitor (p16; MTS1) gene is frequent in and highly specific to lymphoid tumors in primary human hematopoietic malignancies, Blood, 86, 1548–56.
  • Sill, H., Aguiar, C. T., Schmidt, H., Hochhaus, A., Goldman, J. M. and Cross, N. C. (1996). Mutational analysis of the p15 and p16 genes in acute leukaemias, Br J Haematol, 92, 681–3.
  • Tsubari, M., Tiihonen, E. and Laiho, M. (1997). Cloning and characterization of p10, an alternatively spliced form of p15 cyclin-dependent kinase inhibitor, Cancer Res, 57, 2966–2973.
  • Sakai, A., Thieblemont, C., Wellmann, A., Jaffe, E. S. and Raffeld, M. (1998). PTEN gene alterations in lymphoid neoplasms, Blood, 92, 3410–5.
  • Nakahara, Y., Nagai, H., Kinoshita, T., Uchida, T., Hatano, S., Murate, T. and Saito, H. (1998). Mutational analysis of the PTEN/MMAC1 gene in non-Hodgkin's lymphoma, Leukemia, 12, 1277–80.
  • Wang, Z. J., Taylor, F., Churchman, M., Norbury, G. and Tomlinson, I. (1998). Genetic pathways of colorectal carcinogenesis rarely involve the PTEN and LKB1 genes outside the inherited hamartoma syndromes, Am J Pathol, 153, 363–6.
  • Bergmann, L., Miething, C., Maurer, U., Brieger, J., Karakas, T., Weidmann, E. and Hoelzer, D. (1997). High levels of Wilms' tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome, Blood, 90, 1217–25.
  • Banker, D. E., Groudine, M., Willman, C. L., Norwood, T. and Appelbaum, F. R. (1998). Cell cycle perturbations in acute myeloid leukemia samples following in vitro exposures to therapeutic agents, Leukemia Res, 22, 221–39.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.