64
Views
2
CrossRef citations to date
0
Altmetric
Hematopoiesis

Megakaryocytic Maturation is Regulated by Maintaining a Balance Against Cytokine Induced-cell Proliferation: Steel Factor Retards Thrombopoietin-induced Megakaryocytic Differentiation While Synergistically Stimulating Mitogenesis

, , , , , , , , , , & show all
Pages 233-246 | Received 22 Nov 1999, Accepted 09 Jan 2000, Published online: 13 Jul 2016

References

  • Ihle, J. N. (1995). Cytokine receptor signaling. Nature, 377, 591–594.
  • Dong, F., van Buitenen, C., Pouwels, K., Hoefsloot, L. H., Lowenberg, B. and Touw, I. P. (1993). Distinct cytoplasmic region of the human granulocyte colony-stimulating factor receptor involved induction of proliferation and maturation. Mol. Cell. Biol., 13, 7774–7781.
  • Fukunaga, R., Ishizaka-Ikeda, E. and Nagata, S. (1993). Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Cell, 74, 1079–1087.
  • Yamanaka, Y., Nakajima, K., Fukada, T., Hibi, M. and Hirano, T. (1996). Differentiation and growth arrest signals are generated through the cytoplasmic region of gp130 that is essential for STAT3 activation. EMBO J., 15, 1557–1567.
  • Yoshikawa, A., Murakami, H. and Nagata, S. (1996). Distinct signal transduction through the tyrosine-obtaining domains of the granulocyte colony-stimulating factor receptor. EMBO J., 14, 5288–5296.
  • Koay, D. C. and Satorelli, A. C. (1999). Functional differentiation signals mediated by distinct regions of the cytoplasmic domain of the granulocyte colony-stimulation factor receptor. Blood, 93, 3774–3784.
  • Alexander, W. S., Maurer, A. B., Novak, U. and Harrison-Smith, M. (1996). Tyrosine-599 of the Mpl receptor is required for She phosphorylation and the induction of cellular differentiation. EMBO J., 23, 6531–6540.
  • Porteu, F., Rouye, M.-C., Cocaul, L., Benit, L., Charon, M., Picard, F., Gisselbreht, S., Souyri, M. and Dusanter-Fourt, I. (1996). Functional region of the mouse thrombopoietin receptor cytoplasmic domain: Evidence for a critical region which is involved in differentiation and can be complemented by erythropoietin. Mol. Cell. Biol., 16, 2473–2482.
  • Iwatsuki, K., Endo, T., Misawa, H., Yokouchi, M., Matsumoto, A., Ohtsubo, M., Mori, K. J. and Yoshimura, A. (1997). STAT5 activation correlates with erythropoietin receptor-mediated erythroid differentiation of an erythroleukemia cell line. J. Biol. Chem., 272, 8149–8152.
  • Socolovsky, M., Dusanter-Fourt, I. and Lodish, H. F. (1997). The prolactin receptor and severely truncated erythropoietin receptors support differentiation of erythroid progenitors. J. Biol. Chem., 272, 14009–14012.
  • Dubart, A., Feger, A. D. F., Lacout, C., Goncalves, F., Vainchenker, W. and Dumenil, D. (1994). Murine puluripotent hematopoietic progenitors constitutively expressing a normal erythropoietin receptor proliferate in response to erythropoietin without preferential erythroid cell differentiation. Mol. Cell. Biol., 14, 4834–4842.
  • Takagi, M., Hara, T., Ichihara, M., Takatsu, K. and Miyajima, A. (1995). Multi-colony stimulating activity of interleukin 5 (IL-5) on hematopoietic progenitors from transgenic mice that express IL-5 receptor α subunit constitutively. J. Exp. Med., 181, 889–899.
  • Nishijima, I., Nakahata, T., Hirabayashi, Y., Inoue, T., Kurata, H., Miyajima, A., Hayashi, N., Iwakura, Y., Arai K. and Yokota, T. (1996). A human GM-CSF receptor expressed in transgenic mice stimulates proliferation and differentiation of hemopoietic progenitors to all lineages in response to human GM-SCF. Mol. Biol. Cell., 6, 497–508.
  • Yang, F. C., Watanabe, S., Tsuji, K., Xu, M. J., Kaneko, A., Ebigara, Y. and Nakahata, T. (1998). Human granulocyte colony-stimulating factor (G-CSF) stimulates the in vitro and in vivo development but not commitment of primitive multipotential progenitors from transgenic mice expressing the human G-CSF receptor. Blood, 92, 4632–4640.
  • Jacob, J., Haug, J. S., Raptis, S. and Link, D. C. (1998). Specific signals generated by the cytoplasmic domain of the granulocyte colony-stimulating factor (G-CSF) receptor are not required for G-CSF-dependent granulocytic differentiation. Blood, 92, 353–361.
  • Till, J. E., McCulloch, E. A., and Siminovitch, L. (1964). A stochastic model of stem cell proliferation, based on the growth of the growth of spleen colony-forming cells. Proc. Natl. Acad. Sci. USA., 51, 29–31.
  • Nakahata, T., Gross, A. J. and Ogawa, M. (1982). A stochastic model of self-renewal and commitment to differentiation of the primitive hemopoietic stem cells in culture. J. Cell. Physiol., 113, 455–458.
  • Broxmeyer, H. E., Maze, R., Miyazawa, K., Carow, C., Hendrie, P. C., Cooper, S., Hangoc, G., Vadhan-Raji, S. and Lu, L. (1991). The kit receptor and its ligand Steel factor as regulators of hematopoiesis. Cancer Cells, 3, 480–487.
  • Kaushansky, K. (1995). Thrombopoietin: The primary regulator of platelet production. Blood, 86, 419–431.
  • Vigon, I., Mornon, J.-P., Cocault, L., Mitjavila, M.-T., Tambourin, P., Gisselbrecht, S. and Souyri, M. (1992). Molecular cloning and characterization of MPL, the human homolog of the v-mpl oncogene: Identification of a member of the hematopoietic growth factor receptor superfamily. Proc. Natl. Acad. Sci. USA., 89, 5640–5644.
  • Cosman, D. (1993). The hematopoietin receptor superfamily. Cytokine, 5, 95–106.
  • Kaushansky, K., Lok, S., Holly, R. D., Broudy, V. C., Lin N., Bailey, M. C., Forstrom, J. W., Buddie, M. M., Oort, P. J. and Hagen, F. S. (1994). Promotion of megakaryocyte progenitor expansion and differentiation by the c-MPL ligand thrombopoietin. Nature, 369, 568–571.
  • Kaushansky, K., Broudy, V. C., Lin, N., Jorgensen, M. J., McCarty, J., Fox, N., Zcker-Franklin, D. and Lofton-Day, C. (1995). Thrombopoietin, the Mpl ligand, is essential for full megakaryocyte development. Proc. Natl. Acad. Sci. USA., 92, 3234–3238.
  • Kobayashi, M., Laver, J. H., Kata, T., Mitazaki, H. and Ogawa, M. (1995). Recombinant human thrombopoietin (Mpl ligand) enhances proliferation of erythroid progenitors. Blood, 86, 2494–2499.
  • Kaushansky, K., Broudy, V. C., Grossman, A., Humes, J., Lin, N., Ren, H. R., Bailey, M. C., Papayannopoulou, T., Forstirm, J. W. and Sprugel, K. H. (1995). Thrombopoietin expands erythroid progenitors, increases red cell production and enhances erythroid recovery after myelosuppressive therapy. J. Clin. Invest., 96, 1683–1687.
  • Carver-Moore, K., Broxmeyer, H. E., Luoh, S. M., Cooper, S., Peng, J., Burstein, S. A., Moore, M. W. and de Sauvage, F. J. (1996). Low levels of erythroid and myeloid progenitors in thrombopoietin- and c-mpl-deficient mice. Blood, 88, 803–808.
  • Ishibashi, T., Koziol, J. A. and Brunstein, S. A. (1987). Human recombinant erythropoietin promotes differentiation of murine megakaryocytes in vitro. J. Clin. Invest., 79, 286–289.
  • McDonald, T. P., Cotterell, M. B., Clift, R. E., Culen, W. C. and Lin, F. K. (1987). High doses of recombinant erythropoietin stimulate platelet production in mice. Exp. Hematol., 15, 719–721.
  • Dessypris, E. N., Gleaton, I. J. and Armstrong, O. L. (1987). Effect of human recombinant erythropoietin on human marrow megakaryocyte colony formation in vitro. Br. J. Haematol., 65, 265–269.
  • Berridge, M. V., Frase, J. K., Carter, J. M. and Lin, F.-K. (1988). Effects of recombinant human erythropoietin in megakaryocytes and on platelet production in the rat. Blood, 72, 970–977.
  • Shikama, Y., Ishibashi, T., Kimura, H., Kawaguchi, M., Uchida, T. and Maruyama, K. (1992). Transient effect of erythropoietin on thrombocytopoiesis in vivo in mice. Exp. Hematol., 20, 216–222.
  • McDonald, T. P. and Sullivan, P. S. (1993). Megakaryocytic and erythrocytic cell lines share a common precursor cell. Exp. Hematol., 21, 1316–1320.
  • Debili, N., Coulombel, L., Croisille, L., Katz, A., Guichard, J., Breton-Gorius, J. and Vainchenker, W. (1996). Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Blood, 88, 1284–1296.
  • Tauchi, T., Feng, G.-S., Shen, R., Hoatlin, M., Bagby Jr, G. C., Kabat, D. and Broxmeyer, H. E. (1995). Involvement of SH2-containing phosphotyrosine phosphatase Syp in erythropoietin receptor signal transduction pathways. J. Biol. Chem., 270, 5631–5635.
  • Hendrie, P. C., Miyazawa, K., Yang, Y. C., Langfeld, C. D. and Broxmeyer, H. E. (1991). Mast cell growth factor (c-kit ligand) enhances cytokine stimulation of proliferation of human factor dependent cell line MO7e. Exp. Hematol., 19, 1031–1037.
  • Miyazawa, K., Williams, D. A., Gotoh, A., Nishimaki, J., Broxmeyer, H. E. and Toyama, K. (1995). Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood, 85, 641–649.
  • Jackson Blood, C. W. (1973). Cholinesterase as a possible marker for early cells of the megakaryocytic series. Blood, 42, 413–421.
  • Gotoh, A., Takahira, H., Mantel, C., Jackson, L., Boswell, H. S. and Broxmeyer, H. E. (1996). Steel factor induces serine phosphorylation of Stat 3 in human growth factor-dependent cell lines. Blood, 88, 138–145.
  • Avanzi, G. C., Lista, P., Giovimazzo, B., Miniero, R., Sablio, G., Benetton, G., Coda, R., Cattoretti, G. and Pegoraro, L. (1988). Selective growth response to IL-3 of a human leukemic cell line with megakaryoblastic features. Brit. J. Haematol., 69, 359–366.
  • Muta, K., Kranz, S. B., Bondurant, M. C. and Dai, C. H. (1995). Stem cell factor retards differentiation of normal human erythroid progenitor cells while stimulating proliferation. Blood, 86, 572–580.
  • Krystal, G., Lam, V., Dragowska, W., Takahashi, C., Appel, J., Gontier, A., Jenkins, A., Lam, H., Quon, L. and Lansdrop, P. (1994). Transforming growth factor beta 1 is an inducer of erythroid differentiation. J. Exp. Med., 180, 851–860.
  • Tomida, M. (1995). Induction of differentiation of WEHI-3B D+leukemic cells transfected with differentiation-stimulating factor/leukemia inhibitory factor receptor cDNA. Blood, 85, 217–221.
  • Berlingieri, M. T., Santoro, M., Battaglia, C., Grieco, M. and Fusco, A. (1993). The adenovirus E1A gene blocks the differentiation of a thyroid epithelial cell line, however the neoplastic phenotype is achieved only after cooperation with other oncogenes. Oncogene, 8, 249–255.
  • Gurney, A. L., Wong, S. C., Henzel, W. J. and de Sauvage, F. J. (1995). Distinct regions of c-Mpl cytoplasmic domain are coupled to the JAK-STAT signal transduction pathway and She phosphorylation. Proc. Natl. Acad. Sci. USA., 92, 5292–5296.
  • Pallard, C., Gouilleux, F., Benit, L., Cocault, L., Souyri, M., Levy, D., Groner, B., Gisselbrecht, S. and Dusanter-Fourt, I. (1995). Thrombopoietin activates a STAT-like factor in hematopoietic cells. EMBO. J., 14, 2847–2856.
  • Sattler, M., Durstin, M. A., Frank, D. A., Okuda, K., Kaushansky, K., Salgia, R. and Griffin, J. D. (1995). The thrombopoietin receptor c-MPL activates JAK ad TYK2 tyrosine kinases. Exp. Hematol., 23, 1040–1048.
  • Ezumi, Y., Takayama, H. and Okuma, M. (1995). Thrombopoietin, c-Mpl ligand, induces tyrosine phosphorylation of Tyk2, JAK2, and STAT3, and enhances agonists-induced aggregation in platelets in vitro. FEBS. Letters., 374, 48–52.
  • Miyakawa, Y., Oda, A., Druker, B. J., Ozaki, K., Handa, M., Ohashi, H. and Ikeda, Y. (1995). Recombinant thrombopoietin induces rapid protein tyrosine phosphorylation of Janus kinase 2 and She in human blood platelets. Blood, 86, 23–27.
  • Correa, P. N. and Axelrad, A. A. (1991). Production of erythropoietin bursts by p-progenitor cells from adult human peripheral blood in an improved serum-free medium: role of insulinlike growth factor 1. Blood, 78, 2823–2833.
  • Boyer, S. H., Bishop, T. R., Roger, O. C., Noyes, A. N., Frelin, L. P. and Hobbs, S. (1992). Roles of erythropoietin, insulin-like growth factor 1, and unidentified serum factors in promoting maturation of purified murine erythroid colony-forming units. Blood, 80, 2503–2512.
  • McArthur, G. A., Rohrschneider, L. R. and Johnson, G. R. (1994). Induced expression of c-fms in normal hematopoietic cells shows evidence for both conservation and lineage restriction of signal transduction in response to macrophage colony-stimulating factor. Blood, 83, 972–981.
  • Wu, H., Klingmuller, U., Acurio, A., Hsiao, J. G. and Lodish, H. F. (1997). Functional interaction of erythropoietin and stem cell factor receptors is essential for erythroid colony formation. Pro. Natl. Acad. Sci. USA., 94, 1806–1810.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.