Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 19, 2016 - Issue 4: Smolenice Symposium
895
Views
28
CrossRef citations to date
0
Altmetric
Review Article

Look into brain energy crisis and membrane pathophysiology in ischemia and reperfusion

&
Pages 341-348 | Received 04 Nov 2015, Accepted 29 Mar 2016, Published online: 19 Apr 2016

References

  • Acin-Perez R, Enriquez JA. (2014). The function of the respiratory supercomplexes: the plasticity model. Biochim Biophys Acta 1837:444–50.
  • Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G. (2009). Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9:265–76.
  • Akbar M, Calderon F, Wen Z, Kim HY. (2005). Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci USA 102:10858–63.
  • Almeida A, Almeida J, Bolaños JP, Moncada S. (2001). Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA 98:15294–9.
  • Bender E, Kadenbach B. (2000). The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett 466:130–4.
  • Bolaños JP, Almeida A, Moncada S. (2010). Glycolysis: a bioenergetic or a survival pathway? Trends Biochem Sci 35:145–9.
  • Chen Q, Lesnefsky EJ. (2006). Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med 40:976–82.
  • Chomova M, Tatarkova Z, Dobrota D, Racay P. (2012). Ischemia-induced inhibition of mitochondrial complex I in rat brain: effect of permeabilization method and electron acceptor. Neurochem Res 37:965–76.
  • Culmsee C, Mattson MP. (2005). p53 in neuronal apoptosis. Biochem Biophys Res Commun 331:761–77.
  • Fang J, Holmgren A. (2006). Inhibition of thioredoxin and thioredoxin reductase by 4-hydroxy-2-nonenal in vitro and in vivo. J Am Chem Soc 128:1879–85.
  • Fritz KS, Petersen DR. (2011). Exploring the biology of lipid peroxidation-derived protein carbonylation. Chem Res Toxicol 24:1411–19.
  • García-Bermúdez J, Sánchez-Aragó M, Soldevilla B, Del Arco A, Nuevo-Tapioles C, Cuezva JM. (2015). PKA phosphorylates the ATPase inhibitory factor 1 and inactivates its capacity to bind and inhibit the mitochondrial H(+)-ATP synthase. Cell Rep 12:2143–55.
  • Gellerich FN, Gizatullina Z, Gainutdinov T, Muth K, Seppet E, Orynbayeva Z, Vielhaber S. (2013). The control of brain mitochondrial energization by cytosolic calcium: the mitochondrial gas pedal. IUBMB Life 65:180–90.
  • Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, et al. (2013). Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110:5887–92.
  • Gonzalvez F, Gottlieb E. (2007). Cardiolipin: setting the beat of apoptosis. Apoptosis 12:877–85.
  • Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA. (2008). Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem 283:21837–41.
  • Groeger AL, Cipollina C, Cole MP, Woodcock SR, Bonacci G, Rudolph TK, Rudolph V, et al. (2010). Cyclooxygenase-2 generates anti-inflammatory mediators from omega-3 fatty acids. Nat Chem Biol 6:433–41.
  • Herrero-Mendez A, Almeida A, Fernández E, Maestre C, Moncada S, Bolaños JP. (2009). The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–52.
  • Higdon A, Diers AR, Oh JY, Landar A, Darley-Usmar VM. (2012). Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem J 442:453–64.
  • Hopper RK, Carroll S, Aponte AM, Johnson DT, French S, Shen RF, Witzmann FA, et al. (2006). Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium. Biochemistry 45:2524–36.
  • Hüttemann M, Lee I, Grossman LI, Doan JW, Sanderson TH. (2012). Phosphorylation of mammalian cytochrome c and cytochrome c oxidase in the regulation of cell destiny: respiration, apoptosis, and human disease. Adv Exp Med Biol 748:237–2364.
  • Ji J, Baart S, Vikulina AS, Clark RS, Anthonymuthu TS, Tyurin VA, Du L, et al. (2015). Deciphering of mitochondrial cardiolipin oxidative signaling in cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 35:319–28.
  • Kaplan P, Tatarkova Z, Racay P, Lehotsky J, Pavlikova M, Dobrota D. (2007). Oxidative modifications of cardiac mitochondria and inhibition of cytochrome c oxidase activity by 4-hydroxynonenal. Redox Rep 12:211–18.
  • Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW. (2004). Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305:99–103.
  • Krause F, Reifschneider NH, Goto S, Dencher NA. (2005). Active oligomeric ATP synthases in mammalian mitochondria. Biochem Biophys Res Commun 329:583–90.
  • Li M, Sun M, Cao L, Gu JH, Ge J, Chen J, Han R, et al. (2014). A TIGAR-regulated metabolic pathway is critical for protection of brain ischemia. J Neurosci 34:7458–71.
  • Lipton P. (1999). Ischemic cell death in brain neurons. Physiol Rev 79:1431–568.
  • Manwani B, McCullough LD. (2013). Function of the master energy regulator adenosine monophosphate-activated protein kinase in stroke. J Neurosci Res 91:1018–29.
  • Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, et al. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–17.
  • Mehta SL, Li PA. (2009). Neuroprotective role of mitochondrial uncoupling protein 2 in cerebral stroke. J Cereb Blood Flow Metab 29:1069–78.
  • Nakayama M, Uchimura K, Zhu RL, Nagayama T, Rose ME, Stetler RA, Isakson PC, et al. (1998). Cyclooxygenase-2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia. Proc Natl Acad Sci USA 95:10954–9.
  • Nicholls DG, Budd SL. (2000). Mitochondria and neuronal survival. Physiol Rev 80:315–60.
  • Novgorodov SA, Gudz TI. (2011). Ceramide and mitochondria in ischemic brain injury. Int J Biochem Mol Biol 2:347–61.
  • Nůsková H, Mráček T, Mikulová T, Vrbacký M, Kovářová N, Kovalčíková J, Pecina P, Houštěk J. (2015). Mitochondrial ATP synthasome: expression and structural interaction of its components. Biochem Biophys Res Commun 464:787–93.
  • Obrenovitch TP. (2008). Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol Rev 88:211–47.
  • Orr SK, Palumbo S, Bosetti F, Mount HT, Kang JX, Greenwood CE, Ma DW, et al. (2013). Unesterified docosahexaenoic acid is protective in neuroinflammation. J Neurochem 127:378–93.
  • Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM. (2004). Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res 94:53–9.
  • Pellerin L, Magistretti PJ. (2012). Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–66.
  • Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, Schägger H. (2003). Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278:52873–80.
  • Pullman ME, Monroy GC. (1963). A naturally occurring inhibitor of mitochondrial adenosine triphosphatase. J Biol Chem 238:3762–9.
  • Racay P, Tatarkova Z, Chomova M, Hatok J, Kaplan P, Dobrota D. (2009). Mitochondrial calcium transport and mitochondrial dysfunction after global brain ischemia in rat hippocampus. Neurochem Res 34:1469–78.
  • Ray NB, Durairaj L, Chen BB, McVerry BJ, Ryan AJ, Donahoe M, Waltenbaugh AK, et al. (2010). Dynamic regulation of cardiolipin by the lipid pump Atp8b1 determines the severity of lung injury in experimental pneumonia. Nat Med 16:1120–7.
  • Rodriguez-Rodriguez P, Almeida A, Bolaños JP. (2013). Brain energy metabolism in glutamate-receptor activation and excitotoxicity: role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway. Neurochem Int 62:750–6.
  • Rodriguez-Rodriguez P, Fernandez E, Almeida A, Bolaños JP. (2012). Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ 19:1582–9.
  • Sánchez-Cenizo L, Formentini L, Aldea M, Ortega AD, García-Huerta P, Sánchez-Aragó M, Cuezva JM. (2010). Up-regulation of the ATPase inhibitory factor 1 (IF1) of the mitochondrial H+-ATP synthase in human tumors mediates the metabolic shift of cancer cells to a Warburg phenotype. J Biol Chem 285:25308–13.
  • Serhan CN, Chiang N, Van Dyke TE. (2008). Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–61.
  • Starkov AA, Fiskum G. (2003). Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J Neurochem 86:1101–7.
  • Suthammarak W, Somerlot BH, Opheim E, Sedensky M, Morgan PG. (2013). Novel interactions between mitochondrial superoxide dismutases and the electron transport chain. Aging Cell 12:1132–40.
  • Taguchi K, Motohashi H, Yamamoto M. (2011). Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells 16:123–40.
  • Tan K, Fujimoto M, Takii R, Takaki E, Hayashida N, Nakai A. (2015). Mitochondrial SSBP1 protects cells from proteotoxic stresses by potentiating stress-induced HSF1 transcriptional activity. Nat Commun 6:6580.
  • Taylor JM, Zhu XH, Zhang Y, Chen W. (2015). Dynamic correlations between hemodynamic, metabolic, and neuronal responses to acute whole-brain ischemia. NMR Biomed 28:1357–65.
  • Tyurina YY, Poloyac SM, Tyurin VA, Kapralov AA, Jiang J, Anthonymuthu TS, Kapralova VI, et al. (2014). A mitochondrial pathway for biosynthesis of lipid mediators. Nat Chem 6:542–52.
  • Urabe T, Yamasaki Y, Hattori N, Yoshikawa M, Uchida K, Mizuno Y. (2000). Accumulation of 4-hydroxynonenal-modified proteins in hippocampal CA1 pyramidal neurons precedes delayed neuronal damage in the gerbil brain. Neuroscience 100:241–50.
  • Vance JE, Tasseva G. (2013). Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim Biophys Acta 1831:543–54.
  • Vazdar M, Jurkiewicz P, Hof M, Jungwirth P, Cwiklik L. (2012). Behavior of 4-hydroxynonenal in phospholipid membranes. J Phys Chem B 116:6411–15.
  • Wan M, Hua X, Su J, Thiagarajan D, Frostegård AG, Haeggström JZ, Frostegård J. (2014). Oxidized but not native cardiolipin has pro-inflammatory effects, which are inhibited by Annexin A5. Atherosclerosis 235:592–8.
  • Wei S, Fukuhara H, Kawada C, Kurabayashi A, Furihata M, Ogura S, Inoue K, Shuin T. (2015). Silencing of ATPase inhibitory factor 1 inhibits cell growth via cell cycle arrest in bladder cancer. Pathobiology 82:224–32.
  • Wittig I, Schägger H. (2009). Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes. Biochim Biophys Acta 1787:672–80.
  • Xiang Z, Thomas S, Pasinetti G. (2007). Increased neuronal injury in transgenic mice with neuronal overexpression of human cyclooxygenase-2 is reversed by hypothermia and rofecoxib treatment. Curr Neurovasc Res 4:274–9.
  • Yu L, Yang B, Wang J, Zhao L, Luo W, Jiang Q, Yang J. (2014). Time course change of COX2-PGI2/TXA2 following global cerebral ischemia reperfusion injury in rat hippocampus. Behav Brain Funct 10:42.
  • Zhao G, Zhao Y, Wang X, Xu Y. (2012). Knockdown of glucose-6-phosphate dehydrogenase (G6PD) following cerebral ischemic reperfusion: the pros and cons. Neurochem Int 61:146–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.