Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 20, 2017 - Issue 1
629
Views
7
CrossRef citations to date
0
Altmetric
Original Research Report

Brain region-specific effects of immobilization stress on cholinesterases in mice

, , , , , & show all
Pages 53-60 | Received 11 May 2016, Accepted 19 Nov 2016, Published online: 06 Dec 2016

References

  • Apparsundaram S, Martinez V, Parikh V, Kozak R, Sarter M. (2005). Increased capacity and density of choline transporters situated in synaptic membranes of the right medial prefrontal cortex of attentional task-performing rats. J Neurosci 25:3851–6.
  • Bausero P, Schmitt M, Toussaint JL, Simoni P, Geoffroy V, Queuche D, Duclaud S, et al. (1993). Identification and analysis of the human choline acetyltransferase gene promoter. Neuroreport 4:287–90.
  • Ben Aziz-Aloya R, Sternfeld M, Soreq H. (1993). Promoter elements and alternative splicing in the human ACHE gene. Prog Brain Res 98:147–53.
  • Berson A, Knobloch M, Hanan M, Diamant S, Sharoni M, Schuppli D, Geyer BC, et al. (2008). Changes in readthrough acetylcholinesterase expression modulate amyloid-beta pathology. Brain 131:109–19.
  • Buynitsky T, Mostofsky DI. (2009). Restraint stress in biobehavioral research: recent developments. Neurosci Biobehav Rev 33:1089–98.
  • Cervini R, Houhou L, Pradat P-FO, Béjanin S, Mallet J, Berrard S. (1995). Specific vesicular acetylcholine transporter promoters lie within the first intron of the rat choline acetyltransferase gene. J Biol Chem 270:24654–7.
  • Choi RCY, Siow NL, Zhu SQ, Wan DCC, Wong YH, Tsim KWK. (2001). The cyclic AMP-mediated expression of acetylcholinesterase in myotubes shows contrasting activation and repression between avian and mammalian enzymes. Mol Cell Neurosci 288:81–5.
  • Das A, Kapoor K, Sayeepriyadarshini AT, Dikshit M, Palit G, Nath C. (2000). Immobilization stress-induced changes in brain acetylcholinesterase activity and cognitive function in mice. Pharmacol Res 42:213–17.
  • Deutsch VR, Pick M, Perry C, Grisaru D, Hemo Y, Golan-Hadari D, Grant A, et al. (2002). The stress-associated acetylcholinesterase variant AChE-R is expressed in human CD34(+) hematopoietic progenitors and its C-terminal peptide ARP promotes their proliferation. Exp Hematol 30:1153–61.
  • Ellman GL, Courtney KD, Andres V, Jr., Feather-Stone RM. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95.
  • Ennis M, Shipley MT. (1992). Tonic activation of locus coeruleus neurons by systemic or intracoerulear microinjection of an irreversible acetylcholinesterase inhibitor: increased discharge rate and induction of c-fos. Exp Neurol 118:164–77.
  • Farar V, Hrabovska A, Krejci E, Myslivecek J. (2013). Developmental adaptation of central nervous system to extremely high acetylcholine levels. PLoS One 8:e68265.
  • Fatranska M, Kiss A, Oprsalova Z, Kvetnansky R. (1989). Acetylcholinesterase and choline acetyltransferase activity in some hypothalamic nuclei under immobilization stress in rats. Endocrinol Exp 23:3–10.
  • Gabriel NN, Soliman KF. (1983). Effect of stress on the acetylcholinesterase activity of the hypothalamus–pituitary–adrenal axis in the rat. Horm Res 17:43–8.
  • García-Ayllón M-S, Millán C, Serra-Basante C, Bataller R, Sáez-Valero J. (2012). Readthrough acetylcholinesterase is increased in human liver cirrhosis. PLoS One 7:e44598.
  • Härtl R, Gleinich A, Zimmermann M. (2011). Dramatic increase in readthrough acetylcholinesterase in a cellular model of oxidative stress. J Neurochem 116:1088–96.
  • Imperato A, Puglisi-Allegra S, Casolini P, Angelucci L. (1991). Changes in brain dopamine and acetylcholine release during and following stress are independent of the pituitary-adrenocortical axis. Brain Res 538:111–17.
  • Jacobson L, Muglia LJ, Weninger SC, Pacak K, Majzoub JA. (2000). CRH deficiency impairs but does not block pituitary–adrenal responses to diverse stressors. Neuroendocrinology 71:79–87.
  • Jeong KH, Jacobson L, Pacak K, Widmaier EP, Goldstein DS, Majzoub JA. (2000). Impaired basal and restraint-induced epinephrine secretion in corticotropin-releasing hormone-deficient mice. Endocrinology 141:1142–50.
  • Karczmar AG. (2010). Cholinesterases (ChEs) and the cholinergic system in ontogenesis and phylogenesis, and non-classical roles of cholinesterases – a review. Chem Biol Interact 187:34–43.
  • Kaufer D, Friedman A, Seidman S, Soreq H. (1998). Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393:373–7.
  • Kawashima K, Yoshikawa K, Fujii YX, Moriwaki Y, Misawa H. (2007). Expression and function of genes encoding cholinergic components in murine immune cells. Life Sci 80:2314–19.
  • Kvetnansky R, Kubovcakova L, Tillinger A, Micutkova L, Krizanova O, Sabban EL. (2006). Gene expression of phenylethanolamine N-methyltransferase in corticotropin-releasing hormone knockout mice during stress exposure. Cell Mol Neurobiol 26:735–54.
  • Li B, Stribley JA, Ticu A, Xie W, Schopfer LM, Hammond P, Brimijoin S, et al. (2000). Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J Neurochem 75:1320–31.
  • Li G, Klein J, Zimmermann M. (2013). Pathophysiological amyloid concentrations induce sustained upregulation of readthrough acetylcholinesterase mediating anti-apoptotic effects. Neuroscience 240:349–60.
  • Li Y, Camp S, Rachinsky TL, Bongiorno C, Taylor P. (1993). Promoter elements and transcriptional control of the mouse acetylcholinesterase gene. J Biol Chem 268:3563–72.
  • Lockridge O. (2015). Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther 148:34–46.
  • Massoulie J. (2002). The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11:130–43.
  • Meshorer E, Erb C, Gazit R, Pavlovsky L, Kaufer D, Friedman A, Glick D, et al. (2002). Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science 295:508–12.
  • Novakova M, Kvetnansky R, Myslivecek J. (2010). Sexual dimorphism in stress-induced changes in adrenergic and muscarinic receptor densities in the lung of wild type and corticotropin-releasing hormone-knockout mice. Stress 13:22–35.
  • Parikh V, St Peters M, Blakely RD, Sarter M. (2013). The presynaptic choline transporter imposes limits on sustained cortical acetylcholine release and attention. J Neurosci 33:2326–37.
  • Paxinos G, Franklin KBJ. (2008). The mouse brain in stereotaxic coordinates. New York: Elsevier Academic Press.
  • Pediconi MF, Barrantes FJ. (1993). Phospholipid metabolism under muscarinic cholinergic stimulation exhibits brain asymmetry. Neurochem Res 18:559–64.
  • Perrier N, Salani M, Falasca C, Bon S, Augusti-Tocco G, Massoulié J. (2006). Readthrough acetylcholinesterase expression remains minor after stress or exposure to inhibitors. J Mol Neurosci 30:75–6.
  • Perrier NA, Salani M, Falasca C, Bon S, Augusti-Tocco G, Massoulié J. (2005). The readthrough variant of acetylcholinesterase remains very minor after heat shock, organophosphate inhibition and stress, in cell culture and in vivo. J Neurochem 94:629–38.
  • Romero-Vecchione E, Fatranska M, Kvetnansky R. (1987). Acetylcholinesterase activity in several hypothalamic and brain stem nuclei after acute and chronic immobilization stress in rats. Endocrinol Exp 21:159–65.
  • Sailaja BS, Cohen-Carmon D, Zimmerman G, Soreq H, Meshorer E. (2012). Stress-induced epigenetic transcriptional memory of acetylcholinesterase by HDAC4. Proc Natl Acad Sci USA 109:E3687–95.
  • Shaltiel G, Hanan M, Wolf Y, Barbash S, Kovalev E, Shoham S, Soreq H. (2013). Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct 218:59–72.
  • St. Peters M, Cherian AK, Bradshaw M, Sarter M. (2011). Sustained attention in mice: expanding the translational utility of the SAT by incorporating the Michigan Controlled Access Response Port (MICARP). Behav Brain Res 225:574–83.
  • Sunanda Rao BS, Raju TR. (2000). Restraint stress-induced alterations in the levels of biogenic amines, amino acids, and AChE activity in the hippocampus. Neurochem Res 25:1547–52.
  • Svedberg MM, Svensson A-L, Bednar I, Nordberg A. (2003). Neuronal nicotinic and muscarinic receptor subtypes at different ages of transgenic mice overexpressing human acetylcholinesterase. Neurosci Lett 340:148–52.
  • Toiber D, Greenberg DS, Soreq H. (2009). Pro-apoptotic protein–protein interactions of the extended N-AChE terminus. J Neural Transm (Vienna) 116:1435–42.
  • Venihaki M, Majzoub JA. (1999). Animal models of CRH deficiency. Front Neuroendocrinol 20:122–45.
  • Zarghooni S, Wunsch J, Bodenbenner M, Bruggmann D, Grando SA, Schwantes U, Wess J, et al. (2007). Expression of muscarinic and nicotinic acetylcholine receptors in the mouse urothelium. Life Sci 80:2308–13.
  • Zimmermann M. (2013). Neuronal AChE splice variants and their non-hydrolytic functions: redefining a target of AChE inhibitors? Br J Pharmacol 170:953–67.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.