Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 20, 2017 - Issue 4
659
Views
13
CrossRef citations to date
0
Altmetric
Original Article

Association of social defeat stress-induced anhedonia-like symptoms with mGluR1-dependent decrease in membrane-bound AMPA-GluR1 in the mouse ventral midbrain

&
Pages 404-418 | Received 15 Jan 2017, Accepted 24 May 2017, Published online: 29 Jun 2017

References

  • Arnsten, A. F. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews. Neuroscience, 10, 410–422. doi: 10.1038/nrn2648
  • Audet, M. C., Jacobson-Pick, S., Wann, B. P., & Anisman, H. (2011). Social defeat promotes specific cytokine variations within the prefrontal cortex upon subsequent aggressive or endotoxin challenges. Brain, Behavior, and Immunity, 25, 1197–1205. doi: 10.1016/j.bbi.2011.03.010
  • Bellone, C., & Luscher, C. (2005). mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors. European Journal of Neuroscience, 21, 1280–1288. doi: 10.1111/j.1460-9568.2005.03979.x
  • Belozertseva, I. V., Kos, T., Popik, P., Danysz, W., & Bespalov, A. Y. (2007). Antidepressant-like effects of mGluR1 and mGluR5 antagonists in the rat forced swim and the mouse tail suspension tests. European Neuropsychopharmacology, 17, 172–179. doi: 10.1016/j.euroneuro.2006.03.002
  • Bjorkqvist, K. (2001). Social defeat as a stressor in humans. Physiological Behavior, 73, 435–442.
  • Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., … Poulton, R. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science (New York, N.Y.), 301, 386–389. doi: 10.1126/science.1083968
  • Chaudhury, D., Walsh, J. J., Friedman, A. K., Juarez, B., Ku, S. M., Koo, J. W., … Han, M. H. (2013). Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature, 493, 532–536. doi: 10.1038/nature11713
  • Colquhoun, D. (2014). An investigation of the false discovery rate and the misinterpretation of p-values. Royal Society Open Science, 1, 140216. doi: 10.1098/rsos.140216
  • Crawford, L. K., Rahman, S. F., & Beck, S. G. (2013). Social stress alters inhibitory synaptic input to distinct subpopulations of raphe serotonin neurons. ACS Chemical Neuroscience, 4, 200–209. doi: 10.1021/cn300238j
  • Dupuis, J. P., Feyder, M., Miguelez, C., Garcia, L., Morin, S., Choquet, D., … Baufreton, J. (2013). Dopamine-dependent long-term depression at subthalamo-nigral synapses is lost in experimental parkinsonism. Journal of Neuroscience, 33, 14331–14341. doi: 10.1523/jneurosci.1681-13.2013
  • Gascon, E., Lynch, K., Ruan, H., Almeida, S., Verheyden, J. M., Seeley, W. W., … Gao, F. B. (2014). Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nature Medicine, 20, 1444–1451. doi: 10.1038/nm.3717
  • German, D. C., Nelson, E. L., Liang, C. L., Speciale, S. G., Sinton, C. M., & Sonsalla, P. K. (1996). The neurotoxin MPTP causes degeneration of specific nucleus A8, A9 and A10 dopaminergic neurons in the mouse. Neurodegeneration, 5, 299–312. doi: 10.1006/neur.1996.0041
  • Gladding, C. M., Collett, V. J., Jia, Z., Bashir, Z. I., Collingridge, G. L., & Molnar, E. (2009). Tyrosine dephosphorylation regulates AMPAR internalisation in mGluR-LTD. Molecular and Cellular Neuroscience, 40, 267–279. doi: 10.1016/j.mcn.2008.10.014
  • Gold, P. W., & Chrousos, G. P. (2002). Organization of the stress system and its dysregulation in melancholic and atypical depression: High vs low CRH/NE states. Molecular Psychiatry, 7, 254–275. doi: 10.1038/sj.mp.4001032
  • Han, X., Albrechet-Souza, L., Doyle, M. R., Shimamoto, A., DeBold, J. F., & Miczek, K. A. (2015). Social stress and escalated drug self-administration in mice II. Cocaine and dopamine in the nucleus accumbens. Psychopharmacology (Berlin), 232, 1003–1010. doi: 10.1007/s00213-014-3734-8
  • Hnasko, T. S., Hjelmstad, G. O., Fields, H. L., & Edwards, R. H. (2012). Ventral tegmental area glutamate neurons: Electrophysiological properties and projections. Journal of Neuroscience, 32, 15076–15085. doi: 10.1523/jneurosci.3128-12.2012
  • Iniguez, S. D., Riggs, L. M., Nieto, S. J., Dayrit, G., Zamora, N. N., Shawhan, K. L., … Warren, B. L. (2014). Social defeat stress induces a depression-like phenotype in adolescent male c57BL/6 mice. Stress (Amsterdam, Netherlands), 17, 247–255. doi: 10.3109/10253890.2014.910650
  • Kim, J. J., & Yoon, K. S. (1998). Stress: Metaplastic effects in the hippocampus. Trends in Neuroscience, 21, 505–509. doi: http://dx.doi.org/10.1016/S0166-2236(98)01322-8
  • Kinsey, S. G., Bailey, M. T., Sheridan, J. F., Padgett, D. A., & Avitsur, R. (2007). Repeated social defeat causes increased anxiety-like behavior and alters splenocyte function in C57BL/6 and CD-1 mice. Brain, Behavior, and Immunity, 21, 458–466. doi: 10.1016/j.bbi.2006.11.001
  • Kramer, P. F., & Williams, J. T. (2015). Cocaine decreases metabotropic glutamate receptor mGluR1 currents in dopamine neurons by activating mGluR5. Neuropsychopharmacology, 40, 2418–2424. doi: 10.1038/npp.2015.91
  • Labots, M., Laarakker, M. C., Ohl, F., & van Lith, H. A. (2016). Consomic mouse strain selection based on effect size measurement, statistical significance testing and integrated behavioral z-scoring: Focus on anxiety-related behavior and locomotion. BMC Genetics, 17, 95. doi: 10.1186/s12863-016-0411-4
  • Lesage, A., & Steckler, T. (2010). Metabotropic glutamate mGlu1 receptor stimulation and blockade: Therapeutic opportunities in psychiatric illness. European Journal of Pharmacology, 639, 2–16. doi: 10.1016/j.ejphar.2009.12.043
  • Loweth, J. A., Scheyer, A. F., Milovanovic, M., LaCrosse, A. L., Flores-Barrera, E., Werner, C. T., … Wolf, M. E. (2014). Synaptic depression via mGluR1 positive allosteric modulation suppresses cue-induced cocaine craving. Nature Neuroscience, 17, 73–80. doi: 10.1038/nn.3590
  • Luscher, C., & Huber, K. M. (2010). Group 1 mGluR-dependent synaptic long-term depression: Mechanisms and implications for circuitry and disease. Neuron, 65, 445–459. doi: 10.1016/j.neuron.2010.01.016
  • Mameli, M., Balland, B., Lujan, R., & Luscher, C. (2007). Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science (New York, N.Y.), 317, 530–533. doi: 10.1126/science.1142365
  • Merrill, C. B., Friend, L. N., Newton, S. T., Hopkins, Z. H., & Edwards, J. G. (2015). Ventral tegmental area dopamine and GABA neurons: Physiological properties and expression of mRNA for endocannabinoid biosynthetic elements. Scientific Reports, 5, 16176. doi: 10.1038/srep16176
  • Moult, P. R., Gladding, C. M., Sanderson, T. M., Fitzjohn, S. M., Bashir, Z. I., Molnar, E., & Collingridge, G. L. (2006). Tyrosine phosphatases regulate AMPA receptor trafficking during metabotropic glutamate receptor-mediated long-term depression. Journal of Neuroscience, 26, 2544–2554. doi: 10.1523/jneurosci.4322-05.2006
  • Nestler, E. J., & Carlezon, W. A. Jr. (2006). The mesolimbic dopamine reward circuit in depression. Biological Psychiatry, 59, 1151–1159. doi: 10.1016/j.biopsych.2005.09.018
  • Ohtake, N., Saito, M., Eto, M., & Seki, K. (2014). Exendin-4 promotes the membrane trafficking of the AMPA receptor GluR1 subunit and ADAM10 in the mouse neocortex. Regulatory Peptides, 190–191, 1–11. doi: 10.1016/j.regpep.2014.04.003
  • Olive, M. F. (2009). Metabotropic glutamate receptor ligands as potential therapeutics for addiction. Current Drug Abuse Reviews, 2, 83–98.
  • Otani, S., Auclair, N., Desce, J. M., Roisin, M. P., & Crepel, F. (1999). Dopamine receptors and groups I and II mGluRs cooperate for long-term depression induction in rat prefrontal cortex through converging postsynaptic activation of MAP kinases. Journal of Neuroscience, 19, 9788–9802.
  • Palucha, A., Branski, P., Szewczyk, B., Wieronska, J. M., Klak, K., & Pilc, A. (2005). Potential antidepressant-like effect of MTEP, a potent and highly selective mGluR5 antagonist. Pharmacology Biochemistry and Behavior, 81, 901–906. doi: 10.1016/j.pbb.2005.06.015
  • Paxinos, G., & Franklin, K. (2007). The mouse brain in stereotaxic coordinates. New York: Elsevier Academic Press.
  • Plaza-Zabala, A., Li, X., Milovanovic, M., Loweth, J. A., Maldonado, R., Berrendero, F., & Wolf, M. E. (2013). An investigation of interactions between hypocretin/orexin signaling and glutamate receptor surface expression in the rat nucleus accumbens under basal conditions and after cocaine exposure. Neuroscience Letters, 557, 101–106. doi: 10.1016/j.neulet.2013.10.038
  • Power, E. M., Morales, A., & Empson, R. M. (2016). Prolonged type 1 metabotropic glutamate receptor dependent synaptic signaling contributes to spino-cerebellar ataxia type 1. The Journal of Neuroscience, 36, 4910–4916. doi: 10.1523/jneurosci.3953-15.2016
  • Sekio, M., & Seki, K. (2014). Lipopolysaccharide-induced depressive-like behavior is associated with alpha(1)-adrenoceptor dependent downregulation of the membrane GluR1 subunit in the mouse medial prefrontal cortex and ventral tegmental area. International Journal of Neuropsychopharmacology, 18, pyu005. doi: 10.1093/ijnp/pyu005
  • Shim, S. S., Bunney, B. S., & Shi, W. X. (1996). Effects of lesions in the medial prefrontal cortex on the activity of midbrain dopamine neurons. Neuropsychopharmacology, 15, 437–441. doi: 10.1016/s0893-133x(96)00052-8
  • Shin, S., Kwon, O., Kang, J. I., Kwon, S., Oh, S., Choi, J., … Kim, D. G. (2015). mGluR5 in the nucleus accumbens is critical for promoting resilience to chronic stress. Nature Neuroscience, 18, 1017–1024. doi: 10.1038/nn.4028
  • Singh, V., Carman, M., Roeper, J., & Bonci, A. (2007). Brief ischemia causes long-term depression in midbrain dopamine neurons. The European Journal of Neuroscience, 26, 1489–1499. doi: 10.1111/j.1460-9568.2007.05781.x
  • Snyder, E. M., Philpot, B. D., Huber, K. M., Dong, X., Fallon, J. R., & Bear, M. F. (2001). Internalization of ionotropic glutamate receptors in response to mGluR activation. Nature Neuroscience, 4, 1079–1085. doi: 10.1038/nn746
  • Tse, Y. C., & Yung, K. K. (2000). Cellular expression of ionotropic glutamate receptor subunits in subpopulations of neurons in the rat substantia nigra pars reticulata. Brain Research, 854, 57–69.
  • Tye, K. M., Mirzabekov, J. J., Warden, M. R., Ferenczi, E. A., Tsai, H. C., Finkelstein, J., … Deisseroth, K. (2013). Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature, 493, 537–541. doi: 10.1038/nature11740
  • Wagner, K. V., Hartmann, J., Labermaier, C., Hausl, A. S., Zhao, G., Harbich, D., … Schmidt, M. V. (2015). Homer1/mGluR5 activity moderates vulnerability to chronic social stress. Neuropsychopharmacology, 40, 1222–1233. doi: 10.1038/npp.2014.308
  • Wanchoo, S. J., Swann, A. C., & Dafny, N. (2009). Descending glutamatergic pathways of PFC are involved in acute and chronic action of methylphenidate. Brain Research, 1301, 68–79. doi: 10.1016/j.brainres.2009.08.095
  • Wang, D. V., & Tsien, J. Z. (2011). Conjunctive processing of locomotor signals by the ventral tegmental area neuronal population. PLoS One, 6, e16528. doi: 10.1371/journal.pone.0016528
  • Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A., & Uchida, N. (2012). Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron, 74, 858–873. doi: 10.1016/j.neuron.2012.03.017
  • Wigmore, M. A., & Lacey, M. G. (1998). Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro. British Journal of Pharmacology, 123, 667–674. doi: 10.1038/sj.bjp.0701662
  • Wise, R. A. (2004). Dopamine, learning and motivation. Nature Reviews. Neuroscience, 5, 483–494. doi: 10.1038/nrn1406
  • Wolf, M. E., & Tseng, K. Y. (2012). Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: When, how, and why? Frontiers in Molecular Neuroscience, 5, 72. doi: 10.3389/fnmol.2012.00072
  • Yung, K. K. (1998). Localization of ionotropic and metabotropic glutamate receptors in distinct neuronal elements of the rat substantia nigra. Neurochemistry International, 33, 313–326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.