Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 21, 2018 - Issue 4
530
Views
17
CrossRef citations to date
0
Altmetric
Original Article

Association of 24 h maternal deprivation with a saline injection in the neonatal period alters adult stress response and brain monoamines in a sex-dependent fashion

, & ORCID Icon
Pages 333-346 | Received 15 Oct 2017, Accepted 13 Mar 2018, Published online: 01 Apr 2018

References

  • Allsop, S., Vander Weele, C.M., Wichmann, R., & Tye, K.M. (2014). Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Frontiers in Behavioral Neuroscience, 8, 241. doi:10.3389/fnbeh.2014.00241
  • Applegate, E.A., Upton, D.E., & Stern, J.S. (1982). Food intake, body composition and blood lipids following treadmill exercise in male and female rats. Physiology & Behavior, 28, 917–920.
  • Asarian, L., & Geary, N. (2013). Sex differences in the physiology of eating. American Journal of Physiology, 305, R1215–R1267. doi:10.1152/ajpregu.00446.2012
  • Barbosa Neto, J.B., Tiba, P.A., Faturi, C.B., de Castro-Neto, E.F., da Graça Naffah-Mazacoratti, M., de Jesus Mari, J., …, Suchecki, D. (2012). Stress during development alters anxiety-like behavior and hippocampal neurotransmission in male and female rats. Neuropharmacology, 62, 518–526. doi:10.1016/j.neuropharm.2011.09.011
  • Beck, K.D., & Luine, V.N. (1999). Food deprivation modulates chronic stress effects on object recognition in male rats: role of monoamines and amino acids. Brain Research, 830, 56–71.
  • Björklund, A., & Dunnett, S.B. (2007). Dopamine neuron systems in the brain: An update. Trends in Neuroscience, 30, 194–202. doi:10.1016/j.tins.2007.03.006
  • Bodnoff, S.R., Suranyi-Cadotte, B., Aitken, D.H., Quirion, R., & Meaney, M.J. (1988). The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology (Berlin), 95, 298–302.
  • Bohn, M.C. (1980). Granule cell genesis in the hippocampus of rats treated neonatally with hydrocortisone. Neuroscience, 5, 2003–2012.
  • Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P.M., & Meaney, M.J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceedings of the National Academy of Science United States of America, 95, 5335–5340.
  • Carpenter, A.C., Saborido, T.P., & Stanwood, G.D. (2012). Development of hyperactivity and anxiety responses in dopamine transporter-deficient mice. Developmental Neuroscience, 34, 250–257. doi:10.1159/000336824
  • Cohen, H., Zohar, J., & Matar, M. (2003). The relevance of differential response to trauma in an animal model of posttraumatic stress disorder. Biological Psychiatry, 53, 463–473.
  • Crews, F.T., & Boettiger, C.A. (2009). Impulsivity, frontal lobes and risk for addiction. Pharmacology, Biochemistry and Behavior, 93, 237–247. doi:10.1016/j.pbb.2009.04.018
  • Dalley, J.W., Mar, A.C., Economidou, D., & Robbins, T.W. (2008). Neurobehavioral mechanisms of impulsivity: Fronto-striatal systems and functional neurochemistry. Pharmacology, Biochemistry and Behavior, 90, 250–260. doi:10.1016/j.pbb.2007.12.021
  • De la Mora, M.P., Gallegos-Cari, A., Arizmendi-Garcia, Y., Marcellino, D., & Fuxe, K. (2010). Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety: Structural and functional analysis. Progress in Neurobiology, 90, 198–216. doi:10.1016/j.pneurobio.2009.10.010
  • De Miguel, Z., Vegas, O., Garmendia, L., Arregi, A., Beitia, G., & Azpiroz, A. (2011). Behavioral coping strategies in response to social stress are associated with distinct neuroendocrine, monoaminergic and immune response profiles in mice. Behavioral Brain Research, 225, 554–561. doi:10.1016/j.bbr.2011.08.011
  • Dent, M.F., & Neill, D.B. (2012). Dose-dependent effects of prefrontal dopamine on behavioral state in rats. Behavioral Neuroscience, 126, 620–639. doi:10.1037/a0029640
  • Faturi, C.B., Tiba, P.A., Kawakami, S.E., Catallani, B., Kerstens, M., & Suchecki, D. (2010). Disruptions of the mother-infant relationship and stress-related behaviours: Altered corticosterone secretion does not explain everything. Neuroscience and Biobehavioral Reviews, 34, 821–834. doi:10.1016/j.neubiorev.2009.09.002
  • File, S.E., & Seth, P. (2003). A review of 25 years of the social interaction test. European Journal of Pharmacology, 463, 35–53.
  • Fitzgerald, P.J. (2011). A neurochemical yin and yang: Does serotonin activate and norepinephrine deactivate the prefrontal cortex? Psychopharmacology (Berlin), 213, 171–182. doi:10.1007/s00213-010-1856-1
  • Garcia, A.M., Martinez, R., Brandão, M.L., & Morato, S. (2005). Effects of apomorphine on rat behavior in the elevated plus-maze. Physiology & Behavior, 85, 440–447. doi:10.1016/j.physbeh.2005.04.027
  • Girardi, C.E., Zanta, N.C., & Suchecki, D. (2014). Neonatal stress-induced affective changes in adolescent Wistar rats: Early signs of schizophrenia-like behavior. Frontiers in Behavioral Neuroscience, 8, 319. doi:10.3389/fnbeh.2014.00319
  • Hofer, M.A. (1994). Early relationships as regulators of infant physiology and behavior. Acta Paediatrica, Suppl. 397, 9–18.
  • Holmes, A., & Wellman, C.L. (2009). Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neuroscience and Biobehavioral Reviews, 33, 773–783. doi:10.1016/j.neubiorev.2008.11.005
  • Huang, W.L., Harper, C.G., Evans, S.F., Newnham, J.P., & Dunlop, S.A. (2001). Repeated prenatal corticosteroid administration delays astrocyte and capillary tight junction maturation in fetal sheep. International Journal of Developmental Neuroscience, 19, 487–493.
  • Imhof, J.T., Coelho, Z.M., Schmitt, M.L., Morato, G.S., & Carobrez, A.P. (1993). Influence of gender and age on performance of rats in the elevated plus maze apparatus. Behavioral Brain Research, 56, 177–180.
  • Johnston, A.L., & File, S.E. (1991). Sex differences in animal tests of anxiety. Physiology & Behavior, 49, 245–250.
  • Jørgensen, H., Knigge, U., Kjaer, A., Vadsholt, T., & Warberg, J. (1998). Serotonergic involvement in stress-induced ACTH release. Brain Research, 811, 10–20.
  • Jørgensen, H., Knigge, U., Kjaer, A., & Warberg, J. (2002). Serotonergic involvement in stress-induced vasopressin and oxytocin secretion. European Journal of Endocrinology, 147, 815–824.
  • Jupp, B., Caprioli, D., & Dalley, J.W. (2013). Highly impulsive rats: Modelling an endophenotype to determine the neurobiological, genetic and environmental mechanisms of addiction. Disease Models & Mechanisms, 6, 302–311. doi:10.1242/dmm.010934
  • Kennedy, D.P., & Adolphs, R. (2012). The social brain in psychiatric and neurological disorders. Trends in Cognitive Sciences, 16, 559–572. doi:10.1016/j.tics.2012.09.006
  • Landauer, M.R., & Balster, R.L. (1982). A new test for social investigation in mice: Effects of d-amphetamine. Psychopharmacology (Berlin), 78, 322–325.
  • Leibowitz, S.F., & Alexander, J.T. (1998). Hypothalamic serotonin in control of eating behavior, meal size, and body weight. Biological Psychiatry, 44, 851–864.
  • Leibowitz, S.F., Weiss, G.F., & Shor-Posner, G. (1988). Hypothalamic serotonin: Pharmacological, biochemical and behavioral analyses of its feeding-suppressive action. Clinical Neuropharmacology, 11, S51–S71.
  • Levine, S., Huchton, D.M., Wiener, S.G., & Rosenfeld, P. (1991). Time course of the effect of maternal deprivation on the hypothalamic-pituitary-adrenal axis in the infant rat. Developmental Psychobiology, 24, 547–558. doi:10.1002/dev.420240803
  • Li, H., Liu, X., Poh, Y., Wu, L., Zhou, Q.G., & Cai, B.C. (2014). Rapid determination of corticosterone in mouse plasma by ultra fast liquid chromatography-tandem mass spectrometry. Biomedical Chromatography, 28, 1860–1863. doi:10.1002/bmc.3232
  • Lovick, T.A. (2012). Estrous cycle and stress: Influence of progesterone on the female brain. Brazilian Journal of Medical and Biological Research, 45, 314–320. doi:10.1590/S0100-879X2012007500044
  • Machado, R.B., Tufik, S., & Suchecki, D. (2008). Chronic stress during paradoxical sleep deprivation increases paradoxical sleep rebound: association with prolactin plasma levels and brain serotonin content. Psychoneuroendocrinology, 33, 1211–1224. doi:10.1016/j.psyneuen.2008.06.007
  • Matthews, S.G. (2000). Antenatal glucocorticoids and programming of the CNS. Pediatric Research, 47, 291–300.
  • Matthews, K., Wilkinson, L.S., & Robins, T.W. (1996). Repeated maternal separation of preweanling rats attenuates behavioral responses to primary and conditioned incentives in adulthood. Physiology & Behavior, 59, 99–107.
  • Mazor, A., Matar, M.A., Kaplan, Z., Kozlovsky, N., Zohar, J., & Cohen, H. (2009). Gender-related qualitative differences in baseline and post-stress anxiety responses are not reflected in the incidence of criterion-based PTSD-like behaviour patterns. World Journal of Biological Psychiatry, 10, 856–869. doi:10.1080/15622970701561383
  • McGhee, N.K., Jefferson, L.S., & Kimball, S.R. (2009). Elevated corticosterone associated with food deprivation upregulares expression in rat skeletal muscle of the mTORC1 repressor, REDD1. The Journal of Nutrition, 139, 828–834. doi:10.3945/jn.108.099846
  • Meyer, J.S. (1983). Early adrenalectomy stimulates subsequent growth and development of the rat brain. Experimental Neurology, 82, 432–446.
  • Milstein, J.A., Dalley, J.W., & Robbins, T.W. (2010). Methylphenidate-induced impulsivity: Pharmacological antagonism by beta-adrenoreceptor blockade. Journal of Psychopharmacology, 24, 309–321. doi:10.1177/0269881108098146
  • Oquendo, M.A., & Mann, J.J. (2000). The biology of impulsivity and suicidality. Psychiatric Clinics of North America, 23, 11–25.
  • Patki, G., Atrooz, F., Alkadhi, I., Solanki, N., & Salim, S. (2015). High aggression in rats is associated with elevated stress, anxiety-like behavior, and altered catecholamine content in the brain. Neuroscience Letters, 584, 308–313. doi:10.1016/j.neulet.2014.10.051
  • Pellow, S., Chopin, P., File, S.E., & Briley, M. (1985). Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of Neuroscience Methods, 14, 149–167.
  • Penke, Z., Felszeghy, K., Fernette, B., Sage, D., Nyakas, C., & Burlet, A. (2001). Postnatal maternal deprivation produces long-lasting modifications of the stress response, feeding and stress-related behaviour in the rat. European Journal of Neuroscience, 14, 747–755.
  • Pothos, E.N., Hernandez, L., & Hoebel, B.G. (1995). Chronic food deprivation decreases extracellular dopamine in the nucleus accumbens: Implications for a possible neurochemical link between weight loss and drug abuse. Obesity Research, 3, 525S–529S.
  • Powell, T.R., Fernandes, C., & Schalkwyk, L.C. (2012). Depression-related behavioral tests. Current Protocols in Mouse Biology, 2, 119–127. doi:10.1002/9780470942390.mo110176
  • Rentesi, G., Antoniou, K., Marselos, M., Syrrou, M., Papadopoulou-Daifoti, Z., & Konstandi, M. (2013). Early maternal deprivation-induced modifications in the neurobiological, neurochemical and behavioral profile of adult rats. Behavioral Brain Research, 244, 29–37. doi:10.1016/j.bbr.2013.01.040
  • Robinson, E.S., Eagle, D.M., Mar, A.C., Bari, A., Banerjee, G., Jiang, X., … Robbins, T.W. (2008). Similar effects of the selective noradrenaline reuptake inhibitor atomoxetine on three distinct forms of impulsivity in the rat. Neuropsychopharmacology, 33, 1028–1037. doi:10.1038/sj.npp.1301487
  • Rosenfeld, P., Gutierrez, Y.A., Martin, A.M., Mallett, H.A., Alleva, E., & Levine, S. (1991). Maternal regulation of the adrenocortical response in preweanling rats. Physiology & Behavior, 50, 661–671.
  • Rots, N.Y., de Jong, J., Workel, J.O., Levine, S., Cools, A.R., & De Kloet, E.R. (1996). Neonatal maternally deprived rats have as adults elevated basal pituitary-adrenal activity and enhanced susceptibility to apomorphine. Journal of Neuroendocrinology, 8, 501–506.
  • Roy, A., Adinoff, B., & Linnoila, M. (1988). Acting out hostility in normal volunteers: Negative correlation with levels of 5HIAA in cerebrospinal fluid. Psychiatry Research, 24, 187–194.
  • Sachs, B.D., Rodriguiz, R.M., Siesser, W.B., Kenan, A., Royer, E.L., Jacobsen, J.P., … Caron, M.G. (2013). The effects of brain serotonin deficiency on behavioural disinhibition and anxiety-like behaviour following mild early life stress. The International Journal of Neuropsychopharmacology, 16, 2081–2094. doi:10.1017/S1461145713000321
  • Salamone, J.D., & Correa, M. (2012). The mysterious motivational functions of mesolimbic dopamine. Neuron, 76, 470–485. doi:10.1016/j.neuron.2012.10.021
  • Schoenfeld, N.M., Leathem, J.H., & Rabii, J. (1980). Maturation of adrenal stress responsiveness in the rat. Neuroendocrinology, 31, 101–105. doi:10.1159/000123058
  • Stein, D.J., Hollander, E., & Liebowitz, M.R. (1993). Neurobiology of impulsivity and the impulse control disorders. Journal of Neuropsychiatry and Clinical Neuroscience, 5, 9–17. doi:10.1176/jnp.5.1.9
  • Suchecki, D., Nelson, D.Y., Van Oers, H., & Levine, S. (1995). Activation and inhibition of the hypothalamic–pituitary–adrenal axis of the neonatal rat: Effects of maternal deprivation. Psychoneuroendocrinology, 20, 169–182.
  • Sullivan, R.M., & Holman, P.J. (2010). Transitions in sensitive period attachment learning in infancy: the role of corticosterone. Neuroscience and Biobehavioral Reviews, 34, 835–844. doi:10.1016/j.neubiorev.2009.11.010
  • Sun, H., Green, T.A., Theobald, D.E., Birnbaum, S.G., Graham, D.L., Zeeb, F.D., … Winstanley, C.A. (2010). Yohimbine increases impulsivity through activation of cAMP response element binding in the orbitofrontal cortex. Biological Psychiatry, 67, 649–656. doi:10.1016/j.biopsych.2009.11.030
  • Veenema, A.H., Blume, A., Niederle, D., Buwalda, B., & Neumann, I.D. (2006). Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. European Journal of Neuroscience, 24, 1711–1720. doi:10.1111/j.1460-9568.2006.05045.x
  • Verma, P., Hellemans, K.G., Choi, F.Y., Yu, W., & Weinberg, J. (2010). Circadian phase and sex effects on depressive/anxiety-like behaviors and HPA axis responses to acute stress. Physiology & Behavior, 99, 276–285. doi:10.1016/j.physbeh.2009.11.002
  • Viveros, M.P., Díaz, F., Mateos, B., Rodríguez, N., & Chowen, J.A. (2010). Maternal deprivation induces a rapid decline in circulating leptin levels and sexually dimorphic modifications in hypothalamic trophic factors and cell turnover. Hormones and Behavior, 57, 405–414. doi:10.1016/j.yhbeh.2010.01.009
  • Viveros, M.P., Llorente, R., Díaz, F., Romero-Zerbo, S.Y., Bermudez-Silva, F.J., Rodríguez de Fonseca, F., … Chowen, J.A. (2010). Maternal deprivation has sexually dimorphic long-term effects on hypothalamic cell-turnover, body weight and circulating hormone levels. Hormones and Behavior, 57, 808–819. doi:10.1016/j.yhbeh.2010.08.003
  • Wauquier, A. (1980). The pharmacology of catecholamine involvement in the neural mechanisms of reward. Acta Neurobiologiae Experimentalis), 40, 665–686.
  • Wertheimer, G.S., Girardi, C.E., de Oliveira, A.S., Monteiro Longo, B., & Suchecki, D. (2016). Maternal deprivation alters growth, food intake, and neuropeptide Y in the hypothalamus of adolescent male and female rats. Developmental Psychobiology, 58, 1066–1075. doi:10.1002/dev.21440
  • Witek-Janusek, L. (1988). Pituitary-adrenal response to bacterial endotoxin in developing rats. American Journal of Physiology, 255, E525–E530. doi:10.1152/ajpendo.1988.255.4.E525

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.