2,380
Views
25
CrossRef citations to date
0
Altmetric
Review Article

Animal models of social stress: the dark side of social interactions

, , , , &
Pages 417-432 | Received 23 Dec 2017, Accepted 27 Mar 2018, Published online: 10 May 2018

References

  • Ahmed, S.H., Stinus, L., Lemoal, M., & Cador, M. (1995). Social deprivation enhances the vulnerability of male wistar rats to stressor and amphetamine induced behavioral sensitization. Psychopharmacology, 117, 116–124. doi: 10.1007/BF02245106
  • Albers, H.E. (2012). The regulation of social recognition, social communication and aggression: Vasopressin in the social behavior neural network. Hormones and Behavior, 61, 283–292. doi: 10.1016/j.yhbeh.2011.10.007
  • Albert, D.J., Dyson, E.M., & Walsh, M.L. (1988). Cohabitation with a female activates testosterone-dependent social aggression in male rats independently of changes in serum testosterone concentration. Physiology & Behavior, 44, 735–740. doi: 10.1016/0031-9384(88)90054-6
  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Publishing Inc.
  • Anisman, H., Hayley, S., Kelly, O., Borowski, T., & Merali, Z. (2001). Psychogenic, neurogenic, and systemic stressor effects on plasma corticosterone and behavior: Mouse strain-dependent outcomes. Behavioral Neuroscience, 115, 443–454. doi: 10.1037/0735-7044.115.2.443
  • Anisman, H., Lacosta, S., Kent, P., Mcintyre, D.C., & Merali, Z. (1998). Stressor-induced corticotropin-releasing hormone, bombesin, ACTH and corticosterone variations in strains of mice differentially responsive to stressors. Stress, 2, 209–220. doi: 10.3109/10253899809167284
  • Apfelbach, R., Blanchard, C.D., Blanchard, R.J., Hayes, R.A., & McGregor, I.S. (2005). The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neuroscience and Biobehavioral Reviews, 29, 1123–1144. doi: 10.1016/j.neubiorev.2005.05.005
  • Armario, A., Gavaldà, A., & Martí, J. (1995). Comparison of the behavioural and endocrine response to forced swimming stress in five inbred strains of rats. Psychoneuroendocrinology, 20, 879–890. doi: 10.1016/0306-4530(95)00018-6
  • Arseneault, L. (2017). The long-term impact of bullying victimization on mental health. World Psychiatry, 16, 27–28. doi: 10.1002/wps.20399
  • Bains, J.S., Cusulin, J.I.W., & Inoue, W. (2015). Stress: Stress-related synaptic plasticity in the hypothalamus. Nature Reviews Neuroscience, 16, 377–388. doi: 10.1038/nrn3881
  • Baribeau, D.A., & Anagnostou, E. (2015). Oxytocin and vasopressin: Linking pituitary neuropeptides and their receptors to social neurocircuits. Frontiers in Neuroscience, 9, 335. doi: 10.3389/fnins.2015.00335
  • Bartolomucci, A. (2007). Social stress, immune functions and disease in rodents. Frontiers in Neuroendocrinology, 28, 28–49. doi: 10.1016/j.yfrne.2007.02.001
  • Beiderbeck, D.I., Neumann, I.D., & Veenema, A.H. (2007). Differences in intermale aggression are accompanied by opposite vasopressin release patterns within the septum in rats bred for low and high anxiety. European Journal of Neuroscience, 26, 3597–3605. doi: 10.1111/j.1460-9568.2007.05974.x
  • Beiderbeck, D.I., Reber, S.O., Havasi, A., Bredewold, R., Veenema, A.H., & Neumann, I.D. (2012). High and abnormal forms of aggression in rats with extremes in trait anxiety – Involvement of the dopamine system in the nucleus accumbens. Psychoneuroendocrinology, 37, 1969–1980. doi: 10.1016/j.psyneuen.2012.04.011
  • Berton, O., Aguerre, S., Sarrieau, A., Mormede, P., & Chaouloff, F. (1998). Differential effects of social stress on central serotonergic activity and emotional reactivity in Lewis and spontaneously hypertensive rats. Neuroscience, 82, 147–159. doi: 10.1016/S0306-4522(97)00282-0
  • Berton, O., Covington, H.E., Ebner, K., Tsankova, N.M., Carle, T.L., Ulery, P., … Nestler, E.J. (2007). Induction of ΔFosB in the Periaqueductal Gray by stress promotes active coping responses. Neuron, 55, 289–300. doi: 10.1016/j.neuron.2007.06.033
  • Berton, O., McClung, C.A., Dileone, R.J., Krishnan, V., Renthal, W., Russo, S.J., … Nestler, E.J. (2006). Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science, 311, 864–868. doi: 10.1126/science.1120972
  • Bhatnagar, S., Huber, R., Nowak, N., & Trotter, P. (2002). Lesions of the posterior paraventricular thalamus block habituation of hypothalamic-pituitary-adrenal responses to repeated restraint. Journal of Neuroendocrinology, 14(3), 403–410. doi: 10.1046/j.0007-1331.2002.00792.x
  • Biro, L., Toth, M., Sipos, E., Bruzsik, B., Tulogdi, A., Bendahan, S., … Haller, J. (2016). Structural and functional alterations in the prefrontal cortex after post-weaning social isolation: Relationship with species-typical and deviant aggression. Brain Structure and Function, 222, 1861–1875. doi: 10.1007/s00429-016-1312-z
  • Björkqvist, K. (2001). Social defeat as a stressor in humans. Physiology &Amp; Behavior, 73, 435–442. doi: 10.1016/S0031-9384(01)00490-5
  • Blanchard, R.J., McKittrick, C.R., & Blanchard, D.C. (2001). Animal models of social stress: Effects on behavior and brain neurochemical systems. Physiology & Behavior, 73, 261–271. doi: 10.1016/S0031-9384(01)00449-8
  • Bosch, O.J., & Neumann, I.D. (2012). Both oxytocin and vasopressin are mediators of maternal care and aggression in rodents: From central release to sites of action. Hormones and Behavior, 61, 293–303. doi: 10.1016/j.yhbeh.2011.11.002
  • Bowlby, J. (1951). Maternal care and mental health. Bulletin of the World Health Organization, 3, 355–533.
  • Bredewold, R., Smith, C.J., Dumais, K.M., & Veenema, A.H. (2014). Sex-specific modulation of juvenile social play behavior by vasopressin and oxytocin depends on social context. Frontiers in Behavioral Neuroscience, 8, 216. doi: 10.3389/fnbeh.2014.00216
  • Brown, K.J., & Grunberg, N.E. (1995). Effects of housing on male and female rats: Crowding stresses male but calm females. Physiology & Behavior, 58, 1085–1089. doi: 10.1016/0031-9384(95)02043-8
  • Buckley, T., Bartrop, R., Mckinley, S., Ward, C., Bramwell, M., Roche, D., … Tofler, G. (2009). Prospective study of early bereavement on psychological and behavioural cardiac risk factors. Internal Medicine Journal, 39, 370–378. doi: 10.1111/j.1445-5994.2008.01879.x
  • Buske-Kirschbaum, A., Geiben, A., & Hellhammer, D. (2001). Psychobiological aspects of atopic dermatitis: An overview. Psychotherapy and Psychosomatics, 70, 6–16. doi: 10.1159/000056219
  • Cacioppo, J.T., Cacioppo, S., Capitanio, J.P., & Cole, S.W. (2015). The neuroendocrinology of social isolation. Annual Review of Psychology, 66, 733–767. doi: 10.1146/annurev-psych-010814-015240
  • Calcagnoli, F., De Boer, S.F., Althaus, M., De Boer, J.A., & Koolhaas, J.M. (2013). Antiaggressive activity of central oxytocin in male rats. Psychopharmacology, 229, 639–651. doi: 10.1007/s00213-013-3124-7
  • Calcagnoli, F., de Boer, S.F., Beiderbeck, D.I., Althaus, M., Koolhaas, J.M., & Neumann, I.D. (2014). Local oxytocin expression and oxytocin receptor binding in the male rat brain is associated with aggressiveness. Behavioural Brain Research, 261, 315–322. doi: 10.1016/j.bbr.2013.12.050
  • Caldwell, H.K. (2017). Oxytocin and Vasopressin: Powerful regulators of social behavior. The Neuroscientist, 23, 517–528. doi: 10.1177/1073858417708284
  • Campbell, J.C. (2002). Health consequences of intimate partner violence. Lancet (London, England), 359, 1331–1336. doi: 10.1016/S0140-6736(02)08336-8
  • Cannon, W.B. (1929). Organization for physiological homeostasis. Physiological Reviews, 9, 399–431. doi: 10.1152/physrev.1929.9.3.399
  • Caramaschi, D., de Boer, S.F., & Koolhaas, J.M. (2008). Is hyper-aggressiveness associated with physiological hypoarousal? A comparative study on mouse lines selected for high and low aggressiveness. Physiology & Behavior, 95, 591–598. doi: 10.1016/j.physbeh.2008.08.019
  • Carpenter, L., Shattuck, T., Tyrka, A., Geracioti, T., & Price, L.H. (2013). Effect of childhood physical abuse on cortisol stress response. Psychopharmacology, 214, 367–375. doi: 10.1007/s00213-010-2007-4
  • Caspi, A., Mcclay, J., Moffitt, T.E., Mill, J., Martin, J., Craig, I.W., … Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science (New York, N.Y.), 297, 851–854. doi: 10.1126/science.1072290
  • Champagne, D., Beaulieu, J., & Drolet, G. (1998). CRFergic innervation of the paraventricular nucleus of the rat hypothalamus: A tract-tracing study. Journal of Neuroendocrinology, 10, 119–131. doi: 10.1046/j.1365-2826.1998.00179.x
  • Choi, J., Park, M., Kim, C., Lee, Y., & Choi, E. (2017). Long-term consumption of sugar- sweetened beverage during the growth period promotes social aggression in adult mice with proinflammatory responses in the brain. Scientific Reports, 7, 45693. doi: 10.1038/srep45693
  • Cohen, S., Janicki-Deverts, D., & Miller, G.E. (2007). Psychological stress and disease. Journal of American Medical Association, 298, 1685–1687. doi: 10.1001/jama.298.14.1685
  • Coker, A.L., Davis, K.E., Arias, I., Desai, S., Sanderson, M., Brandt, H.M., & Smith, P.H. (2002). Physical and mental health effects of intimate partner violence for men and women. American Journal of Preventive Medicine, 23, 260–268. doi: 10.1016/S0749-3797(02)00514-7
  • Cordero, M.I., Ansermet, F., & Sandi, C. (2013). Long-term programming of enhanced aggression by peripuberty stress in female rats. Psychoneuroendocrinology, 38, 2758–2769. doi: 10.1016/j.psyneuen.2013.07.005
  • Dackis, M.N., Rogosch, F.A., & Cicchetti, D. (2015). Child maltreatment, callous – unemotional traits, and defensive responding in high-risk children: An investigation of emotion-modulated startle response. Development and Psychopathology, 27, 1527–1545. doi: 10.1017/S0954579415000929
  • Davidson, R.J., & McEwen, B.S. (2012). Social influences on neuroplasticity: Stress and interventions to promote well-being. Nature Neuroscience, 15, 689–695. doi: 10.1038/nn.3093
  • de Jong, T.R., & Neumann, I.D. (2017). Oxytocin and Aggression. In: Current Topics in Behavioral Neurosciences. Heidelberg, Berlin: Springer. doi: 10.1007/7854_2017_13
  • de Jong, T.R., Beiderbeck, D.I., & Neumann, I.D. (2014). Measuring virgin female aggression in the Female Intruder Test (FIT): Effects of oxytocin, estrous cycle, and anxiety. PLoS One, 9, e91701. doi: 10.1371/journal.pone.0091701
  • de Kloet, E.R., Joëls, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews Neuroscience, 6, 463–475. doi: 10.1038/nrn1683
  • DeVries, A.C., Glasper, E.R., & Detillion, C.E. (2003). Social modulation of stress responses. Physiology & Behavior, 79, 399–407. doi: 10.1016/S0031-9384(03)00152-5 doi: 10.1016/S0031-9384(03)00152-5
  • Dubois-Dauphin, M., Pevet, P., Tribollet, E., & Dreifuss, J.J. (1990). Vasopressin in the brain of the golden hamster: The distribution of vasopressin binding sites and of immunoreactivitz to the vasopressin-related glycopeptide. The Journal of Comparative Neurology, 300, 535–548. doi: 10.1002/cne.903000408
  • Dumais, K.M., & Veenema, A.H. (2016). Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Frontiers in Neuroendocrinology, 40, 1–23. doi: 10.1016/j.yfrne.2015.04.003
  • Dunbar, R.I., & Shultz, S. (2007). Evolution in the social brain. Science, 317, 1344–1347. doi: 10.1126/science.1145463
  • Ebner, K., Wotjak, C.T., Landgraf, R., & Engelmann, M. (2000). A single social defeat experience selectively stimulates the release of oxytocin, but not vasopressin, within the septal brain area of male rats. Brain Research, 872, 87–92. doi: 10.1016/S0006-8993(00)02464-1
  • Ebner, K., Wotjak, C.T., Landgraf, R., & Engelmann, M. (2005). Neuroendocrine and behavioral response to social confrontation: Residents versus intruders, active versus passive coping styles. Hormones and Behavior, 47, 14–21. doi: 10.1016/j.yhbeh.2004.08.002
  • Eliava, M., Melchior, M., Knobloch-Bollmann, H.S., Wahis, J., da Silva Gouveia, M., Tang, Y., … Grinevich, V. (2016). A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron, 89, 1291–1304. doi: 10.1016/j.neuron.2016.01.041
  • Elzinga, B.M., Spinhoven, P., Berretty, E., de Jong, P., & Roelofs, K. (2010). The role of childhood abuse in HPA-axis reactivity in social anxiety disorder: A pilot study. Biological Psychology, 83, 1–6. doi: 10.1016/j.biopsycho.2009.09.006
  • Engelmann, M., Ebner, K., Landgraf, R., Holsboer, F., & Wotjak, C.T. (1999). Emotional stress triggers intrahypothalamic but not peripheral release of oxytocin in male rats. Journal of Neuroendocrinology, 11, 867–872. doi: 10.1046/j.1365-2826.1999.00403.x
  • Engelmann, M., Landgraf, R., & Wotjak, C. (2004). The hypothalamic – neurohypophysial system regulates the hypothalamic – pituitary – adrenal axis under stress: An old concept revisited. Frontiers in Neuroendocrinology, 25, 132–149. doi: 10.1016/j.yfrne.2004.09.001
  • Faucher, J., Koszycki, D., Bradwejn, J., Merali, Z., & Bielajew, C. (2016). Effects of CBT versus MBSR treatment on social stress reactions in social anxiety disorder. Mindfulness, 7, 514–526. doi: 10.1007/s12671-015-0486-4
  • Foertsch, S., Füchsl, A.M., Faller, S.D., Hölzer, H., Langgartner, D., Messmann, J., … Reber, S.O. (2017). Splenic glucocorticoid resistance following psychosocial stress requires physical injury. Scientific Reports, 7, 1–12. doi: 10.1038/s41598-017-15897-2
  • Franklin, T.B., Linder, N., Russig, H., Thony, B., & Mansuy, I.M. (2011). Influence of early stress on social abilities and serotonergic functions across generations in mice. PLoS One, 6, e21842. doi: 10.1371/journal.pone.0021842
  • Füchsl, A.M., Langgartner, D., & Reber, S. (2013). Mechanisms underlying the increased plasma ACTH levels in chronic psychosocially stressed male mice. PLoS One, 8, e84161. doi: 10.1371/journal.pone.0084161
  • Füchsl, A.M., Neumann, I.D., & Reber, S.O. (2014). Stress resilience: A low-anxiety genotype protects male mice from the consequences of chronic psychosocial stress. Endocrinology, 155, 117–126. doi: 10.1210/en.2013-1742
  • Füchsl, A.M., Uschold-Schmidt, N., & Reber, S.O. (2013). Chronic psychosocial stress in male mice causes an up-regulation of scavenger receptor class B type 1 protein in the adrenal glands. Stress, 16, 461–468. doi: 10.3109/10253890.2013.793303
  • Gilbert, P. (2001). Evolution and social anxiety: The role of attraction, social competition, and social hierarchies. The Psychiatric Clinics of North America, 24, 723–751. doi: 10.1016/S0193-953X(05)70260-4
  • Golden, S.A., Covington, H.E., Berton, O., & Russo, S.J. (2011). A standardized protocol for repeated social defeat stress in mice. Nature Protocols, 6, 1183–1191. doi: 10.1038/nprot.2011.361
  • Goldin, P.R., Manber, T., Hakimi, S., Canli, T., & Gross, J.J. (2009). Neural bases of social anxiety disorder: Emotional reactivity and cognitive regulation during social and physical threat. Archives of General Psychiatry, 66, 170–180. doi: 10.1001/archgenpsychiatry.2008.525
  • Gruver, A.L., & Sempowski, G.D. (2008). Cytokines, leptin, and stress-induced thymic atrophy. Journal of Leukocyte Biology, 84, 915–923. doi: 10.1189/jlb.0108025
  • Gunnar, M.R., & Hostinar, C.E. (2015). The social buffering of the hypothalamic – pituitary – adrenocortical axis in humans: Developmental and experiential determinants. Social Neuroscience, 10, 479–488. doi: 10.1080/17470919.2015.1070747
  • Guzmán, Y.F., Tronson, N.C., Jovasevic, V., Sato, K., Guedea, A.L., Mizukami, H., … Radulovic, J. (2013). Fear-enhancing effects of septal oxytocin receptors. Nature Neuroscience, 16, 1185–1187. doi: 10.1038/nn.3465
  • Halász, J., Tóth, M., Kalló, I., Liposits, Z., & Haller, J. (2006). The activation of prefrontal cortical neurons in aggression – A double labeling study. Behavioural Brain Research, 175, 166–175. doi: 10.1016/j.bbr.2006.08.019
  • Haller, J. (2013). The neurobiology of abnormal manifestations of aggression – A review of hypothalamic mechanisms in cats, rodents, and humans. Brain Research Bulletin, 93, 97–109. doi: 10.1016/j.brainresbull.2012.10.003
  • Haller, J. (2016). Preclinical models of conduct disorder − principles and pharmacologic perspectives. Neuroscience and Biobehavioral Reviews, 7634, 30005–30007. doi: 10.1016/j.neubiorev.2016.05.032.
  • Haller, J., & Bakos, N. (2002). Stress-induced social avoidance: A new model of stress-induced anxiety? Physiology and Behavior, 77, 327–332. doi: 10.1016/S0031-9384(02)00860-0
  • Haller, J., Halász, J., Mikics, É., & Kruk, M.R. (2004). Chronic glucocorticoid deficiency-induced abnormal aggression, autonomic hypoarousal, and social deficit in rats. Journal of Neuroendocrinology, 16, 550–557. doi: 10.1111/j.1365-2826.2004.01201.x
  • Haller, J., Harold, G., Sandi, C., & Neumann, I.D. (2014). Effects of adverse early-life events on aggression and anti-social behaviours in animals and humans. Journal of Neuroendocrinology, 26, 724–738. doi: 10.1111/jne.12182
  • Hansen, A.M., Hogh, A., Persson, R., Karlson, B., Garde, A.H., & Ørbaek, P. (2006). Bullying at work, health outcomes, and physiological stress response. Journal of Psychosomatic Research, 60, 63–72. doi: 10.1016/j.jpsychores.2005.06.078
  • Heinrichs, S.C., Pich, E.M., Miczek, K.A., Britton, K.T., & Koob, G.F. (1992). Corticotropin-releasing factor antagonist reduces emotionality in socially defeated rats via direct neurotropic action. Brain Research, 581, 190–197. doi: 10.1016/0006-8993(92)90708-H
  • Herman, J.P., Mcklveen, J.M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., … Myers, B. (2016). Regulation of the hypothalamic-pituitary- adrenocortical stress response. Comprehensive Physiology, 6, 603–621. doi: 10.1002/cphy.c150015
  • Hernández, V.S., Hernández, O.R., Perez de la Mora, M., Gómora, M.J., Fuxe, K., Eiden, L.E., & Zhang, L. (2016). Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: Implications for anxiety and ctress coping. Frontiers in Neural Circuits, 10, 92. doi: 10.3389/fncir.2016.00092
  • Hinduja, S., & Patchin, J. (2010). Bullying, cyberbullying, and suicide. Archives of Suicide Research, 14, 206–221. doi: 10.1080/13811118.2010.494133
  • Hollis, F., Wang, H., Dietz, D., Gunjan, A., & Kabbaj, M. (2010). The effects of repeated social defeat on long-term depressive-like behavior and short-term histone modifications in the hippocampus in male Sprague-Dawley rats. Psychopharmacology, 211, 69–77. doi: 10.1007/s00213-010-1869-9
  • Huhman, K.L., Bunnell, B.N., Mougey, E.H., & Meyerhoff, J.L. (1990). Effects of social conflict on POMC-derived peptides and glucocorticoids in male golden hamsters. Physiology & Behavior, 47, 949–956. doi: 10.1016/0031-9384(90)90023-W
  • Ieraci, A., Mallei, A., & Popoli, M. (2016). Social isolation stress induces anxious-depressive-like behavior and alterations of Neuroplasticity-related genes in adult male mice. Neural Plasticity, 2016, 13. doi: 10.1155/2016/6212983
  • Ingram, C.D., & Moos, F. (1992). Oxytocin-containing pathway to the bed nuclei of the stria terminalis of the lactating rat brain: Immunocytochemical and in vitro electrophysiological evidence. Neuroscience, 47, 439–452. doi: 10.1016/0306-4522(92)90258-4
  • Johnson, Z.V., & Young, L.J. (2017). Oxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience. Neuroscience and Biobehavioral Reviews, 76, 87–98. doi: 10.1016/j.neubiorev.2017.01.034
  • Jurek, B., & Neumann, I.D. (2018). The oxytocin receptor: From intracellular signaling to behavior. Physiological Reviews (in press).
  • Kamakura, R., Kovalainen, M., Leppäluoto, J., Herzig, K.H., & Mäkelä, K.A. (2016). The effects of group and single housing and automated animal monitoring on urinary corticosterone levels in male C57BL/6 mice. Physiological Reports, 4, e12703. doi: 10.14814/phy2.12703
  • Karandrea, D., Kittas, C., & Kitraki, E. (2002). Forced swimming differentially affects male and female brain corticosteroid receptors. Neuroendocrinology, 75, 217–226. doi: 10.1159/000054713
  • Keeney, A., Jessop, D.A., Harbuz, M.S., Marsden, C.A., Hogg, S., & Blackburn-Munro, R.E. (2006). Differential effects of acute and chronic social defeat stress on hypothalamic-pituitary-adrenal axis function and hippocampal serotonin release in mice. Journal of Neuroendocrinology, 18, 330–338. doi: 10.1111/j.1365-2826.2006.01422.x
  • Keeney, A.J., & Hogg, S. (1999). Behavioural consequences of repeated social defeat in the mouse, preliminary evalution of a potential animal model of depression. Behavioural Pharmacology, 10, 753–764. doi: 10.1097/00008877-199912000-00007
  • Knobloch, H.S., Charlet, A., Hoffmann, L.C., Eliava, M., Khrulev, S., Cetin, A.H., … Grinevich, V. (2012). Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron, 73, 553–566. doi: 10.1016/j.neuron.2011.11.030
  • Knobloch, H.S., Grinevich, V., & Dabrowska, J. (2014). Evolution of oxytocin pathways in the brain of vertebrates. Frontiers in Behavioral Neuroscience, 8, 1–13. doi: 10.3389/fnbeh.2014.00031
  • Kohl, C., Wang, X.D., Grosse, J., Fournier, C., Harbich, D., Westerholz, S., … Schmidt, M.V. (2015). Hippocampal neuroligin-2 links early-life stress with impaired social recognition and increased aggression in adult mice. Psychoneuroendocrinology, 55, 128–143. doi: 10.1016/j.psyneuen.2015.02.016
  • Koolhaas, J.M., Bartolomucci, A., Buwalda, B., de Boer, S.F., Flügge, G., Korte, S.M., … Fuchs, E. (2011). Stress revisited: A critical evaluation of the stress concept. Neuroscience and Biobehavioral Reviews, 35, 1291–1301. doi: 10.1016/j.neubiorev.2011.02.003
  • Koolhaas, J.M., Coppens, C.M., de Boer, S.F., Buwalda, B., Meerlo, P., & Timmermans, P.J. (2013). The resident-intruder paradigm: A standardized test for aggression, violence and social stress. Journal of Visualized Experiments, 77, 1–7.doi: 10.3791/4367.
  • Koolhaas, J.M., DeBoer, S.F., Buwalda, B., & Meerlo, P. (2017). Social stress models in rodents: Towards enhanced validity. Neurobiology of Stress, 6, 104–112. doi: 10.1016/j.ynstr.2016.09.003
  • Kowalski, R.M., Giumetti, G.W., Schroeder, A.N., & Lattanner, M.R. (2014). Bullying in the digital age: A critical review and meta-analysis of cyberbullying research among youth. Psychological Bulletin, 140, 1073–1137. doi: 10.1037/a0035618
  • Krishnan, V., Han, M.H., Graham, D.L., Berton, O., Renthal, W., Russo, S.J., … Nestler, E.J. (2007). Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell, 131, 391–404. doi: 10.1016/j.cell.2007.09.018
  • Laman-Maharg, A., & Trainor, B.C. (2017). Stress, sex, and motivated behaviors. Journal of Neuroscience Research, 95, 83–92. doi: 10.1002/jnr.23815
  • Landgraf, R., Häcker, R., & Buhl, R. (1982). Plasma vasopressin and oxytocin in response to exercise and during a day-night cycle in man. Endokrinologie, 79, 281–291.
  • Langgartner, D., Füchsl, A.M., Uschold-Schmidt, N., Slattery, D.A., & Reber, S.O. (2015). Chronic subordinate colony housing paradigm: A mouse model to characterize the consequences of insufficient glucocorticoid signaling. Frontiers in Psychiatry, 6, 18. doi: 10.3389/fpsyt.2015.00018
  • Larrieu, T., Cherix, A., Lei, H., & Gruetter, R. (2017). Hierarchical status predicts behavioral vulnerability and nucleus accumbens metabolic profile following chronic social defeat stress. Current Biology, 27, 2202–2210. doi: 10.1016/j.cub.2017.06.027
  • Litvin, Y., Murakami, G., & Pfaff, D.W. (2011). Effects of chronic social defeat on behavioral and neural correlates of sociality: Vasopressin, oxytocin and the vasopressinergic V1b receptor. Physiology and Behavior, 103, 393–403. doi: 10.1016/j.physbeh.2011.03.007
  • Lukas, M., & de Jong, T.R. (2017). Conspecific interactions in adult laboratory rodents: Friends or foes?. Currents Topics in Behavioral Neuroscience, 30, 3–24. doi: 10.1007/7854_2015_428.
  • Lukas, M., & Neumann, I.D. (2013). Oxytocin and vasopressin in rodent behaviors related to social dysfunctions in autism spectrum disorders. Behavioural Brain Research, 251, 85–94. doi: 10.1016/j.bbr.2012.08.011
  • Lukas, M., & Neumann, I.D. (2014). Social preference and maternal defeat-induced social avoidance in virgin female rats: Sex differences in involvement of brain oxytocin and vasopressin. Journal of Neuroscience Methods, 234, 101–107. doi: 10.1016/j.jneumeth.2014.03.013
  • Lukas, M., Bredewold, R., Landgraf, R., Neumann, I.D., & Veenema, A.H. (2011). Early life stress impairs social recognition due to a blunted response of vasopressin release within the septum of adult male rats. Psychoneuroendocrinology, 36, 843–853. doi: 10.1016/j.psyneuen.2010.11.007
  • Lukas, M., Toth, I., Reber, S.O., Slattery, D.A., Veenema, A.H., & Neumann, I.D. (2011). The neuropeptide oxytocin facilitates pro-social behavior and prevents social avoidance in rats and mice. Neuropsychopharmacology, 36, 2159–2168. doi: 10.1038/npp.2011.95
  • MacDonald, K., & Feifel, D. (2014). Oxytocin's role in anxiety: a critical appraisal. Brain Research, 1580, 22–56. doi: 10.1016/j.brainres.2014.01.025
  • Marquez, C., Poirier, G.L., Cordero, M.I., Larsen, M.H., Groner, A., Marquis, J., … Sandi, C. (2013). Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression. Translational Psychiatry, 3, e216. doi: 10.1038/tp.2012.144
  • Martinez, M., Phillips, P.J., & Herbert, J. (1998). Adaptation in patterns of c-fos expression in the brain associated with exposure to either single or repeated social stress in male rats. The European Journal of Neuroscience, 10, 20–33. doi: 10.1046/j.1460-9568.1998.00011.x.
  • McEwen, B.S., Bowles, N.P., Gray, J.D., Hill, M.N., Hunter, R.G., Karatsoreos, I.N., & Nasca, C. (2015). Mechanisms of stress in the brain. Nature Neuroscience, 18, 1353–1363. doi: 10.1038/nn.4086
  • Menon, R., Grund, T., Zoicas, I., Althammer, F., Fiedler, D., Biermeier, V., … Neumann, I.D. (2018). Oxytocin signalling in the lateral septum prevents social fear during lactation. Current Biology, 28, 1–13. doi: 10.1016/j.cub.2018.02.044
  • Miczek, K.A., Maxson, S.C., Fish, E.W., & Faccidomo, S. (2001). Aggressive behavioral phenotypes in mice. Behavioural Brain Research, 125, 167–181. doi: 10.1016/S0166-4328(01)00298-4
  • Mitre, M., Marlin, B.J., Schiavo, J.K., Morina, E., Norden, S.E., Hackett, T., … Froemke, R.C. (2016). A distributed network for social cognition enriched for oxytocin receptors. The Journal of Neuroscience, 36, 2517–2535. doi: 10.1523/JNEUROSCI.2409-15.2016
  • Modecki, K.L., Minchin, J., Harbaugh, A.G., Guerra, N.G., & Runions, K.C. (2014). Bullying prevalence across contexts: A meta-analysis measuring cyber and traditional bullying. Journal of Adolescent Health, 55, 602–611. doi: 10.1016/j.jadohealth.2014.06.007
  • Morimoto, M., Morita, N., Ozawa, H., Yokoyama, K., & Kawata, M. (1996). Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: An immunohistocheminal and in situ hybridization study. Neuroscience Research, 26, 235–269. doi: 10.1016/S0168-0102(96)01105-4
  • Nagaraja, H.S., & Jeganathan, P.S. (1999). Forced swimming stress-induced changes in the physiological and biochemical parameters in albino rats. Indian Journal of Physiology and Pharmacology, 43, 53–59.
  • Nelson, R.J., & Trainor, B.C. (2007). Neural mechanisms of aggression. Nature Reviews Neuroscience, 8, 536–546. doi: 10.1038/nrn2174
  • Nelson, C.A., Zeanah, C.H., Fox, N.A., Marshall, P.J., Smyke, A.T., & Guthrie, D. (2007). Cognitive recovery in socially deprived young children: The Bucharest early intervention project. Science, 318, 1937–1940. doi: 10.1126/science.1143921
  • Nemeroff, C.B. (2016). Paradise lost: The neurobiological and clinical consequences of child abuse and neglect. Neuron, 89, 892–909. doi: 10.1016/j.neuron.2016.01.019
  • Neumann, I.D. (2007). Stimuli and consequences of dendritic release of oxytocin within the brain. Biochemical Society Transactions, 35, 1252–1257. doi: 10.1042/BST0351252
  • Neumann, I.D. (2009). The advantage of social living: Brain neuropeptides mediate the beneficial consequences of sex and motherhood. Frontiers in Neuroendocrinology, 30, 483–496. doi: 10.1016/j.yfrne.2009.04.012
  • Neumann, I.D., & Landgraf, R. (2012). Balance of brain oxytocin and vasopressin: Implications for anxiety, depression, and social behaviors. Trends in Neurosciences, 35, 649–659. doi: 10.1016/j.tins.2012.08.004
  • Neumann, I.D., & Slattery, D.A. (2016). Oxytocin in general anxiety and social fear: A translational approach. Biological Psychiatry, 79, 213–221. doi: 10.1016/j.biopsych.2015.06.004
  • Neumann, I.D., Johnstone, H.A., Hatzinger, M., Liebsch, G., Shipston, M., Russell, J.A., … Douglas, A.J. (1998). Attenuated neuroendocrine responses to emotional and physical stressors in pregnant rats involve adenohypophysial changes. The Journal of Physiology, 508, 289–300. doi: 10.1111/j.1469-7793.1998.289br.x
  • Neumann, I.D., Kromer, S.A., Toschi, N., & Ebner, K. (2000). Brain oxytocin inhibits the (re)activity of the hypothalamo-pituitary-adrenal axis in male rats: Involvement of hypothalamic and limbic brain regions. Regulatory Peptides, 96, 31–38. doi: 10.1016/S0167-0115(00)00197-X
  • Neumann, I.D., Torner, L., & Wigger, A. (2000). Brain oxytocin: Differential inhibition of neuroendocrine stress responses and anxiety-related behaviour in virgin, pregnant and lactating rats. Neuroscience, 95, 567–575. doi: 10.1016/S0306-4522(99)00433-9
  • Neumann, I.D., Veenema, A.H., & Beiderbeck, D.I. (2010). Aggression and anxiety: Social context and neurobiological links. Frontiers in Behavioral Neuroscience, 4, 12. doi: 10.3389/fnbeh.2010.00012
  • Newman, S.W. (1999). The medial extended amygdala in male reproductive behavior. A node in the mammalian social behavior network. Annals of the New York Academy of Sciences, 877, 242–257. doi: 10.1111/j.1749-6632.1999.tb09271.x
  • Nyuyki, K.D., Beiderbeck, D.I., Lukas, M., Neumann, I.D., & Reber, S.O. (2012). Chronic subordinate colony housing (CSC) as a model of chronic psychosocial stress in male rats. PLoS One, 7, e52371.doi: 10.1371/journal.pone.0052371
  • O’Connell, L.A., & Hofmann, H.A. (2011). The vertebrate mesolimbic reward system and social behavior network: A comparative synthesis. The Journal of Comparative Neurology, 519, 3599–3639. doi: 10.1002/cne.22735
  • Oliva, A.M., Salcedo, E., Hellier, J.L., Ly, X., Koka, K., Tollin, D.J., & Restrepo, D. (2010). Toward a mouse neuroethology in the laboratory environment. PLoS One, 5, e11359. doi: 10.1371/journal.pone.0011359
  • Palanza, P., Gioiosa, L., & Parmigiani, S. (2001). Social stress in mice: Gender differences and effects of estrous cycle and social dominance. Physiology & Behavior, 73, 411–420. doi: 10.1016/S0031-9384(01)00494-2
  • Paré, W.P., & Glavin, G.B. (1986). Restraint stress in biomedical research: A review. Neuroscience and Biobehavioral Reviews, 10, 339–370. doi: 10.1016/0149-7634(86)90017-5
  • Peters, S., Slattery, D.A., Flor, P.J., Neumann, I.D., & Reber, S.O. (2013). Differential effects of baclofen and oxytocin on the increased ethanol consumption following chronic psychosocial stress in mice. Addiction Biology, 18, 66–77. doi: 10.1111/adb.12001
  • Peters, S., Slattery, D.A., Uschold-Schmidt, N., Reber, S.O., & Neumann, I.D. (2014). Dose-dependent effects of chronic central infusion of oxytocin on anxiety, oxytocin receptor binding and stress-related parameters in mice. Psychoneuroendocrinology, 42, 225–236. doi: 10.1016/j.psyneuen.2014.01.021
  • Pohl, T.T., Young, L.J., & Bosch, O.J. (2018). Lost connections: Oxytocin and the neural, physiological, and behavioral consequences of disrupted relationships. International Journal of Psychophysiology, in press. doi: 10.1016/j.ijpsycho.2017.12.011. [Epub ahead of print]
  • Pryce, C.R. (2008). Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: Inter-species and intra-species differences. Brain Research Reviews, 57, 596–605. doi: 10.1016/j.brainresrev.2007.08.005
  • Reber, S., Birkeneder, L., Veenema, A.H., Obermeier, F., Falk, W., Straub, R.H., & Neumann, I.D. (2007). Adrenal insufficiency and colonic inflammation after a novel chronic psycho-social stress paradigm in mice: Implications and mechanisms. Endocrinology, 148, 670–682. doi: 10.1210/en.2006-0983
  • Reber, S.O. (2012). Stress and animal models of inflammatory bowel disease-An update on the role of the hypothalamo-pituitary-adrenal axis. Psychoneuroendocrinology, 37, 1–19. doi: 10.1016/j.psyneuen.2011.05.014
  • Reber, S.O., & Neumann, I.D. (2008). Defensive behavioral strategies and enhanced state anxiety during chronic subordinate colony housing are accompanied by reduced hypothalamic vasopressin, but not oxytocin, expression. Annals of the New York Academy of Sciences, 1148, 184–195. doi: 10.1196/annals.1410.003
  • Reber, S.O., Langgartner, D., Foertsch, S., Postolache, T.T., Brenner, L.A., Guendel, H., & Lowry, C.A. (2016). Chronic subordinate colony housing paradigm: A mouse model for mechanisms of PTSD vulnerability, targeted prevention, and treatment – 2016 Curt Richter Award paper. Psychoneuroendocrinology, 74, 221–230. doi: 10.1016/j.psyneuen.2016.08.031
  • Reber, S.O., Obermeier, F., Straub, H.R., Falk, W., & Neumann, I.D. (2006). Chronic intermittent psychosocial stress (Social Defeat/Overcrowding) in mice increases the severity of an acute DSS-induced colitis and impairs regeneration. Endocrinology, 147, 4968–4976. doi: 10.1210/en.2006-0347
  • Reiche, E.M., Nunes, S.O., & Morimoto, H.K. (2004). Stress, depression, the immune system, and cancer. The Lancet. Oncology, 5, 617–625. doi: 10.1016/S1470-2045(04)01597-9
  • Roelofs, K., van Peer, J., Berretty, E., Jong, P. D., Spinhoven, P., & Elzinga, B.M. (2009). Hypothalamus-pituitary-adrenal axis hyperresponsiveness is associated with increased social avoidance behavior in social phobia. Biological Psychiatry, 65, 336–343. doi: 10.1016/j.biopsych.2008.08.022
  • Rotondo, F., Butz, H., Syro, L.V., Yousef, G.M., Di Ieva, A., Restrepo, L.M., … Kovacs, K. (2016). Arginine vasopressin (AVP): A review of its historical perspectives, current research and multifunctional role in the hypothalamo-hypophysial system. Pituitary, 19, 345–355. doi: 10.1007/s11102-015-0703-0
  • Russo, S.J., Murrough, J.W., Han, M., Charney, D.S., & Nestler, E.J. (2012). Neurobiology of resilience. Nature Neuroscience, 15, 1475–1484. doi: 10.1038/nn.3234
  • Sandi, C., & Haller, J. (2015). Stress and the social brain: Behavioural effects and neurobiological mechanisms. Nature Reviews Neuroscience, 16, 290–304. doi: 10.1038/nrn3918
  • Sántha, P., Veszelka, S., Hoyk, Z., Mészáros, M., Walter, F.R., Tóth, A.E., … Deli, M.A. (2016). Restraint stress-induced morphological changes at the blood-brain barrier in adult rats. Frontiers in Molecular Neuroscience, 8, 88. doi: 10.3389/fnmol.2015.00088
  • Sapolsky, R.M. (2015). Stress and the brain: Individual variability and the inverted-U. Nature Neuroscience, 18, 1344–1346. doi: 10.1038/nn.4109
  • Sarro, E.C., Sullivan, R.M., & Barr, G. (2014). Unpredictable neonatal stress enhances adult anxiety and alters amygdala gene expression related to serotonin and GABA. Neuroscience, 258, 147–161. doi: 10.1016/j.neuroscience.2013.10.064
  • Schmidt, M.V., Scharf, S.H., Sterlemann, V., Ganea, K., Liebl, C., Holsboer, F., & Müller, M.B. (2010). High susceptibility to chronic social stress is associated with a depression-like phenotype. Psychoneuroendocrinology, 35, 635–643. doi: 10.1016/j.psyneuen.2009.10.002
  • Schmidt, M.V., Sterlemann, V., & Müller, M.B. (2008). Chronic stress and individual vulnerability. Annals of the New York Academy of Sciences, 1148, 174–183. doi: 10.1196/annals.1410.017
  • Schmidt, M.V., Sterlemann, V., Ganea, K., Liebl, C., Alam, S., Harbich, D., … Müller, M.B. (2007). Persistent neuroendocrine and behavioral effects of a novel, etiologically relevant mouse paradigm for chronic social stress during adolescence. Psychoneuroendocrinology, 32, 417–429. doi: 10.1016/j.psyneuen.2007.02.011
  • Selye, H. (1936). A syndrome produced by diverse nocuous agents. Nature, 138, 32. doi: 10.1038/138032a0
  • Sial, O.K., Warren, B.L., Alcantara, L.F., Parise, E.M., & Bolaños-Guzman, C.A. (2017). Vicarious social defeat stress: Bridging the gap between physical and emotional stress Omar. Journal of Neuroscience Methods, 258, 94–103. doi: 10.1016/j.jneumeth.2015.10.012
  • Singewald, G.M., Nguyen, N.K., Neumann, I.D., Singewald, N., & Reber, S. (2009). Effect of chronic psychosocial stress-induced by subordinate colony (CSC) housing on brain neuronal activity patterns in mice. Stress, 12, 58–69. doi: 10.1080/10253890802042082
  • Singewald, N., Schmuckermair, C., Whittle, N., Holmes, A., & Ressler, K.J. (2015). Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacology & Therapeutics, 149, 150–190. doi: 10.1016/j.pharmthera.2014.12.004
  • Slattery, D.A., & Neumann, I.D. (2008). No stress please! Mechanisms of stress hyporesponsiveness of the maternal brain. The Journal of Physiology, 586, 377–385. doi: 10.1113/jphysiol.2007.145896
  • Slattery, D.A., Uschold, N., Magoni, M., Bär, J., Popoli, M., Neumann, I.D., & Reber, S.O. (2012). Behavioural consequences of two chronic psychosocial stress paradigms: Anxiety without depression. Psychoneuroendocrinology, 37, 702–714. doi: 10.1016/j.psyneuen.2011.09.002
  • Smith, A.S., & Wang, Z. (2014). Hypothalamic oxytocin mediates social buffering of the stress response. Biological Psychiatry, 76, 281–288. doi: 10.1016/j.biopsych.2013.09.017
  • Soravia, L.M., Heinrichs, M., Aerni, A., Maroni, C., Schelling, G., Ehlert, U., … der Quervain, D.J. (2006). Glucocorticoids reduce phobic fear in humans. Proceedings of the National Academy of Sciences of the United States of America, 103, 5585–5590. doi: 10.1073/pnas.0509184103
  • Stefanski, V., & Engler, H. (1999). Social stress, dominance and blood cellular immunity. Journal of Neuroimmunology, 94, 144–152. doi: 10.1016/S0165-5728(98)00242-2. doi: 10.1016/S0165-5728(98)00242-2
  • Steinman, M.Q., Duque-Wilckens, N., Greenberg, G.D., Hao, R., Campi, K.L., Laredo, S.A., … Trainor, B.C. (2016). Sex-specific effects of stress on oxytocin neurons correspond with responses to intranasal oxytocin. Biological Psychiatry, 80, 406–414. doi: 10.1016/j.biopsych.2015.10.007
  • Steinman, M.Q., Laredo, S.A., Lopez, E.M., Manning, C.E., Hao, R.C., Doig, I.E., … Trainor, B.C. (2015). Hypothalamic vasopressin systems are more sensitive to the long term effects of social defeat in males versus females. Psychoneuroendocrinology, 51, 122–134. doi: 10.1016/j.psyneuen.2014.09.009
  • Takahashi, A., Chung, J., Zhang, S., Zhang, H., Grossman, Y., Flanigan, M., … Russo, S.J. (2017). Establishment of a repeated social defeat stress model in female mice. Scientific Reports, 7, 12838. doi: 10.1038/s41598-017-12811-8.
  • Tamashiro, K.L., Nguyen, M.M., & Sakai, R.R. (2005). Social stress: From rodents to primates. Frontiers in Neuroendocrinology, 26, 27–40. doi: 10.1016/j.yfrne.2005.03.001
  • Terranova, J.I., Song, Z., Larkin, T.E., Hardcastle, N., Norvelle, A., Riaz, A., & Albers, H.E. (2016). Serotonin and arginine-vasopressin mediate sex differences in the regulation of dominance and aggression by the social brain. Proceedings of the National Academy of Sciences of the United States of America, 113, 13233–13238. doi: 10.1073/pnas.1610446113
  • Thorndike, B. (1933). A theory of the action of the after-effects of a connection upon it. Psychological Review, 40, 434–439. doi: 10.1037/h0071025
  • Tobin, V.A., Hashimoto, H., Wacker, D.W., Takayanagi, Y., Langnaese, K., Caquineau, C., … Ludwig, M. (2010). An intrinsic vasopressin system in the olfactory bulb is involved in social recognition. Nature, 464, 413–417. doi: 10.1038/nature08826
  • Tokunaga, R. (2010). Following you home from school: A critical review and synthesis of research on cyberbullying victimization. Computers in Human Behavior, 26, 277–287. doi: 10.1016/j.chb.2009.11.014
  • Torner, L., Plotsky, P.M., Neumann, I.D., & de Jong, T.R. (2017). Forced swimming-induced oxytocin release into blood and brain: Effects of adrenalectomy and corticosterone treatment. Psychoneuroendocrinology, 77, 165–174. doi: 10.1016/j.psyneuen.2016.12.006
  • Tost, H., Champagne, F.A., & Meyer-Lindenberg, A. (2015). Environmental influence in the brain, human welfare and mental health. Nature Neuroscience, 18, 4121–4131. doi: 10.1038/nn.4108
  • Toth, I., Neumann, I.D., & Slattery, D.A. (2012). Social fear conditioning: A novel and specific animal model to study social anxiety disorder. Neuropsychopharmacology, 37, 1433–1443. doi: 10.1038/npp.2011.329
  • Toth, I., Neumann, I.D., & Slattery, D.A. (2013). Social fear conditioning as an animal model of social anxiety disorder. Current Protocols in Neuroscience, Chapter 9, Unit9.42. doi: 10.1002/0471142301.ns0942s63
  • Touma, C., Bunck, M., Glasl, L., Nussbaumer, M., Palme, R., Stein, H., … Landgraf, R. (2008). Mice selected for high versus low stress reactivity: A new animal model for affective disorders. Psychoneuroendocrinology, 33, 839–862. doi: 10.1016/j.psyneuen.2008.03.013
  • Tulogdi, Á., Tóth, M., Barsvári, B., Biró, L., Mikics, É., & Haller, J. (2014). Effects of resocialization on post-weaning social isolation-induced abnormal aggression and social deficits in rats. Developmental Psychobiology, 56, 49–57. doi: 10.1002/dev.21090
  • Tzanoulinou, S., Riccio, O., de Boer, M.W., & Sandi, C. (2014). Peripubertal stress-induced behavioral changes are associated with altered expression of genes involved in excitation and inhibition in the amygdala. Translational Psychiatry, 4, e410. doi: 10.1038/tp.2014.54
  • Ulrich-Lai, Y.M., & Herman, J.P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10, 397–409. doi: 10.1038/nrn2647
  • Uschold-Schmidt, N., Nyuyki, K.D., Füchsl, A.M., Neumann, I.D., & Reber, S.O. (2012). Chronic psychosocial stress results in sensitization of the HPA axis to acute heterotypic stressors despite a reduction of adrenal in vitro ACTH responsiveness. Psychoneuroendocrinology, 37, 1676–1687. doi: 10.1016/j.psyneuen.2012.02.015
  • Valzelli, L. (1973). The “isolation syndrome” in mice” . Psychopharmacologia, 31, 305–320. doi: 10.1007/BF00421275. doi: 10.1007/BF00421275
  • van Eekelen, J.A.M., Bohn, M.C., & de Kloet, E.R. (1991). Postnatal ontogeny of mineralocorticoid and glucocorticoid receptor gene expression in regions of the rat tel- and diencephalon. Developmental Brain Research, 61, 33–43. doi: 10.1016/0165-3806(91)90111-U
  • Veenema, A.H. (2012). Toward understanding how early-life social experiences alter oxytocin- and vasopressin-regulated social behaviors. Hormones and Behavior, 61, 304–312. doi: 10.1016/j.yhbeh.2011.12.002
  • Veenema, A.H., Beiderbeck, D., Lukas, M., & Neumann, I.D. (2010). Distinct correlations of vasopressin release within the lateral septum and the bed nucleus of the stria terminalis with the display of intermale aggression. Hormones and Behavior, 58, 273–281. doi: 10.1016/j.yhbeh.2010.03.006
  • Veenema, A.H., Blume, A., Niederle, D., Buwalda, B., & Neumann, I.D. (2006). Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. European Journal of Neuroscience, 24, 1711–1720. doi: 10.1111/j.1460-9568.2006.05045.x
  • Veenema, A.H., Bredewold, R., & De Vries, G.J. (2013). Sex-specific modulation of juvenile social play by vasopressin. Psychoneuroendocrinology, 38, 2554–2561. doi: 10.1016/j.psyneuen.2013.06.002
  • Veenema, A.H., Reber, S.O., Selch, S., Obermeier, F., & Neumann, I.D. (2008). Early life stress enhances the vulnerability to chronic psychosocial stress and experimental colitis in adult mice. Endocrinology, 149, 2727–2736. doi: 10.1210/en.2007-1469
  • Veenema, A.H., Torner, L., Blume, A., Beiderbeck, D.I., & Neumann, I.D. (2007). Low inborn anxiety correlates with high intermale aggression: Link to ACTH response and neuronal activation of the hypothalamic paraventricular nucleus. Hormones and Behavior, 51, 11–19. doi: 10.1016/j.yhbeh.2006.07.004
  • Veenit, V., Cordero, M.I., Tzanoulinou, S., & Sandi, C. (2013). Increased corticosterone in peripubertal rats leads to long-lasting alterations in social exploration and aggression. Frontiers in Behavioral Neuroscience, 7, 26. doi: 10.3389/fnbeh.2013.00026
  • Võikar, V., Polus, A., Vasar, E., & Rauvala, H. (2005). Long-term individual housing in C57BL/6J and DBA/2 mice: Assessment of behavioral consequences. Genes, Brain and Behavior, 4, 240–252. doi: 10.1111/j.1601-183X.2004.00106.x
  • Waldherr, M., & Neumann, I.D. (2007). Centrally released oxytocin mediates mating-induced anxiolysis in male rats. Proceedings of the National Academy of Sciences of the United States of America, 104, 16681–16684. doi: 10.1073/pnas.0705860104
  • Waldherr, M., Nyuyki, K., Maloumby, R., Bosch, O.J., & Neumann, I.D. (2010). Attenuation of the neuronal stress responsiveness and corticotrophin releasing hormone synthesis after sexual activity in male rats. Hormones and Behavior, 57, 222–229. doi: 10.1016/j.yhbeh.2009.11.006
  • Walker, S.E., Sandi, C., Walker, S.E., & Sandi, C. (2018). Long-term programing of psychopathology- like behaviors in male rats by peripubertal stress depends on individual’s glucocorticoid responsiveness to stress to stress. Stress, 7, 1–10. doi: 10.1080/10253890.2018.1435639
  • Walker, S.E., Zanoletti, O., Guillot de Suduiraut, I., & Sandi, C. (2017). Constitutive differences in glucocorticoid responsiveness to stress are related to variation in aggression and anxiety-related behaviors. Psychoneuroendocrinology, 84, 1–10. doi: 10.1016/j.psyneuen.2017.06.011
  • Wallace, D.L., Han, M.H., Graham, D.L., Green, T.A., Vialou, V., Iñiguez, S.D., … Nestler, E.J. (2009). CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits. Nature Neuroscience, 12, 200–209. doi: 10.1038/nn.2257
  • Webster Marketon, J.I., & Glaser, R. (2008). Stress hormones and immune function. Cellular Immunology, 252, 16–26. doi: 10.1016/j.cellimm.2007.09.006
  • Willner, P. (1997). Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation. Psychopharmacology (Berlin), 134, 319–329. doi: 10.1007/s002130050456
  • Windle, R.J., Kershaw, Y.M., Shanks, N., Wood, S.S., Lightman, S.L., & Ingram, C.D. (2004). Oxytocin attenuates stress-induced c- fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo - pituitary - adrenal activity. The Journal of Neuroscience, 24, 2974–2982. doi: 10.1523/JNEUROSCI.3432-03.2004
  • Wommack, J.C., Salinas, A., & Delville, Y. (2005). Glucocorticoids and the development of agonistic behaviour during puberty in male golden hamsters. Journal of Neuroendocrinology, 17, 781–787. doi: 10.1111/j.1365-2826.2005.01369.x
  • Wong, L.C., Wang, L., D’amour, J.A., Yumita, T., Chen, G., Yamaguchi, T., … Lin, D. (2016). Effective modulation of male aggression through Lateral septum to medial hypothalamus projection. Current Biology, 26, 593–604. doi: 10.1016/j.cub.2015.12.065
  • Wood, S.K., & Bhatnagar, S. (2015). Resilience to the effects of social stress: Evidence from clinical and preclinical studies on the role of coping strategies. Neurobiology of Stress, 1, 164–173. doi: 10.1016/j.ynstr.2014.11.002
  • Wotjak, C.T., Kubota, M., Liebsch, G., Montkowski, A., Holsboer, F., Neumann, I., & Landgraf, R. (1996). Release of vasopressin within the rat paraventricular nucleus in response to emotional stress: A novel mechanism of regulating adrenocorticotropic hormone secretion?. The Journal of Neuroscience, 16, 7725–7732. doi: 10.1016/S0079-6123(08)61571-X. doi: 10.1523/JNEUROSCI.16-23-07725.1996
  • Yan, H.C., Cao, X., Das, M., Zhu, X.H., & Gao, T.M. (2010). Behavioral animal models of depression. Neuroscience Bulletin, 26, 327–337. doi: 10.1007/s12264-010-0323-7
  • Yang, T., Yang, C.F., Chizari, M.D., Bender, K.J., Ganguli, S., & Shah, N.M. (2017). Social control of Hypothalamus-mediated male aggression. Neuron, 95, 955–970.e4. doi: 10.1016/j.neuron.2017.06.046
  • Yoshida, M., Takayanagi, Y., Inoue, K., Kimura, T., Young, L.J., Onaka, T., & Nishimori, K. (2009). Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. Journal of Neuroscience, 29, 2259–2271. doi: 10.1523/JNEUROSCI.5593-08.2009
  • Ziegler, C., Dannlowski, U., Bräuer, D., Stevens, S., Laeger, I., Wittmann, H., … Domschke, K. (2015). Oxytocin receptor gene methylation: Converging multilevel evidence for a role in social anxiety. Neuropsychopharmacology, 40, 1528–1538. doi: 10.1038/npp.2015.2
  • Zoicas, I., & Neumann, I.D. (2016). Maternal separation facilitates extinction of social fear in adult male mice. Behavioural Brain Research, 297, 323–328. doi: 10.1016/j.bbr.2015.10.034
  • Zoicas, I., Slattery, D.A., & Neumann, I.D. (2014). Brain oxytocin in social fear conditioning and its extinction: Involvement of the lateral septum. Neuropsychopharmacology, 39, 3027–3035. doi: 10.1038/npp.2014.156

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.