16,492
Views
195
CrossRef citations to date
0
Altmetric
Review

Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility

, &
Pages 403-416 | Received 06 Nov 2017, Accepted 22 Apr 2018, Published online: 15 May 2018

References

  • Aguilera, G. (2015). Molecular regulation of corticotropin-releasing hormone gene expression in parvocellular neurons of the hypothalamic paraventricular nucleus. Interdisciplinary Information Sciences, 21, 273–282. doi:10.4036/iis.2015.B.13
  • Aguilera, G., Kiss, A., Liu, Y., & Kamitakahara, A. (2007). Negative regulation of corticotropin releasing factor expression and limitation of stress response. Stress, 10, 153–161. doi:10.1080/10253890701391192
  • Aguilera, G., Nikodemova, M., Wynn, P.C., & Catt, K.J. (2004). Corticotropin releasing hormone receptors: Two decades later. Peptides, 25, 319–329. doi:10.1016/j.peptides.2004.02.002
  • Amico, J.A., Mantella, R.C., Vollmer, R.R., & Li, X. (2004). Anxiety and stress responses in female oxytocin deficient mice. Journal of Neuroendocrinology, 16, 319–324. doi:10.1111/j.0953-8194.2004.01161.x
  • Antoni, F.A. (1986). Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41-residue corticotropin-releasing factor. Endocrine Reviews, 7, 351–378. doi:10.1210/edrv-7-4-351
  • Apostolakis, E.M., Longo, L.D., Veldhuis, J.D., & Yellon, S.M. (1992). Dissociation of pulsatile cortisol and adrenocorticotropin secretion in fetal sheep during late gestation. Endocrinology, 130, 2571–2578. doi:10.1210/endo.130.5.1315248
  • Belchetz, P.E., Plant, T.M., Nakai, Y., Keogh, E.J., & Knobil, E. (1978). Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science, 202, 631–633.
  • Binder, E.B. (2009). The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology, 34(Suppl 1), S186–S195. doi:10.1016/j.psyneuen.2009.05.021
  • Binder, E.B., Salyakina, D., Lichtner, P., Wochnik, G.M., Ising, M., Putz, B., … Muller-Myhsok, B. (2004). Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nature Genetics, 36, 1319–1325. doi:10.1038/ng1479
  • Black, W.C., Crampton, R.S., Hilton, J.G., Verdesca, A.S., & Nedeljkovic, R.I. (1961). Inhibitory effect of hydrocortisone and analogues on Adrenocortical Secretion in dogs. American Journal of Physiology, 201, 1057–1060. doi:10.1152/ajplegacy.1961.201.6.1057
  • Bornstein, S.R., & Chrousos, G.P. (1999). Adrenocorticotropin (ACTH)- and non-ACTH-mediated regulation of the adrenal cortex: Neural and immune inputs. Journal of Clinical Endocrinology and Metabolism, 84, 1729–1736.
  • Brent, D., Melhem, N., Ferrell, R., Emslie, G., Wagner, K.D., Ryan, N., … Keller, M. (2010). Association of FKBP5 polymorphisms with suicidal events in the Treatment of Resistant Depression in Adolescents (TORDIA) study. American Journal of Psychiatry, 167, 190–197. doi:10.1176/appi.ajp.2009.09040576
  • Briassoulis, G., Damjanovic, S., Xekouki, P., Lefebvre, H., & Stratakis, C.A. (2011). The Glucocorticoid receptor and its expression in the anterior pituitary and the adrenal cortex: a source of variation in hypothalamic-pituitary-adrenal axis function; implications for pituitary and adrenal tumors. Endocrine Practice, 17, 941–948. doi:10.4158/EP11061.RA
  • Buckingham, J.C., John, C.D., Solito, E., Tierney, T., Flower, R.J., Christian, H., & Morris, J. (2006). Annexin 1, glucocorticoids, and the neuroendocrine-immune interface. Annals of New York Academy of Sciences, 1088, 396–409. doi:10.1196/annals.1366.002
  • Carnes, M., Brownfield, M.S., Kalin, N.H., Lent, S., & Barksdale, C.M. (1986). Episodic secretion of ACTH in rats. Peptides, 7, 219–223. doi:10.1016/0196-9781(86)90216-0
  • Carnes, M., Kalin, N.H., Lent, S.J., Barksdale, C.M., & Brownfield, M.S. (1988a). Pulsatile ACTH secretion: variation with time of day and relationship to cortisol. Peptides, 9, 325–331.
  • Carnes, M., Lent, S.J., Erisman, S., & Feyzi, J. (1988b). Changes in mean plasma ACTH reflect changes in amplitude and frequency of secretory pulses. Life Sciences, 43, 1785–1790.
  • Carsia, R.V., & Malamed, S. (1979). Acute Self-Suppression of Corticosteroidogenesis in isolated adrenocortical cells. Endocrinology, 105, 911–914. doi:10.1210/endo-105-4-911
  • Cascio, C.S., Shinsako, J., & Dallman, M.F. (1987). The suprachiasmatic nuclei stimulate evening ACTH secretion in the rat. Brain Research, 423, 173–178.
  • Chapman, L.P., Epton, M.J., Buckingham, J.C., Morris, J.F., & Christian, H.C. (2003). Evidence for a role of the adenosine 5′-triphosphate-binding cassette transporter A1 in the externalization of annexin I from pituitary folliculo-stellate cells. Endocrinology, 144, 1062–1073. doi:10.1210/en.2002-220650
  • Chen, L., Tian, L., MacDonald, S.H., McClafferty, H., Hammond, M.S., Huibant, J.M., … Shipston, M.J. (2005). Functionally diverse complement of large conductance calcium- and voltage-activated potassium channel (BK) alpha-subunits generated from a single site of splicing. Journal of Biological Chemistry, 280, 33599–33609. doi:10.1074/jbc.M505383200
  • Cherrington, A.D. (1999). Banting Lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes, 48, 1198–1214.
  • Chong, C., Hamid, A., Yao, T., Garza, A.E., Pojoga, L.H., Adler, G.K., Romero, J.R., & Williams, G.H. (2017). Regulation of aldosterone secretion by mineralocorticoid receptor-mediated signaling. Journal of Endocrinology, 232, 525–534. doi:10.1530/JOE-16-0452
  • Chrousos, G.P. (1995). The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. New England Journal of Medicine, 332, 1351–1362. doi:10.1056/NEJM199505183322008
  • Clark, R.G., Chambers, G., Lewin, J., & Robinson, I.C.A.F. (1986). Automated repetitive microsampling of blood: Growth hormone profiles in conscious male rats. Endocrinology, 111, 27–35.
  • Clarke, I.J., & Cummins, J.T. (1982). The temporal relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. Endocrinology, 111, 1737–1739. doi:10.1210/endo-111-5-1737
  • Conway-Campbell, B.L., McKenna, M.A., Wiles, C.C., Atkinson, H.C., de Kloet, E.R., & Lightman, S.L. (2007). Proteasome-dependent down-regulation of activated nuclear hippocampal glucocorticoid receptors determines dynamic responses to corticosterone. Endocrinology, 148, 5470–5477. doi:10.1210/en.2007-0585
  • Dallman, M.F., Akana, S.F., Jacobson, L., Levin, N., Cascio, C.S., & Shinsako, J. (1987). Characterization of corticosterone feedback regulation of ACTH secretion. Annals of the New York Academy of Sciences, 512, 402–414.
  • Dallman, M.F., Akana, S.F., Levin, N., Walker, C.D., Bradbury, M.J., Suemaru, S., & Scribner, K.S. (1994). Corticosteroids and the control of function in the hypothalamo-pituitary-adrenal (HPA) axis. Annals of the New York Academy of Sciences, 746, 22–31. discussion 31-22, 64-27.
  • Dallman, M.F., & Yates, F.E. (1969). Dynamic asymmetries in the corticosteroid feedback path and distribution-metabolism-binding elements of the adrenocortical system. Annals of the New York Academy of Sciences, 156, 696–721.
  • Davies, L., Karthikeyan, N., Lynch, J.T., Sial, E.A., Gkourtsa, A., Demonacos, C., & Krstic-Demonacos, M. (2008). Cross talk of signaling pathways in the regulation of the glucocorticoid receptor function. Molecular Endocrinology, 22, 1331–1344. doi:10.1210/me.2007-0360
  • de Kloet, E.R. (2000). Stress in the brain. European Journal of Pharmacology, 405, 187–198.
  • de Kloet, E.R., Joels, M., & Holsboer, F. (2005). Stress and the brain: from adaptation to disease. Nature Reviews. Neuroscience, 6, 463–475. doi:10.1038/nrn1683
  • Deng, Q., Riquelme, D., Trinh, L., Low, M.J., Tomic, M., Stojilkovic, S., & Aguilera, G. (2015). Rapid glucocorticoid feedback inhibition of ACTH secretion involves ligand-dependent membrane association of glucocorticoid receptors. Endocrinology, 156, 3215–3227. doi:10.1210/EN.2015-1265
  • Desouza, E.B., & Vanloon, G.R. (1982). Stress-induced inhibition of the Plasma-Corticosterone response to a subsequent stress in rats - a Nonadrenocorticotropin-mediated mechanism. Endocrinology, 110, 23–33. doi:10.1210/endo-110-1-23
  • Di, S., Malcher-Lopes, R., Halmos, K.C., & Tasker, J.G. (2003). Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: A fast feedback mechanism. The Journal of Neuroscience, 23, 4850–4857.
  • Dickmeis, T. (2009). Glucocorticoids and the circadian clock. The Journal of Endocrinology, 200, 3–22. doi:10.1677/JOE-08-0415
  • Doucas, V., Shi, Y., Miyamoto, S., West, A., Verma, I., & Evans, R.M. (2000). Cytoplasmic catalytic subunit of protein kinase A mediates cross-repression by NF-kappa B and the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America, 97, 11893–11898. doi:10.1073/pnas.220413297
  • Drouin, J., Charron, J., Gagner, J.P., Jeannotte, L., Nemer, M., Plante, R.K., & Wrange, O. (1987). Pro-opiomelanocortin gene: a model for negative regulation of transcription by glucocorticoids. Journal of Cellular Biochemistry, 35, 293–304. doi:10.1002/jcb.240350404
  • Drouin, J., Sun, Y.L., & Nemer, M. (1989a). Glucocorticoid repression of pro-opiomelanocortin gene transcription. Journal of Steroid Biochemistry, 34, 63–69.
  • Drouin, J., Trifiro, M.A., Plante, R.K., Nemer, M., Eriksson, P., & Wrange, O. (1989b). Glucocorticoid receptor binding to a specific DNA sequence is required for hormone-dependent repression of pro-opiomelanocortin gene transcription. Molecular and Cellular Biology, 9, 5305–5314.
  • Duncan, P.J., Sengul, S., Tabak, J., Ruth, P., Bertram, R., & Shipston, M.J. (2015). Large conductance Ca(2)(+)-activated K(+) (BK) channels promote secretagogue-induced transition from spiking to bursting in murine anterior pituitary corticotrophs. The Journal of Physiology, 593, 1197–1211. doi:10.1113/jphysiol.2015.284471
  • Duncan, P.J., Tabak, J., Ruth, P., Bertram, R., & Shipston, M.J. (2016). Glucocorticoids inhibit CRH/AVP-Evoked bursting activity of male murine anterior pituitary corticotrophs. Endocrinology, 157, 3108–3121. doi:10.1210/en.2016-1115
  • Echeverria, P.C., Mazaira, G., Erlejman, A., Gomez-Sanchez, C., Piwien Pilipuk, G., & Galigniana, M.D. (2009). Nuclear import of the glucocorticoid receptor-hsp90 complex through the nuclear pore complex is mediated by its interaction with Nup62 and importin beta. Molecular and Cellular Biology, 29, 4788–4797. doi:10.1128/MCB.00649-09
  • Engler, D., Pham, T., Liu, J.P., Fullerton, M.J., Clarke, I.J., & Funder, J.W. (1990). Studies of the regulation of the hypothalamic-pituitary-adrenal axis in sheep with hypothalamic-pituitary disconnection. II. Evidence for in vivo ultradian hypersecretion of proopiomelanocortin peptides by the isolated anterior and intermediate pituitary. Endocrinology, 127, 1956–1966. doi:10.1210/endo-127-4-1956
  • Evans, A.N., Liu, Y., Macgregor, R., Huang, V., & Aguilera, G. (2013). Regulation of hypothalamic corticotropin-releasing hormone transcription by elevated glucocorticoids. Molecular Endocrinology, 27, 1796–1807. doi:10.1210/me.2013-1095
  • Evanson, N.K., Herman, J.P., Sakai, R.R., & Krause, E.G. (2010a). Nongenomic actions of adrenal steroids in the central nervous system. Journal of Neuroendocrinology, 22, 846–861. doi:10.1111/j.1365-2826.2010.02000.x
  • Evanson, N.K., Tasker, J.G., Hill, M.N., Hillard, C.J., & Herman, J.P. (2010b). Fast feedback inhibition of the HPA axis by glucocorticoids is mediated by endocannabinoid signaling. Endocrinology, 151, 4811–4819. doi:10.1210/en.2010-0285
  • Fabian, A.K., Marz, A., Neimanis, S., Biondi, R.M., Kozany, C., & Hausch, F. (2013). InterAKTions with FKBPs - mutational and pharmacological exploration. PLoS One, 8, e57508. doi:10.1371/journal.pone.0057508
  • Fenoglio, K.A., Brunson, K.L., Avishai-Eliner, S., Chen, Y., & Baram, T.Z. (2004). Region-specific onset of handling-induced changes in corticotropin-releasing factor and glucocorticoid receptor expression. Endocrinology, 145, 2702–2706. doi:10.1210/en.2004-0111
  • Fulkerson, W.J. (1978). Synchronous episodic release of cortisol in the sheep. The Journal of Endocrinology, 79, 131–132.
  • Gaali, S., Kirschner, A., Cuboni, S., Hartmann, J., Kozany, C., Balsevich, G., … Hausch, F. (2015). Selective inhibitors of the FK506-binding protein 51 by induced fit. Nature Chemical Biology, 11, 33–37. doi:10.1038/nchembio.1699
  • Gagner, J.P., & Drouin, J. (1985). Opposite regulation of pro-opiomelanocortin gene transcription by glucocorticoids and CRH. Molecular and Cellular Endocrinology, 40, 25–32.
  • Gassen, N.C., Hartmann, J., Zannas, A.S., Kretzschmar, A., Zschocke, J., Maccarrone, G., … Rein, T. (2016). FKBP51 inhibits GSK3beta and augments the effects of distinct psychotropic medications. Molecular Psychiatry, 21, 277–289. doi:10.1038/mp.2015.38
  • Gibbs, D.M. (1984). Dissociation of oxytocin, vasopressin and corticotropin secretion during different types of stress. Life Sciences, 35, 487–491.
  • Gibbs, D.M. (1986). Stress-specific modulation of acth-secretion by oxytocin. Neuroendocrinology, 42, 456–458. doi:10.1159/000124487
  • Groeneweg, F.L., Karst, H., de Kloet, E.R., & Joels, M. (2012). Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Molecular and Cellular Endocrinology, 350, 299–309. doi:10.1016/j.mce.2011.06.020
  • Guardiola-Diaz, H.M., Kolinske, J.S., Gates, L.H., & Seasholtz, A.F. (1996). Negative glucorticoid regulation of cyclic adenosine 3′, 5′-monophosphate-stimulated corticotropin-releasing hormone-reporter expression in AtT-20 cells. Molecular Endocrinology, 10, 317–329. doi:10.1210/mend.10.3.8833660
  • Gummow, B.M., Scheys, J.O., Cancelli, V.R., & Hammer, G.D. (2006). Reciprocal regulation of a glucocorticoid receptor-steroidogenic factor-1 transcription complex on the Dax-1 promoter by glucocorticoids and adrenocorticotropic hormone in the adrenal cortex. Molecular Endocrinology, 20, 2711–2723. doi:10.1210/me.2005-0461
  • Harbuz, M.S., & Lightman, S.L. (1989). Glucocorticoid inhibition of stress-induced changes in hypothalamic corticotrophin-releasing factor messenger RNA and proenkephalin A messenger RNA. Neuropeptides, 14, 17–20.
  • Hartmann, J., Wagner, K.V., Liebl, C., Scharf, S.H., Wang, X.D., Wolf, M., … Schmidt, M.V. (2012). The involvement of FK506-binding protein 51 (FKBP5) in the behavioral and neuroendocrine effects of chronic social defeat stress. Neuropharmacology, 62, 332–339. doi:10.1016/j.neuropharm.2011.07.041
  • Henley, D.E., Leendertz, J.A., Russell, G.M., Wood, S.A., Taheri, S., Woltersdorf, W.W., & Lightman, S.L. (2009). Development of an automated blood sampling system for use in humans. Journal of Medical Engineering and Technology, 33, 199–208. doi:10.1080/03091900802185970
  • Hoeijmakers, L., Harbich, D., Schmid, B., Lucassen, P.J., Wagner, K.V., Schmidt, M.V., & Hartmann, J. (2014). Depletion of FKBP51 in female mice shapes HPA axis activity. PLoS One, 9, e95796. doi:10.1371/journal.pone.0095796
  • Holaday, J.W., Martinez, H.M., & Natelson, B.H. (1977). Synchronized ultradian cortisol rhythms in monkeys - persistence during corticotropin infusion. Science, 198, 56–58. doi:10.1126/science.197603
  • Holsboer, F. (2000). The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 23, 477–501. doi:10.1016/S0893-133X(00)00159-7
  • Ising, M., Depping, A.M., Siebertz, A., Lucae, S., Unschuld, P.G., Kloiber, S., … Holsboer, F. (2008). Polymorphisms in the FKBP5 gene region modulate recovery from psychosocial stress in healthy controls. European Journal of Neuroscience, 28, 389–398. doi:10.1111/j.1460-9568.2008.06332.x
  • Ixart, G., Barbanel, G., Nouguier-Soule, J., & Assenmacher, I. (1991). A quantitative study of the pulsatile parameters of CRH-41 secretion in unanesthetized free-moving rats. Experimental Brain Research, 87, 153–158.
  • Ixart, G., Siaud, P., Barbanel, G., Mekaouche, M., Givalois, L., & Assenmacher, I. (1993). Circadian variations in the amplitude of corticotropin-releasing hormone 41 (CRH41) episodic release measured in vivo in male rats: Correlations with diurnal fluctuations in hypothalamic and median eminence CRH41 contents. Journal of Biological Rhythms, 8, 297–309. doi:10.1177/074873049300800403
  • Ixart, G., Siaud, P., Mekaouche, M., Barbanel, G., Givalois, L., & Assenmacher, I. (1994). Short-term but not long-term adrenalectomy modulates amplitude and frequency of the CRH41 episodic release in push-pull cannulated median eminence of free-moving rats. Brain Research, 658, 185–191.
  • Jacobson, L., Muglia, L.J., Weninger, S.C., Pacak, K., & Majzoub, J.A. (2000). CRH deficiency impairs but does not block pituitary-adrenal responses to diverse stressors. Neuroendocrinology, 71, 79–87. doi:10.1159/000054524
  • Jasper, M.S., & Engeland, W.C. (1991). Synchronous ultradian rhythms in adrenocortical secretion detected by microdialysis in awake rats. American Journal of Physiology, 261, R1257–R1268. doi:10.1152/ajpregu.1991.261.5.R1257
  • Jasper, M.S., & Engeland, W.C. (1994). Splanchnic neural activity modulates ultradian and circadian rhythms in adrenocortical secretion in awake rats. Neuroendocrinology, 59, 97–109. doi:10.1159/000126645
  • Jeanneteau, F.D., Lambert, W.M., Ismaili, N., Bath, K.G., Lee, F.S., Garabedian, M.J., & Chao, M.V. (2012). BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proceedings of the National Academy of Sciences of United States of America, 109, 1305–1310. doi:10.1073/pnas.1114122109
  • John, C.D., Christian, H.C., Morris, J.F., Flower, R.J., Solito, E., & Buckingham, J.C. (2004). Annexin 1 and the regulation of endocrine function. Trends in Endocrinology and Metabolism, 15, 103–109. doi:10.1016/j.tem.2004.02.001
  • Jones, M.T., Hillhouse, E.W., & Burden, J.L. (1977). Dynamics and mechanics of corticosteroid feedback at the hypothalamus and anterior pituitary gland. Journal of Endocrinology, 73, 405–417.
  • Jones, M.T., & Stockham, M.A. (1966). Effect of previous stimulation of Adrenal Cortex by Adrenocorticotrophin on Function of Pituitary-Adreonocortical axis in response to stress. The Journal of Physiology, 184, 741–750.
  • Jones, M.T., Tiptaft, E.M., Brush, F.R., Fergusson, D.A., & Neame, R.L. (1974). Evidence for dual corticosteroid-receptor mechanisms in the feedback control of adrenocorticotrophin secretion. Journal of Endocrinology, 60, 223–233.
  • Kalsbeek, A., & Fliers, E. (2017). Circadian and endocrine rhythms. Best Practice and Research: Clinical Endocrinology and Metabolism, 31, 443.
  • Kalsbeek, A., van der Spek, R., Lei, J., Endert, E., Buijs, R.M., & Fliers, E. (2012). Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Molecular and Cellular Endocrinology, 349, 20–29. doi:10.1016/j.mce.2011.06.042
  • Katoh, Y., Takemori, H., Min, L., Muraoka, M., Doi, J., Horike, N., & Okamoto, M. (2004). Salt-inducible kinase-1 represses cAMP response element-binding protein activity both in the nucleus and in the cytoplasm. European Journal of Biochemistry, 271, 4307–4319. doi:10.1111/j.1432-1033.2004.04372.x
  • Keller-Wood, M.E., & Dallman, M.F. (1984). Corticosteroid inhibition of ACTH secretion. Endocrine Reviews, 5, 1–24. doi:10.1210/edrv-5-1-1
  • Kirchheiner, J., Lorch, R., Lebedeva, E., Seeringer, A., Roots, I., Sasse, J., & Brockmoller, J. (2008). Genetic variants in FKBP5 affecting response to antidepressant drug treatment. Pharmacogenomics, 9, 841–846. doi:10.2217/14622416.9.7.841
  • Kirschke, E., Goswami, D., Southworth, D., Griffin, P.R., & Agard, D.A. (2014). Glucocorticoid receptor function regulated by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Cell, 157, 1685–1697. doi:10.1016/j.cell.2014.04.038
  • Kitchener, P., Di Blasi, F., Borrelli, E., & Piazza, P.V. (2004). Differences between brain structures in nuclear translocation and DNA binding of the glucocorticoid receptor during stress and the circadian cycle. European Journal of Neuroscience, 19, 1837–1846. doi:10.1111/j.1460-9568.2004.03267.x
  • Kovacs, K.J., & Makara, G.B. (1988). Corticosterone and dexamethasone act at different brain sites to inhibit adrenalectomy-induced adrenocorticotropin hypersecretion. Brain Research, 474, 205–210.
  • Kovalovsky, D., Refojo, D., Liberman, A.C., Hochbaum, D., Pereda, M.P., Coso, O.A., Stalla, G.K., Holsboer, F., & Arzt, E. (2002). Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: Involvement of calcium, protein kinase A, and MAPK pathways. Molecular Endocrinology, 16, 1638–1651. doi:10.1210/mend.16.7.0863
  • Kraemer, F.B., & Shen, W.J. (2002). Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. Journal of Lipid Research, 43, 1585–1594.
  • Laje, G., Perlis, R.H., Rush, A.J., & McMahon, F.J. (2009). Pharmacogenetics studies in STAR*D: Strengths, limitations, and results. Psychiatric Services, 60, 1446–1457. doi:10.1176/appi.ps.60.11.1446
  • Langecker, H., & Lurie, R. (1957). Die hemmung der corticotropin-sekretion durch steroide. Acta Endocrinologica-Cop, 25, 54–58.
  • Laryea, G., Schutz, G., & Muglia, L.J. (2013). Disrupting hypothalamic glucocorticoid receptors causes HPA axis hyperactivity and excess adiposity. Molecular Endocrinology, 27, 1655–1665. doi:10.1210/me.2013-1187
  • Lavebratt, C., Aberg, E., Sjoholm, L.K., & Forsell, Y. (2010). Variations in FKBP5 and BDNF genes are suggestively associated with depression in a Swedish population-based cohort. Journal of Affective Disorders, 125, 249–255. doi:10.1016/j.jad.2010.02.113
  • Lekman, M., Laje, G., Charney, D., Rush, A.J., Wilson, A.F., Sorant, A.J., … Paddock, S. (2008). The FKBP5-gene in depression and treatment response–an association study in the sequenced treatment alternatives to relieve depression (STAR*D) Cohort. Biolological Psychiatry, 63, 1103–1110. doi:10.1016/j.biopsych.2007.10.026
  • Lewis, J.G., Bagley, C.J., Elder, P.A., Bachmann, A.W., & Torpy, D.J. (2005). Plasma free cortisol fraction reflects levels of functioning corticosteroid-binding globulin. Clinica Chimica Acta, 359, 189–194. doi:10.1016/j.cccn.2005.03.044
  • Lightman, S.L., & Conway-Campbell, B.L. (2010). The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nature Reviews Neuroscience, 11, 710–718. doi:10.1038/nrn2914
  • Lightman, S.L., & Young, W.S. 3rd. (1988). Corticotrophin-releasing factor, vasopressin and pro-opiomelanocortin mRNA responses to stress and opiates in the rat. The Journal of Physiology, 403, 511–523.
  • Lin, D., Sugawara, T., Strauss, J.F., 3rd, Clark, B.J., Stocco, D.M., Saenger, P., Rogol, A., & Miller, W.L. (1995). Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science, 267, 1828–1831.
  • Liposits, Z., & Paull, W.K. (1989). Association of dopaminergic fibers with corticotropin releasing hormone (CRH)-synthesizing neurons in the paraventricular nucleus of the rat hypothalamus. Histochemistry, 93, 119–127.
  • Liu, Y., Coello, A.G., Grinevich, V., & Aguilera, G. (2010). Involvement of transducer of regulated cAMP response element-binding protein activity on corticotropin releasing hormone transcription. Endocrinology, 151, 1109–1118. doi:10.1210/en.2009-0963
  • Ma, X.M., & Aguilera, G. (1999). Transcriptional responses of the vasopressin and corticotropin-releasing hormone genes to acute and repeated intraperitoneal hypertonic saline injection in rats. Brain Research: Molecualr Brain Research, 68, 129–140.
  • Ma, X.M., Camacho, C., & Aguilera, G. (2001). Regulation of corticotropin-releasing hormone (CRH) transcription and CRH mRNA stability by glucocorticoids. Cellular and Molecular Neurobiology, 21, 465–475.
  • Macfarlane, D.P., Forbes, S., & Walker, B.R. (2008). Glucocorticoids and fatty acid metabolism in humans: Fuelling fat redistribution in the metabolic syndrome. The Journal of Endocrinology, 197, 189–204. doi:10.1677/JOE-08-0054
  • Makara, G.B., Mergl, Z., & Zelena, D. (2004). The role of vasopressin in hypothalamo-pituitary-adrenal axis activation during stress: An assessment of the evidence. Annals of the New York Academy of Sciences, 1018, 151–161.
  • Malkoski, S.P., & Dorin, R.I. (1999). Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene. Molecular Endocrinologu, 13, 1629–1644. doi:10.1210/mend.13.10.0351
  • Malkoski, S.P., Handanos, C.M., & Dorin, R.I. (1997). Localization of a negative glucocorticoid response element of the human corticotropin releasing hormone gene. Molecular and Cellular Endocrinology, 127, 189–199. doi:10.1016/S0303-7207(96)04004-X
  • Martens, C., Bilodeau, S., Maira, M., Gauthier, Y., & Drouin, J. (2005). Protein-protein interactions and transcriptional antagonism between the subfamily of NGFI-B/Nur77 orphan nuclear receptors and glucocorticoid receptor. Molecular Endocrinology, 19, 885–897. doi:10.1210/me.2004-0333
  • Martin, L.J., & Tremblay, J.J. (2008). Glucocorticoids antagonize cAMP-induced Star transcription in Leydig cells through the orphan nuclear receptor NR4A1. Journal of Molecular Endocrinology, 41, 165–175. doi:10.1677/JME-07-0145
  • McEwen, B.S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87, 873–904. doi:10.1152/physrev.00041.2006
  • Metherell, L.A., Chapple, J.P., Cooray, S., David, A., Becker, C., Ruschendorf, F., … Clark, A.J. (2005). Mutations in MRAP, encoding a new interacting partner of the ACTH receptor, cause familial glucocorticoid deficiency type 2. Nature Genetics, 37, 166–170. doi:10.1038/ng1501
  • Mountjoy, K.G., Mortrud, M.T., Low, M.J., Simerly, R.B., & Cone, R.D. (1994). Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Molecular Endocrinology, 8, 1298–1308. doi:10.1210/mend.8.10.7854347
  • Muglia, L.J., Bethin, K.E., Jacobson, L., Vogt, S.K., & Majzoub, J.A. (2000). Pituitary-adrenal axis regulation in CRH-deficient mice. Endocrine Research, 26, 1057–1066.
  • Muglia, L.J., Jacobson, L., Weninger, S.C., Karalis, K.P., Jeong, K.H., & Majzoub, J.A. (2001). The physiology of corticotropin-releasing hormone deficiency in mice. Peptides, 22, 725–731.
  • Muglia, L.J., Jacobson, L., Weninger, S.C., Luedke, C.E., Bae, D.S., Jeong, K.H., & Majzoub, J.A. (1997). Impaired diurnal adrenal rhythmicity restored by constant infusion of corticotropin-releasing hormone in corticotropin-releasing hormone-deficient mice. Journal of Clinical Investigation, 99, 2923–2929. doi:10.1172/JCI119487
  • Munck, A., Guyre, P.M., & Holbrook, N.J. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Reviews, 5, 25–44. doi:10.1210/edrv-5-1-25
  • Nahar, J., Haam, J., Chen, C., Jiang, Z., Glatzer, N.R., Muglia, L.J., Dohanich, G.P., Herman, J.P., & Tasker, J.G. (2015). Rapid nongenomic glucocorticoid actions in male mouse hypothalamic neuroendocrine cells are dependent on the nuclear glucocorticoid receptor. Endocrinology, 156, 2831–2842. doi:10.1210/en.2015-1273
  • Negrovilar, A., Culler, M.D., Valenca, M.M., Flack, T.B., & Wisniewski, G. (1987). Pulsatile peptide secretion – Encoding of brain messages regulating endocrine and reproductive functions. Environmental Health Perspectives, 75, 37–43.
  • Neumann, I.D., Wigger, A., Torner, L., Holsboer, F., & Landgraf, R. (2000). Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: Partial action within the paraventricular nucleus. Journal of Neuroendocrinology, 12, 235–243.
  • O’Leary, J.C. III, Zhang, B., Koren, J. III, Blair, L., & Dickey, C.A. (2013). The role of FKBP5 in mood disorders: Action of FKBP5 on steroid hormone receptors leads to questions about its evolutionary importance. CNS & Neurological Disorders – Drug Targets, 12, 1157–1162.
  • Oster, H., Challet, E., Ott, V., Arvat, E., de Kloet, E.R., Dijk, D.J., … Van Cauter, E. (2017). The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocrine Reviews, 38, 3–45. doi:10.1210/er.2015-1080
  • Osterlund, C.D., Rodriguez-Santiago, M., Woodruff, E.R., Newsom, R.J., Chadayammuri, A.P., & Spencer, R.L. (2016). Glucocorticoid fast feedback inhibition of stress-induced ACTH secretion in the male rat: rate independence and stress-state resistance. Endocrinology, 157, 2785–2798. doi:10.1210/en.2016-1123
  • Parvin, R., Saito-Hakoda, A., Shimada, H., Shimizu, K., Noro, E., Iwasaki, Y., Fujiwara, K., Yokoyama, A., & Sugawara, A. (2017). Role of NeuroD1 on the negative regulation of Pomc expression by glucocorticoid. PLoS One, 12, e0175435. doi:10.1371/journal.pone.0175435
  • Peron, F.G. (1960). The isolation and identification of some adrenocorticosteroids released by rat adrenal tissue incubated in vitro. Endocrinology, 66, 458–469. doi:10.1210/endo-66-3-458
  • Peron, F.G., Moncloa, F., & Dorfman, R.I. (1960). Studies on the possible inhibitory effect of corticosterone on corticosteroidogenesis at the adrenal level in the rat. Endocrinology, 67, 379–388. doi:10.1210/endo-67-3-379
  • Phillips, A., Lesage, S., Gingras, R., Maira, M.H., Gauthier, Y., Hugo, P., & Drouin, J. (1997). Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Molecular and Cellular Biology, 17, 5946–5951.
  • Philips, A., Maira, M., Mullick, A., Chamberland, M., Lesage, S., Hugo, P., & Drouin, J. (1997). Antagonism between Nur77 and glucocorticoid receptor for control of transcription. Molecular and Cellular Biology, 17, 5952–5959.
  • Plotsky, P.M., & Vale, W. (1985). Patterns of growth hormone-releasing factor and somatostatin secretion into the hypophysial-portal circulation of the rat. Science, 230, 461–463.
  • Poulin, G., Turgeon, B., & Drouin, J. (1997). NeuroD1/beta2 contributes to cell-specific transcription of the proopiomelanocortin gene. Molecular and Cellular Biology, 17, 6673–6682.
  • Pratt, W.B., Galigniana, M.D., Harrell, J.M., & DeFranco, D.B. (2004). Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal, 16, 857–872. doi:10.1016/j.cellsig.2004.02.004
  • Pratt, W.B., Morishima, Murphy, Y.M., & Harrell, M. (2006). Chaperoning of glucocorticoid receptors. Handbook of Experimental Pharmacology,172, 111–138.
  • Reul, J.M., & de Kloet, E.R. (1985). Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology, 117, 2505–2511. doi:10.1210/endo-117-6-2505
  • Reul, J.M., & de Kloet, E.R. (1986). Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. Journal of Steroid Biochemistry, 24, 269–272.
  • Reul, J.M., de Kloet, E.R., van Sluijs, F.J., Rijnberk, A., & Rothuizen, J. (1990). Binding characteristics of mineralocorticoid and glucocorticoid receptors in dog brain and pituitary. Endocrinology, 127, 907–915. doi:10.1210/endo-127-2-907
  • Reynolds, P.D., Ruan, Y., Smith, D.F., & Scammell, J.G. (1999). Glucocorticoid resistance in the squirrel monkey is associated with overexpression of the immunophilin FKBP51. Journal of Clinical Endocrinology and Metabolism, 84, 663–669. doi:10.1210/jcem.84.2.5429
  • Richards, J.B., & Pruitt, R.L. (1957). Hydrocortisone suppression of stress-induced adrenal 17-Hydroxycorticosteroid secretion in dogs. Endocrinology, 60, 99–104.
  • Riggs, D.L., Roberts, P.J., Chirillo, S.C., Cheung-Flynn, J., Prapapanich, V., Ratajczak, T., … Smith, D.F. (2003). The Hsp90-binding peptidylprolyl isomerase FKBP52 potentiates glucocorticoid signaling in vivo. The Embo Journal, 22, 1158–1167. doi:10.1093/emboj/cdg108
  • Ritchie, A.K., Kuryshev, Y.A., & Childs, G.V. (1996). Corticotropin-releasing hormone and calcium signaling in corticotropes. Trends in Endocrinology and Metabolism, 7, 365–369.
  • Robertson, N.M., Schulman, G., Karnik, S., Alnemri, E., & Litwack, G. (1993). Demonstration of nuclear translocation of the mineralocorticoid receptor (MR) using an anti-MR antibody and confocal laser scanning microscopy. Molecular Endocrinology, 7, 1226–1239. doi:10.1210/mend.7.9.8247024
  • Rogatsky, I., Waase, C.L.M., & Garabedian, M.J. (1998). Phosphorylation and inhibition of rat glucocorticoid receptor transcriptional activation by glycogen synthase kinase-3 (GSK-3) – Species-specific differences between human and rat glucocorticoid receptor signaling as revealed through GSK-3 phosphorylation. Journal of Biological Chemistry, 273, 14315–14321.
  • Roper, J.A., O’Carroll, A.M., Young, W.S., & Lolait, S.J. (2011). The vasopressin Avpr1b receptor: Molecular and pharmacological studies. Stress-the International Journal on the Biology of Stress, 14, 98–115. doi:10.3109/10253890.2010.512376
  • Roy, A., Gorodetsky, E., Yuan, Q., Goldman, D., & Enoch, M.A. (2010). Interaction of FKBP5, a stress-related gene, with childhood trauma increases the risk for attempting suicide. Neuropsychopharmacology, 35, 1674–1683. doi:10.1038/npp.2009.236
  • Sage, D., Maurel, D., & Bosler, O. (2001). Involvement of the suprachiasmatic nucleus in diurnal ACTH and corticosterone responsiveness to stress. American Journal of Physiology-Endocrinology and Metabolism, 280, E260–E269. doi:10.1152/ajpendo.2001.280.2.E260
  • Scammell, J.G., Denny, W.B., Valentine, D.L., & Smith, D.F. (2001). Overexpression of the FK506-binding immunophilin FKBP51 is the common cause of glucocorticoid resistance in three New World primates. General and Comparative Endocrinology, 124, 152–165. doi:10.1006/gcen.2001.7696
  • Scharf, S.H., Liebl, C., Binder, E.B., Schmidt, M.V., & Muller, M.B. (2011). Expression and regulation of the Fkbp5 gene in the adult mouse brain. PLoS One, 6, e16883. doi:10.1371/journal.pone.0016883
  • Scheschowitsch, K., Leite, J.A., & Assreuy, J. (2017). New insights in Glucocorticoid receptor signaling-more than just a ligand-binding receptor. Frontiers in Endocrinology), 8, 16. doi:10.3389/fendo.2017.00016
  • Schwartz, J., & Vale, W. (1988). Dissociation of the adrenocorticotropin secretory responses to corticotropin-releasing factor (Crf) and vasopressin or oxytocin by using a specific Cyto-Toxic analog of Crf. Endocrinology, 122, 1695–1700. doi:10.1210/endo-122-4-1695
  • Screaton, R.A., Conkright, M.D., Katoh, Y., Best, J.L., Canettieri, G., Jeffries, S., … Montminy, M. (2004). The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell, 119, 61–74.
  • Seasholtz, A.F., Thompson, R.C., & Douglass, J.O. (1988). Identification of a cyclic adenosine monophosphate-responsive element in the rat corticotropin-releasing hormone gene. Molecular Endocrinology, 2, 1311–1319.
  • Song, K.H., Park, Y.Y., Park, K.C., Hong, C.Y., Park, J.H., Shong, M., … Choi, H.S. (2004). The atypical orphan nuclear receptor DAX-1 interacts with orphan nuclear receptor Nur77 and represses its transactivation. Molecular Endocrinology, 18, 1929–1940.
  • Spencer, R.L., Miller, A.H., Moday, H., Stein, M., & McEwen, B.S. (1993). Diurnal differences in basal and acute stress levels of type I and type II adrenal steroid receptor activation in neural and immune tissues. Endocrinology, 133, 1941–1950.
  • Spiga, F., Harrison, L.R., Wood, S., Knight, D.M., MacSweeney, C.P., Thomson, F., Craighead, M., & Lightman, S.L. (2009). Blockade of the V(1b) receptor reduces ACTH, but not corticosterone secretion induced by stress without affecting basal hypothalamic-pituitary-adrenal axis activity. The Journal of Endocrinology, 200, 273–283. doi:10.1677/JOE-08-0421
  • Spiga, F., & Lightman, S.L. (2015). Dynamics of adrenal glucocorticoid steroidogenesis in health and disease. Molecular and Cellular Endocrinology, 408, 227–234. doi:10.1016/j.mce.2015.02.005
  • Spiga, F., Liu, Y., Aguilera, G., & Lightman, S.L. (2011a). Temporal effect of adrenocorticotrophic hormone on adrenal glucocorticoid steroidogenesis: Involvement of the transducer of regulated cyclic AMP-response element-binding protein activity. Journal of Neuroendocrinology, 23, 136–142. doi:10.1111/j.1365-2826.2010.02096.x
  • Spiga, F., Waite, E.J., Liu, Y., Kershaw, Y.M., Aguilera, G., & Lightman, S.L. (2011b). ACTH-dependent ultradian rhythm of corticosterone secretion. Endocrinology, 152, 1448–1457. doi:10.1210/en.2010-1209
  • Spiga, F., Walker, J.J., Terry, J.R., & Lightman, S.L. (2014). HPA axis-rhythms. Comprehensive Physiology, 4, 1273–1298. doi:10.1002/cphy.c140003
  • Spiga, F., Zavala, E., Walker, J.J., Zhao, Z., Terry, J.R., & Lightman, S.L. (2017). Dynamic responses of the adrenal steroidogenic regulatory network. Proceedings of the National Academy of Sciences of Sciences, 114, E6466–E6474. doi:10.1073/pnas.1703779114
  • Stechschulte, L.A., Hinds, T.D., Jr., Ghanem, S.S., Shou, W., Najjar, S.M., & Sanchez, E.R. (2014). FKBP51 reciprocally regulates GRα and PPARγ activation via the Akt-p38 pathway. Molecular Endocrinology (Baltimore, Md.), 28, 1254–1264. doi:10.1210/me.2014-1023
  • Stocco, D.M., & Clark, B.J. (1996). Regulation of the acute production of steroids in steroidogenic cells. Endocrine Reviews, 17, 221–244. doi:10.1210/edrv-17-3-221
  • Stockham, M.A. (1964). Responses to acth – comparison of peripheral plasma + adrenal corticosterone concentrations. Journal of Physiology-London, 170, P63.
  • Stojilkovic, S.S., Zemkova, H., & Van Goor, F. (2005). Biophysical basis of pituitary cell type-specific Ca2+ signaling-secretion coupling. Trends in Endocrinology and Metabolism, 16, 152–159. doi:10.1016/j.tem.2005.03.003
  • Supriyanto, I., Sasada, T., Fukutake, M., Asano, M., Ueno, Y., Nagasaki, Y., … Hishimoto, A. (2011). Association of FKBP5 gene haplotypes with completed suicide in the Japanese population. Progress in Neuropsychopharmacology and Biological Psychiatry, 35, 252–256. doi:10.1016/j.pnpbp.2010.11.019
  • Szafarczyk, A., Ixart, G., Malaval, F., Nouguier-Soule, J., & Assenmacher, I. (1979). Effects of lesions of the suprachiasmatic nuclei and of p-chlorophenylalanine on the circadian rhythms of adrenocorticotrophic hormone and corticosterone in the plasma, and on locomotor activity of rats. Journal of Endocrinology, 83, 1–16.
  • Tabak, J., Tomaiuolo, M., Gonzalez-Iglesias, A.E., Milescu, L.S., & Bertram, R. (2011). Fast-activating voltage- and calcium-dependent potassium (BK) conductance promotes bursting in pituitary cells: A dynamic clamp study. Journal of Neuroscience, 31, 16855–16863. doi:10.1523/JNEUROSCI.3235-11.2011
  • Tagliavini, A., Tabak, J., Bertram, R., & Pedersen, M.G. (2016). Is bursting more effective than spiking in evoking pituitary hormone secretion? A spatiotemporal simulation study of calcium and granule dynamics. American Journal of Physiology–Endocrinology and Metabolism, 310, E515–E525. doi:10.1152/ajpendo.00500.2015
  • Takemori, H., Kanematsu, M., Kajimura, J., Hatano, O., Katoh, Y., Lin, X.Z., … Okamoto, M. (2007). Dephosphorylation of TORC initiates expression of the StAR gene. Molecular and Cellular Endocrinology, 265, 196–204. doi:10.1016/j.mce.2006.12.020
  • Takemori, H., & Okamoto, M. (2008). Regulation of CREB-mediated gene expression by salt inducible kinase. Journal of Steroid Biochemistry and Molecular Biology, 108, 287–291. doi:10.1016/j.jsbmb.2007.09.006
  • Tasker, J.G., Di, S., & Malcher-Lopes, R. (2006). Minireview: Rapid glucocorticoid signaling via membrane-associated receptors. Endocrinology, 147, 5549–5556. doi:10.1210/en.2006-0981
  • Taylor, A.D., Flower, R.J., & Buckingham, J.C. (1995). Dexamethasone inhibits the release of Tsh from the rat anterior-pituitary gland in-vitro by mechanisms dependent on de-novo protein-synthesis and lipocortin-1. Journal of Endocrinology, 147, 533–544.
  • Tian, L., Hammond, M.S., Florance, H., Antoni, F.A., & Shipston, M.J. (2001). Alternative splicing determines sensitivity of murine calcium-activated potassium channels to glucocorticoids. The Journal of Physiology, 537, 57–68.
  • Tian, L., Knaus, H.G., & Shipston, M.J. (1998). Glucocorticoid regulation of calcium-activated potassium channels mediated by serine/threonine protein phosphatase. Journal of Biological Chemistry, 273, 13531–13536.
  • Tsaneva-Atanasova, K., Sherman, A., van Goor, F., & Stojilkovic, S.S. (2007). Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs: experiments and theory. Journal of Neurophysiology, 98, 131–144. doi:10.1152/jn.00872.2006
  • Ulrich-Lai, Y.M., Arnhold, M.M., & Engeland, W.C. (2006). Adrenal splanchnic innervation contributes to the diurnal rhythm of plasma corticosterone in rats by modulating adrenal sensitivity to ACTH. American Journal of Physiology, Regulatory Integrative and Comparative Physiology, 290, R1128–R1135. doi:10.1152/ajpregu.00042.2003
  • Vale, W., Spiess, J., Rivier, C., & Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 213, 1394–1397.
  • Van Goor, F., Zivadinovic, D., Martinez-Fuentes, A.J., & Stojilkovic, S.S. (2001). Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. Cell type-specific action potential secretion coupling. Journal of Biological Chemistry, 276, 33840–33846. doi:10.1074/jbc.M105386200
  • Vandevyver, S., Dejager, L., & Libert, C. (2012). On the trail of the glucocorticoid receptor: into the nucleus and back. Traffic (Copenhagen, Denmark), 13, 364–374. doi:10.1111/j.1600-0854.2011.01288.x
  • Velders, F.P., Kuningas, M., Kumari, M., Dekker, M.J., Uitterlinden, A.G., Kirschbaum, C., … Tiemeier, H. (2011). Genetics of cortisol secretion and depressive symptoms: a candidate gene and genome wide association approach. Psychoneuroendocrinology, 36, 1053–1061. doi:10.1016/j.psyneuen.2011.01.003
  • Volpi, S., Rabadan-Diehl, C., & Aguilera, G. (2004). Vasopressinergic regulation of the hypothalamic pituitary adrenal axis and stress adaptation. Stress-the International Journal on the Biology of Stress, 7, 75–83.
  • Waite, E.J., McKenna, M., Kershaw, Y., Walker, J.J., Cho, K., Piggins, H.D., & Lightman, S.L. (2012). Ultradian corticosterone secretion is maintained in the absence of circadian cues. European Journal of Neuroscience, 36, 3142–3150. doi:10.1111/j.1460-9568.2012.08213.x
  • Walker, J.J., Spiga, F., Gupta, R., Zhao, Z., Lightman, S.L., & Terry, J.R. (2015). Rapid intra-adrenal feedback regulation of glucocorticoid synthesis. Journal of the Royal Society, Interface/the Royal Society, 12, 20140875. doi:10.1098/rsif.2014.0875
  • Walker, J.J., Spiga, F., Waite, E., Zhao, Z., Kershaw, Y., Terry, J.R., & Lightman, S.L. (2012). The origin of glucocorticoid hormone oscillations. PLoS Biology, 10, e1001341. doi:10.1371/journal.pbio.1001341
  • Walker, J.J., Terry, J.R., & Lightman, S.L. (2010). Origin of ultradian pulsatility in the hypothalamic-pituitary-adrenal axis. Proceedings of Biological Science, 277, 1627–1633. doi:10.1098/rspb.2009.2148
  • Watts, A.G. (2005). Glucocorticoid regulation of peptide genes in neuroendocrine CRH neurons: A complexity beyond negative feedback. Frontiers in Neuroendocrinol, 26, 109–130. doi:10.1016/j.yfrne.2005.09.001
  • Watts, A.G., Tanimura, S., & Sanchez-Watts, G. (2004). Corticotropin-releasing hormone and arginine vasopressin gene transcription in the hypothalamic paraventricular nucleus of unstressed rats: Daily rhythms and their interactions with corticosterone. Endocrinology, 145, 529–540. doi:10.1210/en.2003-0394
  • Willour, V.L., Chen, H., Toolan, J., Belmonte, P., Cutler, D.J., Goes, F.S., … Schweizer, B., G. Bipolar Disorder Phenome, N.G.I.B.D. Consortium (2009). Family-based association of FKBP5 in bipolar disorder. Molecular Psychiatry, 14, 261–268. doi:10.1038/sj.mp.4002141
  • Windle, R.J., Kershaw, Y.M., Shanks, N., Wood, S.A., Lightman, S.L., & Ingram, C.D. (2004). Oxytocin attenuates stress-induced c-fos mRNA expression in specific forebrain regions associated with modulation of hypothalamo-pituitary-adrenal activity. Journal of Neuroscience, 24, 2974–2982. doi:10.1523/JNEUROSCI.3432-03.2004
  • Windle, R.J., Shanks, N., Lightman, S.L., & Ingram, C.D. (1997). Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology, 138, 2829–2834. doi:10.1210/endo.138.7.5255
  • Windle, R.J., Wood, S.A., Shanks, N., Lightman, S.L., & Ingram, C.D. (1998). Ultradian rhythm of basal corticosterone release in the female rat: dynamic interaction with the response to acute stress. Endocrinology, 139, 443–450. doi:10.1210/endo.139.2.5721
  • Wochnik, G.M., Ruegg, J., Abel, G.A., Schmidt, U., Holsboer, F., & Rein, T. (2005). FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. Journal of Biological Chemistry, 280, 4609–4616. doi:10.1074/jbc.M407498200
  • Yamamori, E., Iwasaki, Y., Taguchi, T., Nishiyama, M., Yoshida, M., Asai, M., Oiso, Y., Itoi, K., Kambayashi, M., & Hashimoto, K. (2007). Molecular mechanisms for corticotropin-releasing hormone gene repression by glucocorticoid in BE(2)C neuronal cell line. Molecular and Cellular Endocrinology, 264, 142–148. doi:10.1016/j.mce.2006.11.001
  • Yang, X., Ewald, E.R., Huo, Y., Tamashiro, K.L., Salvatori, R., Sawa, A., … Lee, R.S. (2012). Glucocorticoid-induced loss of DNA methylation in non-neuronal cells and potential involvement of DNMT1 in epigenetic regulation of Fkbp5. Biochemical and Biophysics Research Communication, 420, 570–575. doi:10.1016/j.bbrc.2012.03.035
  • Zou, Y.F., Wang, F., Feng, X.L., Li, W.F., Tao, J.H., Pan, F.M., … Su, H. (2010). Meta-analysis of FKBP5 gene polymorphisms association with treatment response in patients with mood disorders. Neuroscience Letters, 484, 56–61. doi:10.1016/j.neulet.2010.08.019