Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 23, 2020 - Issue 1
821
Views
9
CrossRef citations to date
0
Altmetric
Original Research Reports

Constitutive differences in glucocorticoid responsiveness are related to divergent spatial information processing abilities

ORCID Icon, , , , &
Pages 37-49 | Received 15 Mar 2019, Accepted 27 May 2019, Published online: 12 Jun 2019

References

  • Akirav, I., Kozenicky, M., Tal, D., Sandi, C., Venero, C., & Richter-Levin, G. (2004). A facilitative role for corticosterone in the acquisition of a spatial task under moderate stress. Learning & Memory, 11, 188–195. doi:10.1101/lm.61704
  • Akirav, I., Sandi, C., & Richter-Levin, G. (2001). Differential activation of hippocampus and amygdala following spatial learning under stress. European Journal of Neuroscience, 14, 719–725. doi:10.1046/j.0953-816x.2001.01687.x
  • Atsak, P., Hauer, D., Campolongo, P., Schelling, G., Fornari, R.V., & Roozendaal, B. (2015). Endocannabinoid signaling within the basolateral amygdala integrates multiple stress hormone effects on memory consolidation. Neuropsychopharmacology, 40, 1485–1494. doi:10.1038/npp.2014.334
  • Atsak, P., Hauer, D., Campolongo, P., Schelling, G., McGaugh, J.L., & Roozendaal, B. (2012). Glucocorticoids interact with the hippocampal endocannabinoid system in impairing retrieval of contextual fear memory. Proceedings of the National Academy of Sciences of the United States of America, 109, 3504–3509. doi:10.1073/pnas.1200742109
  • Barsegyan, A., Mackenzie, S.M., Kurose, B.D., McGaugh, J.L., & Roozendaal, B. (2010). Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism. Proceedings of the National Academy of Sciences of the United States of America, 107, 16655–16660. doi:10.1073/pnas.1011975107
  • Bisaz, R., Conboy, L., & Sandi, C. (2009). Learning under stress: A role for the neural cell adhesion molecule NCAM. Neurobiology of Learning and Memory, 91, 333–342. doi:10.1016/j.nlm.2008.11.003
  • Bodnoff, S.R., Humphreys, A.G., Lehman, J.C., Diamond, D.M., Rose, G.M., & Meaney, M.J. (1995). Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats. The Journal of Neuroscience, 15, 61–69. doi:10.1523/JNEUROSCI.15-01-00061.1995
  • Borcel, É., Pérez-Alvarez, L., Herrero, A.I., Brionne, T., Varea, E., Berezin, V., … Venero, C. (2008). Chronic stress in adulthood followed by intermittent stress impairs spatial memory and the survival of newborn hippocampal cells in aging animals: Prevention by FGL, a peptide mimetic of neural cell adhesion molecule. Behavioural Pharmacology, 19, 41–49. doi:10.1097/FBP.0b013e3282f3fca9
  • Brody, D.L., & Holtzman, D.M. (2006). Morris water maze search strategy analysis in PDAPP mice before and after experimental traumatic brain injury. Experimental Neurology, 197, 330–340. doi:10.1016/j.expneurol.2005.10.020
  • Bryce, C.A., & Howland, J.G. (2015). Stress facilitates late reversal learning using a touchscreen-based visual discrimination procedure in male Long Evans rats. Behavioural Brain Research, 278, 21–28. doi:10.1016/j.bbr.2014.09.027
  • Buechel, H.M., Popovic, J., Staggs, K., Anderson, K.L., Thibault, O., & Blalock, E.M. (2014). Aged rats are hypo-responsive to acute restraint: Implications for psychosocial stress in aging. Frontiers in Aging Neuroscience, 6, 1–16. https://doi.org/10.3389/fnagi.2014.00013
  • Cizza, G., Calogero, A.E., Brady, L.S., Bagdy, G., Bergamini, E., Blackman, M.R., … Gold, P.W. (1994). Male Fischer 344/N rats show a progressive central impairment of the hypothalamic-pituitary-adrenal axis with advancing age. Endocrinology, 134, 1611–1620. doi:10.1210/endo.134.4.8137722
  • Conboy, L., & Sandi, C. (2010). Stress at learning facilitates memory formation by regulating AMPA receptor trafficking through a glucocorticoid action. Neuropsychopharmacology, 35, 674–685. doi:10.1038/npp.2009.172
  • Conrad, C.D. (2010). A critical review of chronic stress effects on spatial learning and memory. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 34, 742–755. doi:10.1016/j.pnpbp.2009.11.003
  • Cordero, M.I., & Sandi, C. (1998). A role for brain glucocorticoid receptors in contextual fear conditioning: Dependence upon training intensity. Brain Research, 786, 11–17. doi:10.1016/S0006-8993(97)01420-0
  • D’Hooge, R., & De Deyn, P.P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Research Reviews, 36, 60–90. https://doi.org/10.1016/S0165-0173(01)00067-4
  • De Kloet, E.R., Joëls, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews Neuroscience, 6, 463–475. https://doi.org/10.1038/nrn1683
  • de Quervain, D.J.-F., Aerni, A., Schelling, G., & Roozendaal, B. (2009). Glucocorticoids and the regulation of memory in health and disease. Frontiers in Neuroendocrinology, 30, 358–370. doi:10.1016/j.yfrne.2009.03.002
  • de Quervain, D.J.-F., Roozendaal, B., & McGaugh, J.L. (1998). Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature, 394, 787–790. doi:10.1038/29542
  • Dong, Z., Bai, Y., Wu, X., Li, H., Gong, B., Howland, J.G., … Wang, Y.T. (2013). Hippocampal long-term depression mediates spatial reversal learning in the Morris water maze. Neuropharmacology, 64, 65–73. doi:10.1016/j.neuropharm.2012.06.027
  • Ebner, K., Wotjak, C.T., Landgraf, R., & Engelmann, M. (2002). Forced swimming triggers vasopressin release within the amygdala to modulate stress-coping strategies in rats. European Journal of Neuroscience, 15, 384–388. https://doi.org/10.1046/j.0953-816x.2001.01869.x
  • Eppinger, B., Hämmerer, D., & Li, S.-C. (2011). Neuromodulation of reward-based learning and decision making in human aging. Annals of the New York Academy of Sciences, 1235, 1–17. doi:10.1111/j.1749-6632.2011.06230.x
  • Gehring, T.V., Luksys, G., Sandi, C., & Vasilaki, E. (2015). Detailed classification of swimming paths in the Morris Water Maze: Multiple strategies within one trial. Scientific Reports, 5, 14562. doi:10.1038/srep14562
  • Graybeal, C., Feyder, M., Schulman, E., Saksida, L.M., Bussey, T.J., Brigman, J.L., & Holmes, A. (2011). Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: Rescue with BDNF. Nature Neuroscience, 14, 1507–1509. doi:10.1038/nn.2954
  • Graziano, A., Petrosini, L., & Bartoletti, A. (2003). Automatic recognition of explorative strategies in the Morris water maze. Journal of Neuroscience Methods, 130, 33–44. doi:10.1016/S0165-0270(03)00187-0
  • Grubbs, F.E. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11, 1. doi:10.1080/00401706.1969.10490657
  • Hauger, R.L., Thrivikraman, K.V., & Plotsky, P.M. (1994). Age-related alterations of hypothalamic-pituitary-adrenal axis function in male Fischer 344 rats. Endocrinology, 134, 1528–1536. doi:10.1210/endo.134.3.8119195
  • Huzard, D., Ghosal, S., Grosse, J., Carnevali, L., Sgoifo, A., & Sandi, C. (2019). Low vagal tone in two rat models of psychopathology involving high or low corticosterone stress responses. Psychoneuroendocrinology, 101, 101–110. doi:10.1016/j.psyneuen.2018.11.003
  • Janus, C. (2004). Search strategies used by APP transgenic mice during navigation in the Morris water maze. Learning & Memory, 11, 337–346. doi:10.1101/lm.70104
  • Joëls, M., Pu, Z., Wiegert, O., Oitzl, M.S., & Krugers, H.J. (2006). Learning under stress: How does it work? Trends in Cognitive Sciences, 10, 152–158. doi:10.1016/j.tics.2006.02.002
  • Koolhaas, J.M., de Boer, S.F., Coppens, C.M., & Buwalda, B. (2010). Neuroendocrinology of coping styles: Towards understanding the biology of individual variation. Frontiers in Neuroendocrinology, 31, 307–321. https://doi.org/10.1016/j.yfrne.2010.04.001
  • Lai, Z.C., Moss, M.B., Killiany, R.J., Rosene, D.L., & Herndon, J.G. (1995). Executive system dysfunction in the aged monkey: Spatial and object reversal learning. Neurobiology of Aging, 16, 947–954. https://doi.org/10.1016/0197-4580(95)02014-4 doi:10.1016/0197-4580(95)02014-4
  • Landfield, P.W., Baskin, R.K., & Pitler, T.A. (1981). Brain aging correlates: Retardation by hormonal-pharmacological treatments. Science, 214, 581–584. doi:10.1126/science.6270791
  • Latif-Hernandez, A., Shah, D., Ahmed, T., Lo, A.C., Callaerts-Vegh, Z., Van der Linden, A., … D’Hooge, R. (2016). Quinolinic acid injection in mouse medial prefrontal cortex affects reversal learning abilities, cortical connectivity and hippocampal synaptic plasticity. Scientific Reports, 6, 36489. doi:10.1038/srep36489
  • Luksys, G., & Sandi, C. (2011). Neural mechanisms and computations underlying stress effects on learning and memory. Current Opinion in Neurobiology, 21, 502–508. doi:10.1016/j.conb.2011.03.003
  • Luksys, G., Gerstner, W., & Sandi, C. (2009). Stress, genotype and norepinephrine in the prediction of mouse behavior using reinforcement learning. Nature Neuroscience, 12, 1180–1186. doi:10.1038/nn.2374
  • Lupien, S.J., & McEwen, B.S. (1997). The acute effects of corticosteroids on cognition: Integration of animal and human model studies. Brain Research Reviews, 24, 1–27. doi:10.1016/S0165-0173(97)00004-0
  • Lupien, S.J., de Leon, M., de Santi, S., Convit, A., Tarshish, C., Nair, N.P.V., … Meaney, M.J. (1998). Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature Neuroscience, 1, 69–73. doi:10.1038/271
  • Martin, S., Henley, J.M., Holman, D., Zhou, M., Wiegert, O., van Spronsen, M., … Krugers, H.J. (2009). Corticosterone alters AMPAR mobility and facilitates bidirectional synaptic plasticity. PLoS One, 4, e4714. doi:10.1371/journal.pone.0004714
  • McEwen, B.S. (1998). Stress, adaptation, and disease. Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 33–44. doi:10.1111/j.1749-6632.1998.tb09546.x
  • Merino, J.J., Cordero, M.I., & Sandi, C. (2000). Regulation of hippocampal cell adhesion molecules NCAM and L1 by contextual fear conditioning is dependent upon time and stressor intensity. The European Journal of Neuroscience, 12, 3283–3290. doi:10.1046/j.1460-9568.2000.00191.x
  • Mongillo, P., Araujo, J.A., Pitteri, E., Carnier, P., Adamelli, S., Regolin, L., & Marinelli, L. (2013). Spatial reversal learning is impaired by age in pet dogs. Age (Dordrecht), 35, 2273–2282. doi:10.1007/s11357-013-9524-0
  • Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11, 47–60. doi:10.1016/0165-0270(84)90007-4
  • Morris, R.G.M., Schenk, F., Tweedie, F., & Jarrard, L.E. (1990). Ibotenate lesions of hippocampus and/or subiculum: Dissociating components of allocentric spatial learning. The European Journal of Neuroscience, 2, 1016–1028. doi:10.1111/j.1460-9568.1990.tb00014.x
  • Motulsky, H.J., & Brown, R.E. (2006). Detecting outliers when fitting data with nonlinear regression – A new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics, 7,123. doi:10.1186/1471-2105-7-123
  • Myers, B., McKlveen, J.M., & Herman, J.P. (2014). Glucocorticoid actions on synapses, circuits, and behavior: Implications for the energetics of stress. Frontiers in Neuroendocrinology, 35, 180–196. doi:10.1016/j.yfrne.2013.12.003
  • Oh, H.-J., Song, M., Kim, Y.K., Bae, J.R., Cha, S.-Y., Bae, J.Y., … Maeng, S. (2018). Age-related decrease in stress responsiveness and proactive coping in male mice. Frontiers in Aging Neuroscience, 10, 128. doi:10.3389/fnagi.2018.00128
  • Oitzl, M.S., Fluttert, M., & De Kloet, E.R. (1998). Acute blockade of hippocampal glucocorticoid receptors facilitates spatial learning in rats. Brain Research, 797, 159–162. doi:10.1016/S0006-8993(98)00387-4
  • Raio, C.M., Hartley, C.A., Orederu, T.A., Li, J., & Phelps, E.A. (2017). Stress attenuates the flexible updating of aversive value. Proceedings of the National Academy of Sciences, 114, 11241–11246. doi:10.1073/pnas.1702565114
  • Revest, J.-M., Di Blasi, F., Kitchener, P., Rougé-Pont, F., Desmedt, A., Turiault, M., … Piazza, P.V. (2005). The MAPK pathway and Egr-1 mediate stress-related behavioral effects of glucocorticoids. Nature Neuroscience, 8, 664–672. doi:10.1038/nn1441
  • Revest, J.-M., Kaouane, N., Mondin, M., Le Roux, A., Rougé-Pont, F., Vallée, M., … Piazza, P.V. (2010). The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/Ib. Molecular Psychiatry, 15, 1140–1151. doi:10.1038/mp.2010.40
  • Roozendaal, B., Okuda, S., Van der Zee, E.A., & McGaugh, J.L. (2006). Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proceedings of the National Academy of Sciences of the United States of America, 103, 6741–6746. doi:10.1073/pnas.0601874103
  • Salehi, B., Cordero, M.I., & Sandi, C. (2010). Learning under stress: The inverted-U-shape function revisited. Learning & Memory, 17, 522–530. doi:10.1101/lm.1914110
  • Sandi, C. (2011). Glucocorticoids act on glutamatergic pathways to affect memory processes. Trends in Neurosciences, 34, 165–176. doi:10.1016/j.tins.2011.01.006
  • Sandi, C. (2013). Stress and cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 4, 245–261. doi:10.1002/wcs.1222
  • Sandi, C., & Pinelo-Nava, M.T. (2007). Stress and memory: Behavioral effects and neurobiological mechanisms. Neural Plasticity, 2007, 1–20. doi:10.1155/2007/78970
  • Sandi, C., & Rose, S.P. (1997). Protein synthesis- and fucosylation-dependent mechanisms in corticosterone facilitation of long-term memory in the chick. Behavioral Neuroscience, 111, 1098–1104. doi:10.1037//0735-7044.111.5.1098
  • Sandi, C., & Touyarot, K. (2006). Mid-life stress and cognitive deficits during early aging in rats: Individual differences and hippocampal correlates. Neurobiology of Aging, 27, 128–140. doi:10.1016/j.neurobiolaging.2005.01.006
  • Sandi, C., Loscertales, M., & Guaza, C. (1997). Experience-dependent facilitating effect of corticosterone on spatial memory formation in the water maze. European Journal of Neuroscience, 9, 637–642. doi:10.1111/j.1460-9568.1997.tb01412.x
  • Sandi, C., Rose, S.P., Mileusnic, R., & Lancashire, C. (1995). Corticosterone facilitates long-term memory formation via enhanced glycoprotein synthesis. Neuroscience, 69, 1087–1093. doi:10.1016/0306-4522(95)00306-4
  • Sapolsky, R., & Goosens, K. (2007). Stress and glucocorticoid contributions to normal and pathological aging. Brain aging: Models, methods, and mechanisms, 305–322.
  • Schoenbaum, G. (2006). Encoding changes in orbitofrontal cortex in reversal-impaired aged rats. Journal of Neurophysiology, 95, 1509-1517. doi:10.1152/jn.01052.2005
  • Schwabe, L., & Wolf, O.T. (2010). Learning under stress impairs memory formation. Neurobiology of Learning and Memory, 93, 183–188. doi:10.1016/j.nlm.2009.09.009
  • Schwabe, L., Oitzl, M.S., Philippsen, C., Richter, S., Bohringer, A., Wippich, W., & Schachinger, H. (2007). Stress modulates the use of spatial versus stimulus-response learning strategies in humans. Learning & Memory, 14, 109–116. doi:10.1101/lm.435807
  • Schwabe, L., Schächinger, H., de Kloet, E.R., & Oitzl, M.S. (2010). Corticosteroids operate as a switch between memory systems. Journal of Cognitive Neuroscience, 22, 1362–1372. doi:10.1162/jocn.2009.21278
  • van Gerven, D.J.H., Ferguson, T., & Skelton, R.W. (2016). Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze. Neurobiology of Learning and Memory, 132, 29–39. doi:10.1016/j.nlm.2016.05.003
  • Vorhees, C.V., & Williams, M.T. (2006). Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nature Protocols, 1, 848–858. doi:10.1038/nprot.2006.116
  • Vouros, A., Gehring, T.V., Szydlowska, K., Janusz, A., Tu, Z., Croucher, M., … Vasilaki, E. (2018). A generalised framework for detailed classification of swimming paths inside the Morris Water Maze. Scientific Reports, 8, 15089. doi:10.1038/s41598-018-33456-1
  • Walker, S.E., & Sandi, C. (2018). Long-term programing of psychopathology-like behaviors in male rats by peripubertal stress depends on individual’s glucocorticoid responsiveness to stress. Stress, 21, 1–10. doi:10.1080/10253890.2018.1435639
  • Walker, S.E., Zanoletti, O., Guillot de Suduiraut, I., & Sandi, C. (2017). Constitutive differences in glucocorticoid responsiveness to stress are related to variation in aggression and anxiety-related behaviors. Psychoneuroendocrinology, 84, 1–10. doi:10.1016/j.psyneuen.2017.06.011
  • Wheelan, N., Kenyon, C.J., Harris, A.P., Cairns, C., Al Dujaili, E., Seckl, J.R., & Yau, J.L.W. (2018). Midlife stress alters memory and mood-related behaviors in old age: Role of locally activated glucocorticoids. Psychoneuroendocrinology, 89, 13–22. doi:10.1016/j.psyneuen.2017.12.018
  • Wolfer, D.P., & Lipp, H.P. (2000). Dissecting the behaviour of transgenic mice: Is it the mutation, the genetic background, or the environment? Experimental Physiology, 85, 627–634. doi:10.1017/S0958067000020959
  • Yau, J.L., Olsson, T., Morris, R.G., Meaney, M.J., & Seckl, J.R. (1995). Glucocorticoids, hippocampal corticosteroid receptor gene expression and antidepressant treatment: Relationship with spatial learning in young and aged rats. Neuroscience, 66, 571–581. doi:10.1016/0306-4522(94)00612-9
  • Yau, J.L.W., Wheelan, N., Noble, J., Walker, B.R., Webster, S.P., Kenyon, C.J., … Seckl, J.R. (2015). Intrahippocampal glucocorticoids generated by 11β-HSD1 affect memory in aged mice. Neurobiology of Aging, 36, 334–343. doi:10.1016/j.neurobiolaging.2014.07.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.