Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 23, 2020 - Issue 2
531
Views
1
CrossRef citations to date
0
Altmetric
Original Research Reports

Mechanisms involved in the cardiovascular effects caused by acute osmotic stimulation in conscious rats

ORCID Icon, , , , , & show all
Pages 221-232 | Received 28 Feb 2019, Accepted 21 Aug 2019, Published online: 24 Sep 2019

References

  • Akins, V.F., & Bealer, S.L. (1990). Brain histamine regulates pressor responses to peripheral hyperosmolality. American Journal of Physiology, 259, R507–R513. doi:10.1152/ajpregu.1990.259.3.R507
  • Antunes, V.R., Yao, S.T., Pickering, A.E., Murphy, D., & Paton, J.F. (2006). A spinal vasopressinergic mechanism mediates hyperosmolality-induced sympathoexcitation. The Journal of Physiology, 576, 569–583. doi:10.1113/jphysiol.2006.115766
  • Antunes-Rodrigues, J., de Castro, M., Elias, L.L., Valenca, M.M., & McCann, S.M. (2004). Neuroendocrine control of body fluid metabolism. Physiological Reviews, 84, 169–208. doi:10.1152/physrev.00017.2003
  • Bealer, S.L. (2000). Central control of cardiac baroreflex responses during peripheral hyperosmolality. American Journal of PhysiologyRegulatory, Integrative and Comparative Physiology, 278, R1157–R1163. doi:10.1152/ajpregu.2000.278.5.R1157
  • Bisset, G.W., & Chowdrey, H.S. (1988). Control of release of vasopressin by neuroendocrine reflexes. Quarterly Journal of Experimental Physiology (Cambridge, England), 73, 811–872.
  • Blanch, G.T., Freiria-Oliveira, A.H., Murphy, D., Paulin, R.F., Antunes-Rodrigues, J., Colombari, E., … Colombari, D.S.A. (2013). Inhibitory mechanism of the nucleus of the solitary tract involved in the control of cardiovascular, dipsogenic, hormonal, and renal responses to hyperosmolality. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 304, R531–R542. [pii] doi:10.1152/ajpregu.00191.2012
  • Bourque, C.W., Oliet, S.H., & Richard, D. (1994). Osmoreceptors, osmoreception, and osmoregulation. Frontiers in Neuroendocrinology, 15, 231–274. [pii] doi:10.1006/frne.1994.1010
  • Brimble, M.J., & Dyball, R.E. (1977). Characterization of the responses of oxytocin- and vasopressin-secreting neurones in the supraoptic nucleus to osmotic stimulation. The Journal of Physiology, 271, 253–271. doi:10.1113/jphysiol.1977.sp011999
  • Broadwell, R.D., & Brightman, M.W. (1976). Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. The Journal of Comparative Neurology, 166, 257–283. doi:10.1002/cne.901660302
  • Chen, H., Morris, M., Key, M.P., & Chen, Y. (2004). Rapid neurosecretory and cardiovascular response to osmotic stimulation in conscious mice. Neuroendocrinology, 80, 225–232. doi:10.1159/000082751
  • Chen, Q.H., & Toney, G.M. (2001). AT(1)-receptor blockade in the hypothalamic PVN reduces central hyperosmolality-induced renal sympathoexcitation. American Journal of PhysiologyRegulatory, Intergrative and Comparative Physiology, 281, R1844–R1853. doi:10.1152/ajpregu.2001.281.6.R1844
  • Correa, F., Macro, I., Perespolon, V., & Antunesrodrigues, J. (1985). Mechanism of the CNS-mediated pressor response to intracerebroventricular injection of noradrenaline in unanaesthetized rats. Neuropharmacology, 24, 831–837. doi:10.1016/0028-3908(85)90033-4
  • Crofton, J.T., & Share, L. (1989). Osmotic control of vasopressin in male and female rats. The American Journal of Physiology, 257, R738–R743. doi:10.1152/ajpregu.1989.257.4.R738
  • Cunningham, J.T., Penny, M.L., & Murphy, D. (2004). Cardiovascular regulation of supraoptic neurons in the rat: Synaptic inputs and cellular signals. Progress in Biophysics and Molecular Biology, 84, 183–196. doi:10.1016/j.pbiomolbio.2003.11.004
  • Dos Reis, D.G., Fortaleza, E.A., Tavares, R.F., & Correa, F.M. (2014). Role of the autonomic nervous system and baroreflex in stress-evoked cardiovascular responses in rats. Stress, 17, 362–372. doi:10.3109/10253890.2014.930429
  • Dunn, F.L., Brennan, T.J., Nelson, A.E., & Robertson, G.L. (1973). The role of blood osmolality and volume in regulating vasopressin secretion in the rat. Journal of Clinical Investigation, 52, 3212–3219. doi:10.1172/JCI107521
  • Fernandes, K.B., Crippa, G.E., Tavares, R.F., Antunes-Rodrigues, J., & Correa, F.M. (2003). Mechanisms involved in the pressor response to noradrenaline injection into the cingulate cortex of unanesthetized rats. Neuropharmacology, 44, 757–763. doi:10.1016/S0028-3908(03)00067-4
  • Fortaleza, E.A., Scopinho, A.A., & Correa, F.M. (2012a). Beta-adrenoceptors in the medial amygdaloid nucleus modulate the tachycardiac response to restraint stress in rats. Neuroscience, 227, 170–179. doi:10.1016/j.neuroscience.2012.09.048
  • Fortaleza, E.A., Scopinho, A.A., & Correa, F.M. (2012b). Paraventricular and supraoptic nuclei of the hypothalamus mediate cardiovascular responses evoked by the microinjection of noradrenaline into the medial amygdaloid nucleus of the rat brain. Neuroscience, 219, 157–165. doi:10.1016/j.neuroscience.2012.05.051
  • Fortaleza, E.A., Tavares, R.F., & Correa, F.M. (2009). The medial amygdaloid nucleus modulates cardiovascular responses to acute restraint in rats. Neuroscience, 159, 717–726. doi:10.1016/j.neuroscience.2009.01.003
  • Garcia-Estan, J., Carbonell, L.F., Garcia-Salom, M., Salazar, F.J., & Quesada, T. (1989). Hemodynamic effects of hypertonic saline in the conscious rat. Life Sciences, 44, 1343–1350. doi:10.1016/0024-3205(89)90391-3
  • Gibbs, D.M. (1986). Vasopressin and oxytocin: hypothalamic modulators of the stress response: A review. Psychoneuroendocrinology, 11, 131–139. doi:10.1016/0306-4530(86)90048-X
  • Haberich, F.J. (1968). Osmoreception in the portal circulation. Federation Proceedings, 27, 1137–1141.
  • Herbert, H., Moga, M.M., & Saper, C.B. (1990). Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. The Journal of Comparative Neurology, 293, 540–580. doi:10.1002/cne.902930404
  • Honda, K., Negoro, H., Dyball, R.E., Higuchi, T., & Takano, S. (1990). The osmoreceptor complex in the rat: Evidence for interactions between the supraoptic and other diencephalic nuclei. The Journal of Physiology, 431, 225–241. doi:10.1113/jphysiol.1990.sp018328
  • Hosomi, H., & Morita, H. (1996). Hepatorenal and hepatointestinal reflexes in sodium homeostasis. Physiology, 11, 103–107. doi:10.1152/physiologyonline.1996.11.3.103
  • Hussy, N., Deleuze, C., Desarmenien, M.G., & Moos, F.C. (2000). Osmotic regulation of neuronal activity: A new role for taurine and glial cells in a hypothalamic neuroendocrine structure. Progress in Neurobiology, 62, 113–134. doi:10.1016/S0301-0082(99)00071-4
  • Kobashi, M., & Adachi, A. (1985). Convergence of hepatic osmoreceptive inputs on sodium-responsive units within the nucleus of the solitary tract of the rat. Journal of Neurophysiology, 54, 212–219. doi:10.1152/jn.1985.54.2.212
  • Krause, E.G., de Kloet, A.D., Flak, J.N., Smeltzer, M.D., Solomon, M.B., Evanson, N.K., … Herman, J.P. (2011). Hydration state controls stress responsiveness and social behavior. Journal of Neuroscience, 31, 5470–5476. doi:10.1523/JNEUROSCI.6078-10.2011
  • Kremarik, P., Freund-Mercier, M.J., & Stoeckel, M.E. (1993). Histoautoradiographic detection of oxytocin- and vasopressin-binding sites in the telencephalon of the rat. Journal of Comparative Neurology, 333, 343–359. doi:10.1002/cne.903330304
  • Larsen, P.J., & Mikkelsen, J.D. (1995). Functional identification of central afferent projections conveying information of acute “stress” to the hypothalamic paraventricular nucleus. The Journal of Neuroscience, 15, 2609–2627. doi:10.1523/JNEUROSCI.15-04-02609.1995
  • Leng, G., Brown, C.H., Bull, P.M., Brown, D., Scullion, S., Currie, J., … Ludwig, M. (2001). Responses of magnocellular neurons to osmotic stimulation involves coactivation of excitatory and inhibitory input: An experimental and theoretical analysis. The Journal of Neuroscience, 21, 6967–6977.
  • Ma, X.M., Lightman, S.L., & Aguilera, G. (1999). Vasopressin and corticotropin-releasing hormone gene responses to novel stress in rats adapted to repeated restraint. Endocrinology, 140, 3623–3632. doi:10.1210/endo.140.8.6943
  • Manning, M., Misicka, A., Olma, A., Bankowski, K., Stoev, S., Chini, B., … Guillon, G. (2012). Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. Journal of Neuroendocrinology, 24, 609–628. doi:10.1111/j.1365-2826.2012.02303.x
  • McKinley, M.J., Denton, D.A., Leventer, M., Penschow, J., Weisinger, R.S., & Wright, R.D. (1983). Morphology of the organum vasculosum of the lamina terminalis (OVLT) of the sheep. Brain Research Bulletin, 11, 649–657. doi:10.1016/0361-9230(83)90007-2
  • Melin, P., Trojnar, J., Johansson, B., Vilhardt, H., & Akerlund, M. (1986). Synthetic antagonists of the myometrial response to vasopressin and oxytocin. Journal of Endocrinology, 111, 125–131. doi:10.1677/joe.0.1110125
  • Mukaddam-Daher, S., Yin, Y.L., Roy, J., Gutkowska, J., & Cardinal, R. (2001). Negative inotropic and chronotropic effects of oxytocin. Hypertension, 38, 292–296. doi:10.1161/01.HYP.38.2.292
  • Onaka, T., & Yagi, K. (2001). Involvement of N-methyl-D-aspartic acid receptor activation in oxytocin and vasopressin release after osmotic stimuli in rats. Journal of Neuroendocrinology, 13, 166–174. doi:jne607 [pii] doi:10.1046/j.1365-2826.2001.00607.x
  • Ota, M., Crofton, J.T., & Share, L. (1994). Hemorrhage-induced vasopressin release in the paraventricular nucleus measured by in vivo microdialysis. Brain Research, 658, 49–54. doi:10.1016/S0006-8993(09)90009-9
  • Paton, J.F., Boscan, P., Pickering, A.E., & Nalivaiko, E. (2005). The yin and yang of cardiac autonomic control: Vago-sympathetic interactions revisited. Brain Research Reviews, 49, 555–565.
  • Pirnik, Z., Mravec, B., & Kiss, A. (2004). Fos protein expression in mouse hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei upon osmotic stimulus: Colocalization with vasopressin, oxytocin, and tyrosine hydroxylase. Neurochemistry International, 45, 597–607. doi:10.1016/j.neuint.2004.04.003
  • Resstel, L.B., Joca, S.R., Guimaraes, F.G., & Correa, F.M. (2006). Involvement of medial prefrontal cortex neurons in behavioral and cardiovascular responses to contextual fear conditioning. Neuroscience, 143, 377–385. doi:10.1016/j.neuroscience.2006.08.002
  • Ricardo, J.A., & Koh, E.T. (1978). Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Research, 153, 1–26. [pii] doi:10.1016/0006-8993(78)91125-3
  • Saper, C.B., Reis, D.J., & Joh, T. (1983). Medullary catecholamine inputs to the anteroventral third ventricular cardiovascular regulatory region in the rat. Neuroscience Letters, 42, 285–291. [pii] doi:10.1016/0304-3940(83)90276-8
  • Sawchenko, P.E., & Swanson, L.W. (1982). The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Research, 257, 275–325. doi:10.1016/0165-0173(82)90010-8
  • Scopinho, A.A., Fortaleza, E.A., & Correa, F.M. (2012). The medial amygdaloid nucleus is involved in the cardiovascular pathway activated by noradrenaline into the lateral septal area of rats. European Journal of Neuroscience, 36, 3059–3065. doi:10.1111/j.1460-9568.2012.08230.x
  • Scrogin, K.E., Grygielko, E.T., & Brooks, V.L. (1999). Osmolality: A physiological long-term regulator of lumbar sympathetic nerve activity and arterial pressure. American Journal of Physiology, 276, R1579–R1586. doi:10.1152/ajpregu.1999.276.6.R1579
  • Share, L. (1988). Role of vasopressin in cardiovascular regulation. Physiological Reviews, 68, 1248–1284. doi:10.1152/physrev.1988.68.4.1248
  • Sharp, F.R., Sagar, S.M., Hicks, K., Lowenstein, D., & Hisanaga, K. (1991). c-fos mRNA, Fos, and Fos-related antigen induction by hypertonic saline and stress. The Journal of Neuroscience, 11, 2321–2331. doi:10.1523/JNEUROSCI.11-08-02321.1991
  • Shoji, M., Kimura, T., Kawarabayasi, Y., Ota, K., Inoue, M., Yamamoto, T., … Sonoyama, T. (1994). Effects of acute salt loading on vasopressin mRNA level in the rat brain. The American Journal of Physiology, 266, R1591–R1595. doi:10.1152/ajpregu.1994.266.5.R1591
  • Stocker, S.D., Osborn, J.L., & Carmichael, S.P. (2008). Forebrain osmotic regulation of the sympathetic nervous system. Clinical and Experimental Pharmacology and Physiology, 35, 695–700.
  • Stricker, E.M., & Verbalis, J.G. (1986). Interaction of osmotic and volume stimuli in regulation of neurohypophyseal secretion in rats. The American Journal of Physiology, 250, R267–R275. doi:10.1152/ajpregu.1986.250.2.R267
  • Toney, G.M., Chen, Q.H., Cato, M.J., & Stocker, S.D. (2003). Central osmotic regulation of sympathetic nerve activity. Acta Physiologica Scandinavica, 177, 43–55.
  • Torvik, A. (1956). Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures; an experimental study in the rat. The Journal of Comparative Neurology, 106, 51–141.
  • van der Kooy, D., & Koda, L.Y. (1983). Organization of the projections of a circumventricular organ: The area postrema in the rat. The Journal of Comparative Neurology, 219, 328–338. doi:10.1002/cne.902190307
  • Verney, E.B. (1947). The antidiuretic hormone and the factors which determine its release. Proceedings of the Royal Society of London. Series B, Biological Sciences, 135, 25–106.
  • Weiss, M.L., & Hatton, G.I. (1990). Collateral input to the paraventricular and supraoptic nuclei in rat. I. Afferents from the subfornical organ and the anteroventral third ventricle region. Brain Research Bulletin, 24, 231–238. doi:10.1016/0361-9230(90)90210-Q
  • Weiss, M.L., Claassen, D.E., Hirai, T., & Kenney, M.J. (1996). Nonuniform sympathetic nerve responses to intravenous hypertonic saline infusion. Journal of the Autonomic Nervous System, 57, 109–115. doi:10.1016/0165-1838(95)00108-5
  • Wenner, M.M., Rose, W.C., Delaney, E.P., Stillabower, M.E., & Farquhar, W.B. (2007). Influence of plasma osmolality on baroreflex control of sympathetic activity. American Journal of Physiology-Heart and Circulatory Physiology, 293, H2313–H2319. doi:10.1152/ajpheart.01383.2006
  • Wright, D.M., & Lincoln, D.W. (1985). Stress-induced analgesia evoked by intraperitoneal injection of hypertonic saline: Evidence for its occurrence in vasopressin deficient rats. Physiology and Behavior, 34, 691–695. doi:10.1016/0031-9384(85)90366-X
  • Xiong, J.J., & Hatton, G.I. (1996). Differential responses of oxytocin and vasopressin neurons to the osmotic and stressful components of hypertonic saline injections: A Fos protein double labeling study. Brain Research, 719, 143–153. doi:10.1016/0006-8993(95)01466-7
  • Zemo, D.A., & McCabe, J.T. (2002). Transcriptional responses of the rat vasopressin gene to acute and repeated acute osmotic stress. Neuroscience Research, 44, 45–50. doi:10.1016/S0168-0102(02)00079-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.