Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 24, 2021 - Issue 1
5,234
Views
30
CrossRef citations to date
0
Altmetric
Review

Understanding neurobehavioral effects of acute and chronic stress in zebrafish

, , , , , ORCID Icon, & ORCID Icon show all
Pages 1-18 | Received 15 Oct 2019, Accepted 28 Jan 2020, Published online: 16 Mar 2020

References

  • Abreu, M.S., Giacomini, A., Koakoski, G., Piato, A.L.S., & Barcellos, L.J.G. (2017). Divergent effect of fluoxetine on the response to physical or chemical stressors in zebrafish. PeerJ, 5, e3330. doi:10.7717/peerj.3330
  • Abreu, M.S., Giacomini, A.C.V., Koakoski, G., Oliveira, T.A., Gusso, D., Baldisserotto, B., & Barcellos, L.J.G. (2015). Effects of waterborne fluoxetine on stress response and osmoregulation in zebrafish. Environmental Toxicology and Pharmacology, 40, 704–707. doi:10.1016/j.etap.2015.09.001
  • Adolf, B., Chapouton, P., Lam, C.S., Topp, S., Tannhäuser, B., Strähle, U., … Bally-Cuif, L. (2006). Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Developmental Biology, 295, 278–293. doi:10.1016/j.ydbio.2006.03.023
  • Alderman, S.L., & Bernier, N.J. (2007). Localization of corticotropin‐releasing factor, urotensin I, and CRF‐binding protein gene expression in the brain of the zebrafish, Danio rerio. The Journal of Comparative Neurology, 502, 783–793. doi:10.1002/cne.21332
  • Alderman, S.L., & Vijayan, M.M. (2012). 11β-Hydroxysteroid dehydrogenase type 2 in zebrafish brain: A functional role in hypothalamus-pituitary-interrenal axis regulation. Journal of Endocrinology, 215, 393–402. doi:10.1530/JOE-12-0379
  • Alsop, D., & Vijayan, M. (2009). The zebrafish stress axis: Molecular fallout from the teleost-specific genome duplication event. General and Comparative Endocrinology, 161, 62–66. doi:10.1016/j.ygcen.2008.09.011
  • Alsop, D., & Vijayan, M.M. (2008). Development of the corticosteroid stress axis and receptor expression in zebrafish. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294, R711–R719. doi:10.1152/ajpregu.00671.2007
  • American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: Author.
  • Aponte, A., & Petrunich-Rutherford, M.L. (2019). Acute net stress of young adult zebrafish (Danio rerio) is not sufficient to increase anxiety-like behavior and whole-body cortisol. PeerJ, 7, e7469. doi:10.7717/peerj.7469
  • Appelbaum, L., Wang, G.X., Maro, G.S., Mori, R., Tovin, A., Marin, W., … Mourrain, P. (2009). Sleep–wake regulation and hypocretin–melatonin interaction in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 106, 21942–21947. doi:10.1073/pnas.906637106
  • Arango Duque, G., & Descoteaux, A. (2014). Macrophage cytokines: Involvement in immunity and infectious diseases. Frontiers in Immunology, 5, 491. https://www.frontiersin.org/article/10.3389/fimmu.2014.00491
  • Arends, R.J., Vermeer, H., Martens, G.J.M., Leunissen, J.A.M., Wendelaar Bonga, S.E., & Flik, G. (1998). Cloning and expression of two proopiomelanocortin mRNAs in the common carp (Cyprinus carpio L.). Molecular and Cellular Endocrinology, 143, 23–31. doi:10.1016/S0303-7207(98)00139-7
  • Backström, T., & Winberg, S. (2017). Serotonin coordinates responses to social stress – What we can learn from fish. Frontiers in Neuroscience, 11, 595. doi:10.3389/fnins.2017.00595
  • Bale, T.L., Abel, T., Akil, H., Carlezon, W.A., Moghaddam, B., Nestler, E.J., … Thompson, S.M. (2019). The critical importance of basic animal research for neuropsychiatric disorders. Neuropsychopharmacology, 44, 1349–1353. doi:10.1038/s41386-019-0405-9
  • Bale, T.L., Lee, K.F., & Vale, W.W. (2002). The role of corticotropin-releasing factor receptors in stress and anxiety. Integrative and Comparative Biology, 42, 552–555. doi:10.1093/icb/42.3.552
  • Balik-Meisner, M., Truong, L., Scholl, E.H., Tanguay, R.L., & Reif, D.M. (2018). Population genetic diversity in zebrafish lines. Mammalian Genome, 29, 90–100. doi:10.1007/s00335-018-9735-x
  • Barbazuk, W.B., Korf, I., Kadavi, C., Heyen, J., Tate, S., Wun, E., … Johnson, S.L. (2000). The syntenic relationship of the zebrafish and human genomes. Genome Research, 10, 1351–1358. doi:10.1101/gr.144700
  • Barcellos, H.H.D., Kalichak, F., da Rosa, J.G.S., Oliveira, T.A., Koakoski, G., Idalencio, R., … Barcellos, L.J.G. (2016). Waterborne aripiprazole blunts the stress response in zebrafish. Scientific Reports, 6, 37612. doi:10.1038/srep37612
  • Barcellos, L.J.G., Ritter, F., Kreutz, L.C., Quevedo, R.M., da Silva, L.B., Bedin, A.C., … Cericato, L. (2007). Whole-body cortisol increases after direct and visual contact with a predator in zebrafish, Danio rerio. Aquaculture, 272, 774–778. doi:10.1016/j.aquaculture.2007.09.002
  • Barna, I., Zelena, D., Arszovszki, A.C., & Ledent, C. (2004). The role of endogenous cannabinoids in the hypothalamo-pituitary-adrenal axis regulation: In vivo and in vitro studies in CB1 receptor knockout mice. Life Sciences, 75, 2959–2970. doi:10.1016/j.lfs.2004.06.006
  • Bencan, Z., Sledge, D., & Levin, E.D. (2009). Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacology Biochemistry and Behavior, 94, 75–80. doi:10.1016/j.pbb.2009.07.009
  • Best, C., Kurrasch, D.M., & Vijayan, M.M. (2017). Maternal cortisol stimulates neurogenesis and affects larval behaviour in zebrafish. Scientific Reports, 7, 40905. doi:10.1038/srep40905
  • Bisht, K., Sharma, K., & Tremblay, M.-È. (2018). Chronic stress as a risk factor for Alzheimer’s disease: Roles of microglia-mediated synaptic remodeling, inflammation, and oxidative stress. Neurobiology of Stress, 9, 9–21. doi:10.1016/j.ynstr.2018.05.003
  • Brittijn, S.A., Duivesteijn, S.J., Belmamoune, M., Bertens, L.F.M., Bitter, W., Debruijn, J.D., … Richardson, M.K. (2009). Zebrafish development and regeneration: New tools for biomedical research. The International Journal of Developmental Biology, 53, 835–850. doi:10.1387/ijdb.082615sb
  • Buckingham, J.C. (1986). Stimulation and inhibition of corticotrophin releasing factor secretion by beta endorphin. Neuroendocrinology, 42, 148–152. doi:10.1159/000124266
  • Cachat, J., Canavello, P., Elegante, M., Bartels, B., Hart, P., Bergner, C., … Kalueff, A.V. (2010). Modeling withdrawal syndrome in zebrafish. Behavioural Brain Research, 208, 371–376. doi:10.1016/j.bbr.2009.12.004
  • Cachat, J., Kyzar, E.J., Collins, C., Gaikwad, S., Green, J., Roth, A., … Kalueff, A.V. (2013). Unique and potent effects of acute ibogaine on zebrafish: The developing utility of novel aquatic models for hallucinogenic drug research. Behavioural Brain Research, 236, 258–269. doi:10.1016/j.bbr.2012.08.041
  • Cachat, J., Stewart, A., Grossman, L., Gaikwad, S., Kadri, F., Chung, K.M., … Kalueff, A.V. (2010). Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nature Protocols, 5, 1786–1799. doi:10.1038/nprot.2010.140
  • Cachat, J., Stewart, A., Utterback, E., Hart, P., Gaikwad, S., Wong, K., … Kalueff, A.V. (2011). Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS One, 6, e17597. doi:10.1371/journal.pone.0017597
  • Cachat, J.M., Canavello, P.R., Elegante, M.F., Bartels, B.K., Elkhayat, S.I., Hart, P.C., … Mohnot, S. (2011). Modeling stress and anxiety in zebrafish. In A. V. Kalueff & J. Cachat (Eds.), Zebrafish models in neurobehavioral research (pp. 73–88). Totowa, NJ: Humana Press.
  • Caramillo, E.M., Khan, K.M., Collier, A.D., & Echevarria, D.J. (2015). Modeling PTSD in the zebrafish: Are we there yet? Behavioural Brain Research, 276, 151–160. doi:10.1016/j.bbr.2014.05.005
  • Carlson, E.B., & Rosser-Hogan, R. (1991). Trauma experiences, posttraumatic stress, dissociation, and depression in Cambodian refugees. The American Journal of Psychiatry, 148, 1548–1551. doi:10.1176/ajp.148.11.1548
  • Cavalieri, V., & Spinelli, G. (2017). Environmental epigenetics in zebrafish. Epigenetics & Chromatin, 10, 46. doi:10.1186/s13072-017-0154-0
  • Chakravarty, S., Reddy, B.R., Sudhakar, S.R., Saxena, S., Das, T., Meghah, V., … Idris, M.M. (2013). Chronic unpredictable stress (CUS)-induced anxiety and related mood disorders in a zebrafish model: Altered brain proteome profile implicates mitochondrial dysfunction. PLoS One, 8, e63302. doi:10.1371/journal.pone.0063302
  • Champagne, D.L., Hoefnagels, C.C.M., de Kloet, R.E., & Richardson, M.K. (2010). Translating rodent behavioral repertoire to zebrafish (Danio rerio): Relevance for stress research. Behavioural Brain Research, 214, 332–342. doi:10.1016/j.bbr.2010.06.001
  • Chang, A.C., Cochet, M., & Cohen, S.N. (1980). Structural organization of human genomic DNA encoding the pro-opiomelanocortin peptide. Proceedings of the National Academy of Sciences of the United States of America, 77, 4890–4894. doi:10.1073/pnas.77.8.4890
  • Chatzopoulou, A., Roy, U., Meijer, A.H., Alia, A., Spaink, H.P., & Schaaf, M.J.M. (2015). Transcriptional and metabolic effects of glucocorticoid receptor α and β signaling in zebrafish. Endocrinology, 156, 1757–1769. doi:10.1210/en.2014-1941
  • Chen, W., Kelly, M.A., Opitz-Araya, X., Thomas, R.E., Low, M.J., & Cone, R.D. (1997). Exocrine gland dysfunction in MC5-R-deficient mice: Evidence for coordinated regulation of exocrine gland function by melanocortin peptides. Cell, 91, 789–798. doi:10.1016/S0092-8674(00)80467-5
  • Cheresiz, S.V., Volgin, A.D., Kokorina Evsyukova, A., Bashirzade, A.A.O., Demin, K.A., de Abreu, M.S., … Kalueff, A.V. (2020). Understanding neurobehavioral genetics of zebrafish. Journal of Neurogenetics. doi:10.1080/01677063.2019.1698565
  • Christiansen, J.J., Djurhuus, C.B., Gravholt, C.H., Iversen, P., Christiansen, J.S., Schmitz, O., … Møller, N. (2007). Effects of cortisol on carbohydrate, lipid, and protein metabolism: Studies of acute cortisol withdrawal in adrenocortical failure. The Journal of Clinical Endocrinology & Metabolism, 92, 3553–3559. doi:10.1210/jc.2007-0445
  • Chrousos, G.P., & Kino, T. (2007). Glucocorticoid action networks and complex psychiatric and/or somatic disorders. Stress, 10, 213–219. doi:10.1080/10253890701292119
  • Claes, S. (2004). Corticotropin‐releasing hormone (CRH) in psychiatry: From stress to psychopathology. Annals of Medicine, 36, 50–61. doi:10.1080/07853890310017044
  • Clark, K.J., Boczek, N.J., & Ekker, S.C. (2011). Stressing zebrafish for behavioral genetics. Reviews in the Neurosciences, 22, 49–62. doi:10.1515/rns.2011.007
  • Coe, T.S., Hamilton, P.B., Griffiths, A.M., Hodgson, D.J., Wahab, M.A., & Tyler, C.R. (2009). Genetic variation in strains of zebrafish (Danio rerio) and the implications for ecotoxicology studies. Ecotoxicology, 18, 144–150. doi:10.1007/s10646-008-0267-0
  • Cohen, M., Meir, T., Klein, E., Volpin, G., Assaf, M., & Pollack, S. (2011). Cytokine levels as potential biomarkers for predicting the development of posttraumatic stress symptoms in casualties of accidents. The International Journal of Psychiatry in Medicine, 42, 117–131. doi:10.2190/PM.42.2.b
  • Cohen, S., Janicki-Deverts, D., & Miller, G.E. (2007). Psychological stress and disease. JAMA, 298, 1685–1687. doi:10.1001/jama.298.14.1685
  • Cohen, S., & Williamson, G.M. (1991). Stress and infectious disease in humans. Psychological Bulletin, 109, 5–24. doi:10.1037/0033-2909.109.1.5
  • Collier, A.D., Kalueff, A.V., & Echevarria, D.J. (2017). Zebrafish models of anxiety-like behaviors. In A. V. Kalueff (Ed.), The rights and wrongs of zebrafish: Behavioral phenotyping of zebrafish (pp. 45–72). Cham: Springer International Publishing.
  • Conrad, C.D. (2008). Chronic stress-induced hippocampal vulnerability: The glucocorticoid vulnerability hypothesis. Reviews in the Neurosciences, 19, 395–412. doi:10.1515/REVNEURO.2008.19.6.395
  • Costa-Pinto, F.A., & Palermo-Neto, J. (2010). Neuroimmune interactions in stress. Neuroimmunomodulation, 17, 196–199. doi:10.1159/000258722
  • Cota, D., Steiner, M.-A., Marsicano, G., Cervino, C., Herman, J.P., Grübler, Y., … Pagotto, U. (2007). Requirement of cannabinoid receptor type 1 for the basal modulation of hypothalamic-pituitary-adrenal axis function. Endocrinology, 148, 1574–1581. doi:10.1210/en.2005-1649
  • D’Aquila, P.S., Brain, P., & Willner, P. (1994). Effects of chronic mild stress on performance in behavioural tests relevant to anxiety and depression. Physiology & Behavior, 56, 861–867. doi:10.1016/0031-9384(94)90316-6
  • Dahlbom, S.J., Lagman, D., Lundstedt-Enkel, K., Sundström, L.F., & Winberg, S. (2011). Boldness predicts social status in zebrafish (Danio rerio). PLoS One, 6, e23565. doi:10.1371/journal.pone.0023565
  • Dametto, F.S., Fior, D., Idalencio, R., Rosa, J.G.S., Fagundes, M., Marqueze, A., … Barcellos, L.J.G. (2018). Feeding regimen modulates zebrafish behavior. PeerJ, 6, e5343. doi:10.7717/peerj.5343
  • Danckwerts, A., & Leathem, J. (2003). Questioning the link between PTSD and cognitive dysfunction. Neuropsychology Review, 13, 221–235. doi:10.1023/B:NERV.0000009485.76839.b7
  • Dantzer, R. (2018). Neuroimmune interactions: From the brain to the immune system and vice versa. Physiological Reviews, 98, 477–504. doi:10.1152/physrev.00039.2016
  • Davis, D.J., Bryda, E.C., Gillespie, C.H., & Ericsson, A.C. (2016). Microbial modulation of behavior and stress responses in zebrafish larvae. Behavioural Brain Research, 311, 219–227. doi:10.1016/j.bbr.2016.05.040
  • Davis, E.P., Glynn, L.M., Schetter, C.D., Hobel, C., Chicz-Demet, A., & Sandman, C.A. (2007). Prenatal exposure to maternal depression and cortisol influences infant temperament. Journal of the American Academy of Child & Adolescent Psychiatry, 46, 737–746. doi:10.1097/chi.0b013e318047b775
  • Davis, M., Walker, D.L., Miles, L., & Grillon, C. (2010). Phasic vs sustained fear in rats and humans: Role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology, 35, 105–135. doi:10.1038/npp.2009.109
  • de Abreu, M.S., Friend, A.J., Demin, K.A., Amstislavskaya, T.G., Bao, W., & Kalueff, A.V. (2018). Zebrafish models: Do we have valid paradigms for depression? Journal of Pharmacological and Toxicological Methods, 94, 16–22. doi:10.1016/j.vascn.2018.07.002
  • de Abreu, M.S., Giacomini, A.C.V.V., Echevarria, D.J., & Kalueff, A.V. (2019). Legal aspects of zebrafish neuropharmacology and neurotoxicology research. Regulatory Toxicology and Pharmacology, 101, 65–70. doi:10.1016/j.yrtph.2018.11.007
  • de Abreu, M.S., Giacomini, A.C.V.V., Sysoev, M., Demin, K.A., Alekseeva, P.A., Spagnoli, S.T., & Kalueff, A.V. (2019). Modeling gut-brain interactions in zebrafish. Brain Research Bulletin, 148, 55–62. doi:10.1016/j.brainresbull.2019.03.003
  • de Abreu, M.S., Koakoski, G., Ferreira, D., Oliveira, T.A., Rosa, J.G.S.D., Gusso, D., … Barcellos, L.J.G. (2014). Diazepam and fluoxetine decrease the stress response in zebrafish. PLoS One, 9, e103232. doi:10.1371/journal.pone.0103232
  • De Felice, E., Porreca, I., Alleva, E., De Girolamo, P., Ambrosino, C., Ciriaco, E., … Sordino, P. (2014). Localization of BDNF expression in the developing brain of zebrafish. Journal of Anatomy, 224, 564–574. doi:10.1111/joa.12168
  • De Groef, B., Goris, N., Arckens, L., Kuhn, E.R., & Darras, V.M. (2003). Corticotropin-releasing hormone (CRH)-induced thyrotropin release is directly mediated through CRH receptor type 2 on thyrotropes. Endocrinology, 144, 5537–5544. doi:10.1210/en.2003-0526
  • Deak, T., Quinn, M., Cidlowski, J.A., Victoria, N.C., Murphy, A.Z., & Sheridan, J.F. (2015). Neuroimmune mechanisms of stress: Sex differences, developmental plasticity, and implications for pharmacotherapy of stress-related disease. Stress, 18, 367–380. doi:10.3109/10253890.2015.1053451
  • Demin, K.A., Lakstygal, A.M., Chernysh, M.V., Krotova, N.A., Taranov, A.S., Ilyin, N.P., … Kalueff, A.V. (2020). The zebrafish tail immobilization (ZTI) test as a new tool to assess stress-related behavior and a potential screen for drugs affecting despair-like states. Journal of Neurosci Methods, 108637. doi:10.1016/j.jneumeth.2020.108637
  • Demin, K.A., Meshalkina, D.A., Kysil, E.V., Antonova, K.A., Volgin, A.D., Yakovlev, O.A., … Kalueff, A.V. (2018). Zebrafish models relevant to studying central opioid and endocannabinoid systems. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 86, 301–312. doi:10.1016/j.pnpbp.2018.03.024
  • Deroo, B.J., & Archer, T.K. (2001). Glucocorticoid receptor-mediated chromatin remodeling in vivo. Oncogene, 20, 3039–3046. doi:10.1038/sj.onc.1204328
  • Deutsch-Feldman, M., Picetti, R., Seip-Cammack, K., Zhou, Y., & Kreek, M.J. (2015). Effects of handling and vehicle injections on adrenocorticotropic and corticosterone concentrations in Sprague-Dawley compared with Lewis rats. Journal of the American Association for Laboratory Animal Science: JAALAS, 54, 35–39.
  • Di, S., Malcher-Lopes, R., Halmos, K.C., & Tasker, J.G. (2003). Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: A fast feedback mechanism. The Journal of Neuroscience, 23, 4850–4857. doi:10.1523/JNEUROSCI.23-12-04850.2003
  • Djurhuus, C.B., Gravholt, C.H., Nielsen, S., Mengel, A., Christiansen, J.S., Schmitz, O.E., & Møller, N. (2002). Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans. American Journal of Physiology-Endocrinology and Metabolism, 283, E172–E177. doi:10.1152/ajpendo.00544.2001
  • Dorts, J., Falisse, E., Schoofs, E., Flamion, E., Kestemont, P., & Silvestre, F. (2016). DNA methyltransferases and stress-related genes expression in zebrafish larvae after exposure to heat and copper during reprogramming of DNA methylation. Scientific Reports, 6, 34254. doi:10.1038/srep34254
  • Egan, R.J., Bergner, C.L., Hart, P.C., Cachat, J.M., Canavello, P.R., Elegante, M.F., … Kalueff, A.V. (2009). Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behavioural Brain Research, 205, 38–44. doi:10.1016/j.bbr.2009.06.022
  • Engelsma, M.Y., Huising, M.O., van Muiswinkel, W.B., Flik, G., Kwang, J., Savelkoul, H.F.J., & Verburg-van Kemenade, B.M.L. (2002). Neuroendocrine–immune interactions in fish: A role for interleukin-1. Veterinary Immunology and Immunopathology, 87, 467–479. doi:10.1016/S0165-2427(02)00077-6
  • Esteban, M.Á., Rodrı́guez, A., Ayala, A.G., & Meseguer, J. (2004). Effects of high doses of cortisol on innate cellular immune response of seabream (Sparus aurata L.). General and Comparative Endocrinology, 137, 89–98. doi:10.1016/j.ygcen.2004.02.006
  • Eto, K., Mazilu-Brown, J.K., Henderson-MacLennan, N., Dipple, K.M., & McCabe, E.R.B. (2014). Development of catecholamine and cortisol stress responses in zebrafish. Molecular Genetics and Metabolism Reports, 1, 373–377. doi:10.1016/j.ymgmr.2014.08.003
  • Facchinello, N., Skobo, T., Meneghetti, G., Colletti, E., Dinarello, A., Tiso, N., … Dalla Valle, L. (2017). nr3c1 null mutant zebrafish are viable and reveal DNA-binding-independent activities of the glucocorticoid receptor. Scientific Reports, 7, 4371. doi:10.1038/s41598-017-04535-6
  • Fast, M.D., Hosoya, S., Johnson, S.C., & Afonso, L.O. (2008). Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish & Shellfish Immunology, 24, 194–204. doi:10.1016/j.fsi.2007.10.009
  • Flik, G., Klaren, P.H.M., Van den Burg, E.H., Metz, J.R., & Huising, M.O. (2006). CRF and stress in fish. General and Comparative Endocrinology, 146, 36–44. doi:10.1016/j.ygcen.2005.11.005
  • Forsatkar, M.N., Safari, O., & Boiti, C. (2017). Effects of social isolation on growth, stress response, and immunity of zebrafish. Acta Ethologica, 20, 255–261. doi:10.1007/s10211-017-0270-7
  • Foster, J.A., Rinaman, L., & Cryan, J.F. (2017). Stress and the gut-brain axis: Regulation by the microbiome. Neurobiology of Stress, 7, 124–136. doi:10.1016/j.ynstr.2017.03.001
  • Fox, H.E., White, S.A., Kao, M.H.F., & Fernald, R.D. (1997). Stress and dominance in a social fish. The Journal of Neuroscience, 17, 6463–6469. doi:10.1523/JNEUROSCI.17-16-06463.1997
  • Fryer, C.J., & Archer, T.K. (1998). Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature, 393, 88–91. doi:10.1038/30032
  • Fulcher, N., Tran, S., Shams, S., Chatterjee, D., & Gerlai, R. (2017). Neurochemical and behavioral responses to unpredictable chronic mild stress following developmental isolation: The zebrafish as a model for major depression. Zebrafish, 14, 23–34. doi:10.1089/zeb.2016.1295
  • Gaikwad, S., Stewart, A., Hart, P., Wong, K., Piet, V., Cachat, J., & Kalueff, A.V. (2011). Acute stress disrupts performance of zebrafish in the cued and spatial memory tests: The utility of fish models to study stress–memory interplay. Behavioural Processes, 87, 224–230. doi:10.1016/j.beproc.2011.04.004
  • Genario, R., de Abreu, M.S., Giacomini, A.C.V.V., Demin, K.A., & Kalueff, A.V. (2020). Sex differences in behavior and neuropharmacology of zebrafish. European Journal of Neuroscience, 714, 134548. doi:10.1111/ejn.14438
  • Genario, R., Giacomini, A.C.V.V., de Abreu, M.S., Marcon, L., Demin, K.A., & Kalueff, A.V. (2020). Sex differences in adult zebrafish anxiolytic-like responses to diazepam and melatonin. Neuroscience Letters, 714, 134548. doi:10.1016/j.neulet.2019.134548
  • Genario, R., Giacomini, A.C.V.V., Demin, K.A., dos Santos, B.E., Marchiori, N.I., Volgin, A.D., … Kalueff, A.V. (2019). The evolutionarily conserved role of melatonin in CNS disorders and behavioral regulation: Translational lessons from zebrafish. Neuroscience & Biobehavioral Reviews, 99, 117–127. doi:10.1016/j.neubiorev.2018.12.025
  • Gerlai, R. (2019). Reproducibility and replicability in zebrafish behavioral neuroscience research. Pharmacology Biochemistry and Behavior, 178, 30–38. doi:10.1016/j.pbb.2018.02.005
  • Ghisleni, G., Capiotti, K.M., Da Silva, R.S., Oses, J.P., Piato, Â.L., Soares, V., … Bonan, C.D. (2012). The role of CRH in behavioral responses to acute restraint stress in zebrafish. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 36, 176–182. doi:10.1016/j.pnpbp.2011.08.016
  • Giacomini, A.C.V.V., Abreu, M.S., Giacomini, L.V., Siebel, A.M., Zimerman, F.F., Rambo, C.L., … Barcellos, L.J.G. (2016). Fluoxetine and diazepam acutely modulate stress induced-behavior. Behavioural Brain Research, 296, 301–310. doi:10.1016/j.bbr.2015.09.027
  • Giacomini, A., de Abreu, M.S., Koakoski, G., Idalencio, R., Kalichak, F., Oliveira, T.A., … Barcellos, L.J.G. (2015). My stress, our stress: Blunted cortisol response to stress in isolated housed zebrafish. Physiology & Behavior, 139, 182–187. doi:10.1016/j.physbeh.2014.11.035
  • Giacomini, A.C.V.V., Piassetta, A.S., Genario, R., Bonan, C.D., Piato, A., Barcellos, L.J.G., & de Abreu, M.S. (2020). Tryptophan alleviates neuroendocrine and behavioral responses to stress in zebrafish. Behavioural Brain Research, 378, 112264. doi:10.1016/j.bbr.2019.112264
  • Giguere, V., Hollenberg, S.M., Rosenfeld, M.G., & Evans, R.M. (1986). Functional domains of the human glucocorticoid receptor. Cell, 46, 645–652. doi:10.1016/0092-8674(86)90339-9
  • Gonzalez-Nunez, V., Gonzalez-Sarmiento, R., & Rodriguez, R.E. (2003). Identification of two proopiomelanocortin genes in zebrafish (Danio rerio). Brain Research. Molecular Brain Research, 120, 1–8. doi:10.1016/j.molbrainres.2003.09.012
  • Goodman, H.M. (2009). Chapter 4 – Adrenal glands. In H. M. Goodman (Ed.), Basic medical endocrinology (4th ed., pp. 61–90). San Diego, CA: Academic Press.
  • Gorissen, M., Manuel, R., Pelgrim, T.N.M., Mes, W., de Wolf, M.J.S., Zethof, J., … van den Bos, R. (2015). Differences in inhibitory avoidance, cortisol and brain gene expression in TL and AB zebrafish. Genes, Brain and Behavior, 14, 428–438. doi:10.1111/gbb.12220
  • Griffiths, B., Schoonheim, P., Ziv, L., Voelker, L., Baier, H., & Gahtan, E. (2012). A zebrafish model of glucocorticoid resistance shows serotonergic modulation of the stress response. Frontiers in Behavioral Neuroscience, 6, 68. doi:10.3389/fnbeh.2012.00068
  • Grossman, L., Utterback, E., Stewart, A., Gaikwad, S., Chung, K.M., Suciu, C., … Kalueff, A.V. (2010). Characterization of behavioral and endocrine effects of LSD on zebrafish. Behavioural Brain Research, 214, 277–284. doi:10.1016/j.bbr.2010.05.039
  • Grzelak, A.K., Davis, D.J., Caraker, S.M., Crim, M.J., Spitsbergen, J.M., & Wiedmeyer, C.E. (2017). Stress leukogram induced by acute and chronic stress in zebrafish (Danio rerio). Comparative Medicine, 67, 263–269.
  • Hammond, G.L. (2016). Plasma steroid-binding proteins: Primary gatekeepers of steroid hormone action. Journal of Endocrinology, 230, R13–R25. doi:10.1530/JOE-16-0070
  • Hartig, E.I., Zhu, S., King, B.L., & Coffman, J.A. (2016). Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation. Biology Open, 5, 1134–1141. doi:10.1242/bio.020065
  • Healy, E., Jordan, S.N.A., Budd, P.S., Suffolk, R., Rees, J.L., & Jackson, I.J. (2001). Functional variation of MC1R alleles from red-haired individuals. Human Molecular Genetics, 10, 2397–2402. doi:10.1093/hmg/10.21.2397
  • Hinsch, K., & Zupanc, G.K.H. (2007). Generation and long-term persistence of new neurons in the adult zebrafish brain: A quantitative analysis. Neuroscience, 146, 679–696. doi:10.1016/j.neuroscience.2007.01.071
  • Hodes, G.E., Kana, V., Menard, C., Merad, M., & Russo, S.J. (2015). Neuroimmune mechanisms of depression. Nature Neuroscience, 18, 1386–1393. doi:10.1038/nn.4113
  • Hollenberg, S.M., & Evans, R.M. (1988). Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell, 55, 899–906. doi:10.1016/0092-8674(88)90145-6
  • Holsboer, F., & Ising, M. (2008). Central CRH system in depression and anxiety – Evidence from clinical studies with CRH1 receptor antagonists. European Journal of Pharmacology, 583, 350–357. doi:10.1016/j.ejphar.2007.12.032
  • Hu, M.C., Chiang, E.F., Tong, S.K., Lai, W., Hsu, N.C., Wang, L.C., & Chung, B.C. (2001). Regulation of steroidogenesis in transgenic mice and zebrafish. Molecular and Cellular Endocrinology, 171, 9–14. doi:10.1016/S0303-7207(00)00385-3
  • Huang, V., Butler, A.A., & Lubin, F.D. (2019). Telencephalon transcriptome analysis of chronically stressed adult zebrafish. Scientific Reports, 9, 1379. doi:10.1038/s41598-018-37761-7
  • Huising, M.O., & Flik, G. (2005). The remarkable conservation of corticotropin-releasing hormone (CRH)-binding protein in the honeybee (Apis mellifera) dates the CRH system to a common ancestor of insects and vertebrates. Endocrinology, 146, 2165–2170. doi:10.1210/en.2004-1514
  • Huising, M.O., Kruiswijk, C.P., van Schijndel, J.E., Savelkoul, H.F.J., Flik, G., & Verburg-van Kemenade, B.M.L. (2005). Multiple and highly divergent IL-11 genes in teleost fish. Immunogenetics, 57, 432–443. doi:10.1007/s00251-005-0012-2
  • Huising, M.O., Metz, J.R., van Schooten, C., Taverne-Thiele, A.J., Hermsen, T., Verburg-van Kemenade, B.M., & Flik, G. (2004). Structural characterisation of a cyprinid (Cyprinus carpio L.) CRH, CRH-BP and CRH-R1, and the role of these proteins in the acute stress response. Journal of Molecular Endocrinology, 32, 627–648. doi:10.1677/jme.0.0320627
  • Huising, M.O., van der Aa, L.M., Metz, J.R., de Fátima Mazon, A., Verburg-van Kemenade, B.M.L., & Flik, G. (2007). Corticotropin-releasing factor (CRF) and CRF-binding protein expression in and release from the head kidney of common carp: Evolutionary conservation of the adrenal CRF system. Journal of Endocrinology, 193, 349–357. doi:10.1677/JOE-07-0070
  • Idalencio, R., Kalichak, F., Rosa, J.G.S., Oliveira, T.A.D., Koakoski, G., Gusso, D., … Barcellos, L.J.G. (2015). Waterborne risperidone decreases stress response in zebrafish. PLoS One, 10, e0140800. doi:10.1371/journal.pone.0140800
  • Irons, T.D., MacPhail, R.C., Hunter, D.L., & Padilla, S. (2010). Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicology and Teratology, 32, 84–90. doi:10.1016/j.ntt.2009.04.066
  • Ito, K., Barnes, P.J., & Adcock, I.M. (2000). Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1β-induced histone H4 acetylation on lysines 8 and 12. Molecular and Cellular Biology, 20, 6891–6903. doi:10.1128/MCB.20.18.6891-6903.2000
  • James, S.L., Abate, D., Abate, K.H., Abay, S.M., Abbafati, C., Abbasi, N., … Murray, C.J.L. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1789–1858. doi:10.1016/S0140-6736(18)32279-7
  • Jesuthasan, S. (2012). Fear, anxiety, and control in the zebrafish. Developmental Neurobiology, 72, 395–403. doi:10.1002/dneu.20873
  • Jesuthasan, S.J., & Mathuru, A.S. (2008). The alarm response in zebrafish: Innate fear in a vertebrate genetic model. Journal of Neurogenetics, 22, 211–228. doi:10.1080/01677060802298475
  • Jimenez-Gonzalez, A., Garcia-Concejo, A., Lopez-Benito, S., Gonzalez-Nunez, V., Arevalo, J.C., & Rodriguez, R.E. (2016). Role of morphine, miR-212/132 and mu opioid receptor in the regulation of Bdnf in zebrafish embryos. Biochimica et Biophysica Acta (BBA) - General Subjects, 1860, 1308–1316. doi:10.1016/j.bbagen.2016.03.001
  • Johansson, L., Guo, X., Waern, M., Östling, S., Gustafson, D., Bengtsson, C., & Skoog, I. (2010). Midlife psychological stress and risk of dementia: A 35-year longitudinal population study. Brain, 133, 2217–2224. doi:10.1093/brain/awq116
  • Joëls, M., & Baram, T.Z. (2009). The neuro-symphony of stress. Nature Reviews Neuroscience, 10, 459–466. doi:10.1038/nrn2632
  • Kafkafi, N., Agassi, J., Chesler, E.J., Crabbe, J.C., Crusio, W.E., Eilam, D., … Benjamini, Y. (2018). Reproducibility and replicability of rodent phenotyping in preclinical studies. Neuroscience & Biobehavioral Reviews, 87, 218–232. doi:10.1016/j.neubiorev.2018.01.003
  • Kalueff, A.V., Echevarria, D.J., Homechaudhuri, S., Stewart, A.M., Collier, A.D., Kaluyeva, A.A., … Song, C. (2016). Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research. Aquatic Toxicology, 170, 297–309. doi:10.1016/j.aquatox.2015.08.007
  • Kalueff, A.V., Echevarria, D.J., & Stewart, A.M. (2014). Gaining translational momentum: More zebrafish models for neuroscience research. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 55, 1–6. doi:10.1016/j.pnpbp.2014.01.022
  • Kalueff, A.V., Gebhardt, M., Stewart, A.M., Cachat, J.M., Brimmer, M., Chawla, J.S., … Schneider; Zebrafish Neuroscience Research Consortium. (2013). Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish, 10, 70–86. doi:10.1089/zeb.2012.0861
  • Kalueff, A.V., Stewart, A.M., & Gerlai, R. (2014). Zebrafish as an emerging model for studying complex brain disorders. Trends in Pharmacological Sciences, 35, 63–75. doi:10.1016/j.tips.2013.12.002
  • Karlén, J., Frostell, A., Theodorsson, E., Faresjö, T., & Ludvigsson, J. (2013). Maternal influence on child HPA axis: A prospective study of cortisol levels in hair. Pediatrics, 132, E1333–E1340. doi:10.1542/peds.2013-1178
  • Keck, M.E., & Holsboer, F. (2001). Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders. Peptides, 22, 835–844. doi:10.1016/S0196-9781(01)00398-9
  • Kenney, J.W., Scott, I.C., Josselyn, S.A., & Frankland, P.W. (2017). Contextual fear conditioning in zebrafish. Learning & Memory, 24, 516–523. doi:10.1101/lm.045690.117
  • Khor, B.S., Jamil, M.F., Adenan, M.I., & Shu-Chien, A.C. (2011). Mitragynine attenuates withdrawal syndrome in morphine-withdrawn zebrafish. PLoS One, 6, e28340. doi:10.1371/journal.pone.0028340
  • Kirsten, K., Pompermaier, A., Koakoski, G., Mendonça-Soares, S., da Costa, R.A., Maffi, V.C., Kreutz, L.C., & Barcellos, L.J.G. (2020). Acute and chronic stress differently alter the expression of cytokine and neuronal markers genes in zebrafish brain. Stress, 12, 1–6. doi:10.1080/10253890.2020.1724947
  • Kishimoto, T., Radulovic, J., Radulovic, M., Lin, C.R., Schrick, C., Hooshmand, F., … Spiess, J. (2000). Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nature Genetics, 24, 415–419. doi:10.1038/74271
  • Kleinhappel, T.K., Pike, T.W., & Burman, O.H.P. (2019). Stress-induced changes in group behaviour. Scientific Reports, 9, 17200. doi:10.1038/s41598-019-53661-w
  • Kokel, D., Bryan, J., Laggner, C., White, R., Cheung, C.Y.J., Mateus, R., … Peterson, R.T. (2010). Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nature Chemical Biology, 6, 231–237. doi:10.1038/nchembio.307
  • Kokel, D., & Peterson, R.T. (2008). Chemobehavioural phenomics and behaviour-based psychiatric drug discovery in the zebrafish. Briefings in Functional Genomics and Proteomics, 7, 483–490. doi:10.1093/bfgp/eln040
  • Koob, G.F. (2009). Brain stress systems in the amygdala and addiction. Brain Research, 1293, 61–75. doi:10.1016/j.brainres.2009.03.038
  • Kopp, C., Vogel, E., Rettori, M.C., Delagrange, P., & Misslin, R. (1999). The effects of melatonin on the behavioural disturbances induced by chronic mild stress in C3H/He mice. Behavioural Pharmacology, 10, 73–83. doi:10.1097/00008877-199902000-00007
  • Krug, R.G., Lee, H.B., El Khoury, L.Y., Sigafoos, A.N., Petersen, M.O., & Clark, K.J. (2018). The endocannabinoid gene faah2a modulates stress-associated behavior in zebrafish. PLoS One, 13, e0190897. doi:10.1371/journal.pone.0190897
  • Kumari, Y., Choo, B.K.M., Shaikh, M.F., & Othman, I. (2019). Melatonin receptor agonist Piper betle L. ameliorates dexamethasone-induced early life stress in adult zebrafish. Experimental and Therapeutic Medicine, 18, 1407–1416. doi:10.3892/etm.2019.7685
  • Kysil, E.V., Meshalkina, D.A., Frick, E.E., Echevarria, D.J., Rosemberg, D.B., Maximino, C., … Kalueff, A.V. (2017). Comparative analyses of zebrafish anxiety-like behavior using conflict-based novelty tests. Zebrafish, 14, 197–208. doi:10.1089/zeb.2016.1415
  • Kyzar, E.J., Collins, C., Gaikwad, S., Green, J., Roth, A., Monnig, L., … Kalueff, A.V. (2012). Effects of hallucinogenic agents mescaline and phencyclidine on zebrafish behavior and physiology. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 37, 194–202. doi:10.1016/j.pnpbp.2012.01.003
  • Lakstygal, A.M., de Abreu, M.S., & Kalueff, A.V. (2018). Zebrafish models of epigenetic regulation of CNS functions. Brain Research Bulletin, 142, 344–351. doi:10.1016/j.brainresbull.2018.08.022
  • Larson, E.T., O’Malley, D.M., & Melloni, R.H., Jr. (2006). Aggression and vasotocin are associated with dominant–subordinate relationships in zebrafish. Behavioural Brain Research, 167, 94–102. doi:10.1016/j.bbr.2005.08.020
  • Law, W.Y., Chen, W.H., Song, Y.L., Dufour, S., & Chang, C.F. (2001). Differential in vitro suppressive effects of steroids on leukocyte phagocytosis in two teleosts, tilapia and common carp. General and Comparative Endocrinology, 121, 163–172. doi:10.1006/gcen.2000.7593
  • Lederis, K., Fryer, J.N., Okawara, Y., Schönrock, C., & Richter, D. (1994). Corticotropin-releasing factors acting on the fish pituitary: Experimental and molecular analysis. In N. M. Sherwood, C. L. Hew, A. P. Farrell, & D. J. Randall (Eds.), Fish physiology (Vol. 13, pp. 67–100). San Diego, CA: Academic Press.
  • Lee, S.P., Sung, I.-K., Kim, J.H., Lee, S.-Y., Park, H.S., & Shim, C.S. (2015). The effect of emotional stress and depression on the prevalence of digestive diseases. Journal of Neurogastroenterology and Motility, 21, 273–282. doi:10.5056/jnm14116
  • Liu, Y.-W., Liu, W.-H., Wu, C.-C., Juan, Y.-C., Wu, Y.-C., Tsai, H.-P., … Tsai, Y.-C. (2016). Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain Research, 1631, 1–12. doi:10.1016/j.brainres.2015.11.018
  • Logan, D.W., Bryson-Richardson, R.J., Pagán, K.E., Taylor, M.S., Currie, P.D., & Jackson, I.J. (2003). The structure and evolution of the melanocortin and MCH receptors in fish and mammals. Genomics, 81, 184–191. doi:10.1016/S0888-7543(02)00037-X
  • London, S., & Volkoff, H. (2019). Effects of fasting on the central expression of appetite-regulating and reproductive hormones in wild-type and Casper zebrafish (Danio rerio). General and Comparative Endocrinology, 282, 113207. doi:10.1016/j.ygcen.2019.06.011
  • Luca, R.M., & Gerlai, R. (2012). Animated bird silhouette above the tank: Acute alcohol diminishes fear responses in zebrafish. Behavioural Brain Research, 229, 194–201. doi:10.1016/j.bbr.2012.01.021
  • Lupien, S.J., Juster, R.-P., Raymond, C., & Marin, M.-F. (2018). The effects of chronic stress on the human brain: From neurotoxicity, to vulnerability, to opportunity. Frontiers in Neuroendocrinology, 49, 91–105. doi:10.1016/j.yfrne.2018.02.001
  • López-Patiño, M.A., Gesto, M., Conde-Sieira, M., Soengas, J.L., & Míguez, J.M. (2014). Stress inhibition of melatonin synthesis in the pineal organ of rainbow trout (Oncorhynchus mykiss) is mediated by cortisol. The Journal of Experimental Biology, 217, 1407. doi:10.1242/jeb.087916
  • Malkoski, S.P., & Dorin, R.I. (1999). Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene. Molecular Endocrinology, 13, 1629–1644. doi:10.1210/mend.13.10.0351
  • Manuel, R., Gorissen, M., Zethof, J., Ebbesson, L.O., van de Vis, H., Flik, G., & van den Bos, R. (2014). Unpredictable chronic stress decreases inhibitory avoidance learning in Tuebingen long-fin zebrafish: Stronger effects in the resting phase than in the active phase. Journal of Experimental Biology, 217, 3919–3928. doi:10.1242/jeb.109736
  • Marcon, M., Herrmann, A.P., Mocelin, R., Rambo, C.L., Koakoski, G., Abreu, M.S., … Piato, A.L. (2016). Prevention of unpredictable chronic stress-related phenomena in zebrafish exposed to bromazepam, fluoxetine and nortriptyline. Psychopharmacology, 233, 3815–3824. doi:10.1007/s00213-016-4408-5
  • Marcon, M., Mocelin, R., Benvenutti, R., Costa, T., Herrmann, A.P., de Oliveira, D.L., … Piato, A. (2018). Environmental enrichment modulates the response to chronic stress in zebrafish. The Journal of Experimental Biology, 221, jeb176735. doi:10.1242/jeb.176735
  • Marsh, D.J., Hollopeter, G., Huszar, D., Laufer, R., Yagaloff, K.A., Fisher, S.L., … Palmiter, R.D. (1999). Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nature Genetics, 21, 119–122. doi:10.1038/5070
  • Marsland, A.L., Walsh, C., Lockwood, K., & John-Henderson, N.A. (2017). The effects of acute psychological stress on circulating and stimulated inflammatory markers: A systematic review and meta-analysis. Brain, Behavior, and Immunity, 64, 208–219. doi:10.1016/j.bbi.2017.01.011
  • Martin, C.R., Osadchiy, V., Kalani, A., & Mayer, E.A. (2018). The brain-gut-microbiome axis. Cellular and Molecular Gastroenterology and Hepatology, 6, 133–148. doi:10.1016/j.jcmgh.2018.04.003
  • Maximino, C., de Brito, T.M., da Silva Batista, A.W., Herculano, A.M., Morato, S., & Gouveia, A. (2010). Measuring anxiety in zebrafish: A critical review. Behavioural Brain Research, 214, 157–171. doi:10.1016/j.bbr.2010.05.031
  • Maximino, C., Lima, M.G., Costa, C.C., Guedes, I.M.L., & Herculano, A.M. (2014). Fluoxetine and WAY 100,635 dissociate increases in scototaxis and analgesia induced by conspecific alarm substance in zebrafish (Danio rerio Hamilton 1822). Pharmacology Biochemistry and Behavior, 124, 425–433. doi:10.1016/j.pbb.2014.07.003
  • Maximino, C., Marques de Brito, T., Dias, C.A.G.D.M., Gouveia, A., Jr., & Morato, S. (2010). Scototaxis as anxiety-like behavior in fish. Nature Protocols, 5, 209–216. doi:10.1038/nprot.2009.225
  • Mazeaud, M.M., Mazeaud, F., & Donaldson, E.M. (1977). Primary and secondary effects of stress in fish: Some new data with a general review. Transactions of the American Fisheries Society, 106, 201–212. doi:10.1577/1548-8659(1977)106<201:PASEOS>2.0.CO;2
  • McEwen, B.S. (2017). Neurobiological and systemic effects of chronic stress. Chronic Stress, 1, 1–17. doi:10.1177/2470547017692328
  • McEwen, B.S., & Stellar, E. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153, 2093–2101. doi:10.1001/archinte.1993.00410180039004
  • McGonigle, P. (2014). Animal models of CNS disorders. Biochemical Pharmacology, 87, 140–149. doi:10.1016/j.bcp.2013.06.016
  • McHenry, M.J., Feitl, K.E., Strother, J.A., & Van Trump, W.J. (2009). Larval zebrafish rapidly sense the water flow of a predator’s strike. Biology Letters, 5, 477–479. doi:10.1098/rsbl.2009.0048
  • McMahon, M., Gerich, J., & Rizza, R. (1988). Effects of glucocorticoids on carbohydrate metabolism. Diabetes/Metabolism Reviews, 4, 17–30. doi:10.1002/dmr.5610040105
  • McQuade, R., & Young, A.H. (2000). Future therapeutic targets in mood disorders: The glucocorticoid receptor. British Journal of Psychiatry, 177, 390–395. doi:10.1192/bjp.177.5.390
  • Metz, J.R., Peters, J.J., & Flik, G. (2006). Molecular biology and physiology of the melanocortin system in fish: A review. General and Comparative Endocrinology, 148, 150–162. doi:10.1016/j.ygcen.2006.03.001
  • Mineur, Y.S., Belzung, C., & Crusio, W.E. (2006). Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behavioural Brain Research, 175, 43–50. doi:10.1016/j.bbr.2006.07.029
  • Mocelin, R., Herrmann, A.P., Marcon, M., Rambo, C.L., Rohden, A., Bevilaqua, F., … Piato, A.L. (2015). N-acetylcysteine prevents stress-induced anxiety behavior in zebrafish. Pharmacology Biochemistry and Behavior, 139, 121–126. doi:10.1016/j.pbb.2015.08.006
  • Mommsen, T.P., Vijayan, M.M., & Moon, T.W. (1999). Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Reviews in Fish Biology and Fisheries, 9, 211–268. doi:10.1023/A:1008924418720
  • Morash, M.G., MacDonald, A.B., Croll, R.P., & Anini, Y. (2009). Molecular cloning, ontogeny and tissue distribution of zebrafish (Danio rerio) prohormone convertases: pcsk1 and pcsk2. General and Comparative Endocrinology, 162, 179–187. doi:10.1016/j.ygcen.2009.03.013
  • Mueller, T. (2012). What is the thalamus in zebrafish? Frontiers in Neuroscience, 6, 64–64. doi:10.3389/fnins.2012.00064
  • Müller, M.B., & Wurst, W. (2004). Getting closer to affective disorders: The role of CRH receptor systems. Trends in Molecular Medicine, 10, 409–415. doi:10.1016/j.molmed.2004.06.007
  • Nesan, D., & Vijayan, M.M. (2016). Maternal cortisol mediates hypothalamus-pituitary-interrenal axis development in zebrafish. Scientific Reports, 6, 22582. doi:10.1038/srep22582
  • Nestler, E.J., & Hyman, S.E. (2010). Animal models of neuropsychiatric disorders. Nature Neuroscience, 13, 1161–1169. doi:10.1038/nn.2647
  • Nguyen, M., Stewart, A.M., & Kalueff, A.V. (2014). Aquatic blues: Modeling depression and antidepressant action in zebrafish. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 55, 26–39. doi:10.1016/j.pnpbp.2014.03.003
  • Nirwane, A., Sridhar, V., & Majumdar, A. (2016). Neurobehavioural changes and brain oxidative stress induced by acute exposure to GSM900 mobile phone radiations in zebrafish (Danio rerio). Toxicological Research, 32, 123–132. doi:10.5487/TR.2016.32.2.123
  • Norton, W., & Bally-Cuif, L. (2010). Adult zebrafish as a model organism for behavioural genetics. BMC Neuroscience, 11, 90. doi:10.1186/1471-2202-11-90
  • Oberlander, T.F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A.M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3, 97–106. doi:10.4161/epi.3.2.6034
  • Ogwang, S.P. (2008). Inspection of a novel object by wild and laboratory Zebrafish (Danio rerio H.) in the presence and absence of alarm substance (Master’s thesis). Department of Biology, Fisheries Biology and Management, University of Bergen, Bergen.
  • Oliveira, T.A., Koakoski, G., Kreutz, L.C., Ferreira, D., Rosa, J.G.S.D., de Abreu, M.S., … Barcellos, L.J.G. (2013). Alcohol impairs predation risk response and communication in zebrafish. PLoS One, 8, e75780. doi:10.1371/journal.pone.0075780
  • Pagniello, K.B., Bols, N.C., & Lee, L.E. (2002). Effect of corticosteroids on viability and proliferation of the rainbow trout monocyte/macrophage cell line, RTS11. Fish & Shellfish Immunology, 13, 199–214. doi:10.1006/fsim.2001.0395
  • Palić, D., Andreasen, C.B., Ostojić, J., Tell, R.M., & Roth, J.A. (2007). Zebrafish (Danio rerio) whole kidney assays to measure neutrophil extracellular trap release and degranulation of primary granules. Journal of Immunological Methods, 319, 87–97. doi:10.1016/j.jim.2006.11.003
  • Panula, P., Chen, Y.-C., Priyadarshini, M., Kudo, H., Semenova, S., Sundvik, M., & Sallinen, V. (2010). The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiology of Disease, 40, 46–57. doi:10.1016/j.nbd.2010.05.010
  • Pavlidis, M., Theodoridi, A., & Tsalafouta, A. (2015). Neuroendocrine regulation of the stress response in adult zebrafish, Danio rerio. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 60, 121–131. doi:10.1016/j.pnpbp.2015.02.014
  • Piato, Â.L., Capiotti, K.M., Tamborski, A.R., Oses, J.P., Barcellos, L.J.G., Bogo, M.R., … Bonan, C.D. (2011). Unpredictable chronic stress model in zebrafish (Danio rerio): Behavioral and physiological responses. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35, 561–567. doi:10.1016/j.pnpbp.2010.12.018
  • Piato, A.L., Rosemberg, D.B., Capiotti, K.M., Siebel, A.M., Herrmann, A.P., Ghisleni, G., … Bonan, C.D. (2011). Acute restraint stress in zebrafish: Behavioral parameters and purinergic signaling. Neurochemical Research, 36, 1876–1886. doi:10.1007/s11064-011-0509-z
  • Pickering, A.D. (1998). Stress responses of farmed fish. In K. D. Black & A. D. Pickering (Eds.), Biology of farmed fish (pp. 222–255). Sheffield: Sheffield Academic Press.
  • Pippal, J.B., Cheung, C.M.I., Yao, Y.-Z., Brennan, F.E., & Fuller, P.J. (2011). Characterization of the zebrafish (Danio rerio) mineralocorticoid receptor. Molecular and Cellular Endocrinology, 332, 58–66. doi:10.1016/j.mce.2010.09.014
  • Radahmadi, M., Alaei, H., Sharifi, M.R., & Hosseini, N. (2015). Effects of different timing of stress on corticosterone, BDNF and memory in male rats. Physiology & Behavior, 139, 459–467. doi:10.1016/j.physbeh.2014.12.004
  • Rambo, C.L., Mocelin, R., Marcon, M., Villanova, D., Koakoski, G., de Abreu, M.S., … Bonan, C.D. (2017). Gender differences in aggression and cortisol levels in zebrafish subjected to unpredictable chronic stress. Physiology & Behavior, 171, 50–54. doi:10.1016/j.physbeh.2016.12.032
  • Ramsay, J.M., Feist, G.W., Varga, Z.M., Westerfield, M., Kent, M.L., & Schreck, C.B. (2009). Whole-body cortisol response of zebrafish to acute net handling stress. Aquaculture, 297, 157–162. doi:10.1016/j.aquaculture.2009.08.035
  • Reichmann, F., & Holzer, P. (2016). Neuropeptide Y: A stressful review. Neuropeptides, 55, 99–109. doi:10.1016/j.npep.2015.09.008
  • Resnick, S.G., Bond, G.R., & Mueser, K.T. (2003). Trauma and posttraumatic stress disorder in people with schizophrenia. Journal of Abnormal Psychology, 112, 415–423. doi:10.1037/0021-843X.112.3.415
  • Richardson, J., Lundegaard, P.R., Reynolds, N.L., Dorin, J.R., Porteous, D.J., Jackson, I.J., & Patton, E.E. (2008). mc1r pathway regulation of zebrafish melanosome. Zebrafish, 5, 289–295. doi:10.1089/zeb.2008.0541
  • Rieger, S., Wang, F., & Sagasti, A. (2011). Time-lapse imaging of neural development: Zebrafish lead the way into the fourth dimension. Genesis, 49, 534–545. doi:10.1002/dvg.20729
  • Rihel, J., & Schier, A.F. (2012). Behavioral screening for neuroactive drugs in zebrafish. Developmental Neurobiology, 72, 373–385. doi:10.1002/dneu.20910
  • Roebuck, M.M., Jones, C.T., Robinson, J.S., Mitchell, M.D., & Thorburn, G.D. (1984). ACTH control of steroid secretion from adrenal cells of the developing rhesus monkey (Macaca mulatta). Acta Endocrinologica, 105, 545–551. doi:10.1530/acta.0.1050545
  • Ruddick, J.P., Evans, A.K., Nutt, D.J., Lightman, S.L., Rook, G.A.W., & Lowry, C.A. (2006). Tryptophan metabolism in the central nervous system: Medical implications. Expert Reviews in Molecular Medicine, 8, 1–27. doi:10.1017/S1462399406000068
  • Ruuskanen, J.O., Peitsaro, N., Kaslin, J.V.M., Panula, P., & Scheinin, M. (2005). Expression and function of α2-adrenoceptors in zebrafish: Drug effects, mRNA and receptor distributions. Journal of Neurochemistry, 94, 1559–1569. doi:10.1111/j.1471-4159.2005.03305.x
  • Sallin, P., & Jaźwińska, A. (2016). Acute stress is detrimental to heart regeneration in zebrafish. Open Biology, 6, 160012. doi:10.1098/rsob.160012
  • Sarkar, D.K., Kuhn, P., Marano, J., Chen, C., & Boyadjieva, N. (2007). Alcohol exposure during the developmental period induces β-endorphin neuronal death and causes alteration in the opioid control of stress axis function. Endocrinology, 148, 2828–2834. doi:10.1210/en.2006-1606
  • Saverino, C., & Gerlai, R. (2008). The social zebrafish: Behavioral responses to conspecific, heterospecific, and computer animated fish. Behavioural Brain Research, 191, 77–87. doi:10.1016/j.bbr.2008.03.013
  • Schaaf, M.J.M., Champagne, D., van Laanen, I.H.C., van Wijk, D.C.W.A., Meijer, A.H., Meijer, O.C., … Richardson, M.K. (2008). Discovery of a functional glucocorticoid receptor beta-isoform in zebrafish. Endocrinology, 149, 1591–1599. doi:10.1210/en.2007-1364
  • Schaaf, M.J.M., Chatzopoulou, A., & Spaink, H.P. (2009). The zebrafish as a model system for glucocorticoid receptor research. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 153, 75–82. doi:10.1016/j.cbpa.2008.12.014
  • Scheinman, R.I., Gualberto, A., Jewell, C.M., Cidlowski, J.A., & Baldwin, A.S. (1995). Characterization of mechanisms involved in transrepression of NF-kappa B by activated glucocorticoid receptors. Molecular and Cellular Biology, 15, 943–953. doi:10.1128/MCB.15.2.943
  • Schioth, H.B., Chhajlani, V., Muceniece, R., Klusa, V., & Wikberg, J.E. (1996). Major pharmacological distinction of the ACTH receptor from other melanocortin receptors. Life Sciences, 59, 797–801. doi:10.1016/0024-3205(96)00370-0
  • Schmidt, M.V., Scharf, S.H., Sterlemann, V., Ganea, K., Liebl, C., Holsboer, F., & Müller, M.B. (2010). High susceptibility to chronic social stress is associated with a depression-like phenotype. Psychoneuroendocrinology, 35, 635–643. doi:10.1016/j.psyneuen.2009.10.002
  • Schmidt, R., Strähle, U., & Scholpp, S. (2013). Neurogenesis in zebrafish – From embryo to adult. Neural Development, 8, 3. doi:10.1186/1749-8104-8-3
  • Seth, A., Stemple, D.L., & Barroso, I. (2013). The emerging use of zebrafish to model metabolic disease. Disease Models & Mechanisms, 6, 1080–1088. doi:10.1242/dmm.011346
  • Shams, S., Chatterjee, D., & Gerlai, R. (2015). Chronic social isolation affects thigmotaxis and whole-brain serotonin levels in adult zebrafish. Behavioural Brain Research, 292, 283–287. doi:10.1016/j.bbr.2015.05.061
  • Shams, S., Seguin, D., Facciol, A., Chatterjee, D., & Gerlai, R. (2017). Effect of social isolation on anxiety-related behaviors, cortisol, and monoamines in adult zebrafish. Behavioral Neuroscience, 131, 492–504. doi:10.1037/bne0000220
  • Song, C., Liu, B.-P., Zhang, Y.-P., Peng, Z., Wang, J., Collier, A.D., … Kalueff, A.V. (2018). Modeling consequences of prolonged strong unpredictable stress in zebrafish: Complex effects on behavior and physiology. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 81, 384–394. doi:10.1016/j.pnpbp.2017.08.021
  • Speedie, N., & Gerlai, R. (2008). Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behavioural Brain Research, 188, 168–177. doi:10.1016/j.bbr.2007.10.031
  • Spencer, K.A. (2017). Developmental stress and social phenotypes: Integrating neuroendocrine, behavioural and evolutionary perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160242. doi:10.1098/rstb.2016.0242
  • Stankiewicz, A.M., Swiergiel, A.H., & Lisowski, P. (2013). Epigenetics of stress adaptations in the brain. Brain Research Bulletin, 98, 76–92. doi:10.1016/j.brainresbull.2013.07.003
  • Steenbergen, P.J., Richardson, M.K., & Champagne, D.L. (2011). The use of the zebrafish model in stress research. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35, 1432–1451. doi:10.1016/j.pnpbp.2010.10.010
  • Stewart, A., Gaikwad, S., Kyzar, E., Green, J., Roth, A., & Kalueff, A.V. (2012). Modeling anxiety using adult zebrafish: A conceptual review. Neuropharmacology, 62, 135–143. doi:10.1016/j.neuropharm.2011.07.037
  • Stewart, A.M., Braubach, O., Spitsbergen, J., Gerlai, R., & Kalueff, A.V. (2014). Zebrafish models for translational neuroscience research: From tank to bedside. Trends in Neurosciences, 37, 264–278. doi:10.1016/j.tins.2014.02.011
  • Stewart, A.M., Gaikwad, S., Kyzar, E., & Kalueff, A.V. (2012). Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test. Brain Research, 1451, 44–52. doi:10.1016/j.brainres.2012.02.064
  • Stewart, A.M., Gerlai, R., & Kalueff, A.V. (2015). Developing higher-throughput zebrafish screens for in-vivo CNS drug discovery. Frontiers in Behavioral Neuroscience, 9, 14. doi:10.3389/fnbeh.2015.00014
  • Stewart, A.M., Yang, E., Nguyen, M., & Kalueff, A.V. (2014). Developing zebrafish models relevant to PTSD and other trauma- and stressor-related disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 55, 67–79. doi:10.1016/j.pnpbp.2014.08.003
  • Stocco, D.M., & Clark, B.J. (1996). Regulation of the acute production of steroids in steroidogenic cells. Endocrine Reviews, 17, 221–244. doi:10.1210/edrv-17-3-221
  • Stolte, E.H., Nabuurs, S.B., Bury, N.R., Sturm, A., Flik, G., Savelkoul, H.F., & Lidy Verburg-van Kemenade, B.M. (2008). Stress and innate immunity in carp: Corticosteroid receptors and pro-inflammatory cytokines. Molecular Immunology, 46, 70–79. doi:10.1016/j.molimm.2008.07.022
  • Sumpter, J.P. (1997). The endocrinology of stress. Fish Stress and Health in Aquaculture, 819, 95–118.
  • Sumpter, J.P., Pottinger, T.G., Rand-Weaver, M., & Campbell, P.M. (1994). The wide-ranging effects of stress on fish. In K. G. Davey, R. E. Peter, & S. S. Tobe (Eds.), Perspectives in endocrinology (pp. 535–538). Ottawa: National Research Council of Canada.
  • Surjit, M., Ganti, K.P., Mukherji, A., Ye, T., Hua, G., Metzger, D., … Chambon, P. (2011). Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell, 145, 224–241. doi:10.1016/j.cell.2011.03.027
  • Tea, J., Alderman, S.L., & Gilmour, K.M. (2019). Social stress increases plasma cortisol and reduces forebrain cell proliferation in subordinate male zebrafish (Danio rerio). The Journal of Experimental Biology, 222, jeb194894. doi:10.1242/jeb.194894
  • Teles, M.C., Cardoso, S.D., & Oliveira, R.F. (2016). Social plasticity relies on different neuroplasticity mechanisms across the brain social decision-making network in zebrafish. Frontiers in Behavioral Neuroscience, 10, 16. doi:10.3389/fnbeh.2016.00016
  • Tokarz, J., Norton, W., Möller, G., Hrabé de Angelis, M., & Adamski, J. (2013). Zebrafish 20β-hydroxysteroid dehydrogenase type 2 is important for glucocorticoid catabolism in stress response. PLoS One, 8, e54851. doi:10.1371/journal.pone.0054851
  • Tran, S., Chatterjee, D., & Gerlai, R. (2014). Acute net stressor increases whole-body cortisol levels without altering whole-brain monoamines in zebrafish. Behavioral Neuroscience, 128, 621–624. doi:10.1037/bne0000005
  • Tran, S., & Gerlai, R. (2015). Thirty-second net stressor task in adult zebrafish. Bio-Protocol, 5, e1413. doi:10.21769/BioProtoc.1413
  • van den Bos, R., Mes, W., Galligani, P., Heil, A., Zethof, J., Flik, G., & Gorissen, M. (2017). Further characterisation of differences between TL and AB zebrafish (Danio rerio): Gene expression, physiology and behaviour at day 5 of the larval stage. PLoS One, 12, e0175420. doi:10.1371/journal.pone.0175420
  • Van Der Boon, J., Van Den Thillart, G.E.E.J.M., & Addink, A.D.F. (1991). The effects of cortisol administration on intermediary metabolism in teleost fish. Comparative Biochemistry and Physiology Part A: Physiology, 100, 47–53. doi:10.1016/0300-9629(91)90182-C
  • Vera-Chang, M.N., Moon, T.W., & Trudeau, V.L. (2019). Ancestral fluoxetine exposure sensitizes zebrafish to venlafaxine-induced reductions in cortisol and spawning. Endocrinology, 160, 2137–2142. doi:10.1210/en.2019-00281
  • Vera-Chang, M.N., St-Jacques, A.D., Gagné, R., Martyniuk, C.J., Yauk, C.L., Moon, T.W., & Trudeau, V.L. (2018). Transgenerational hypocortisolism and behavioral disruption are induced by the antidepressant fluoxetine in male zebrafish Danio rerio. Proceedings of the National Academy of Sciences of the United States of America, 115, E12435–E12442. doi:10.1073/pnas.1811695115
  • Vital, C., & Martins, E.P. (2011). Strain differences in zebrafish (Danio rerio) social roles and their impact on group task performance. Journal of Comparative Psychology, 125, 278–285. doi:10.1037/a0023906
  • Wang, R., & Belosevic, M. (1995). The in vitro effects of estradiol and cortisol on the function of a long-term goldfish macrophage cell line. Developmental & Comparative Immunology, 19, 327–336. doi:10.1016/0145-305X(95)00018-O
  • Wendelaar Bonga, S.E. (1997). The stress response in fish. Physiological Reviews, 77, 591–625. doi:10.1152/physrev.1997.77.3.591
  • Wong, R.Y., Oxendine, S.E., & Godwin, J. (2013). Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment. BMC Genomics., 14, 348. doi:10.1186/1471-2164-14-348
  • Wood, S.K., Walker, H.E., Valentino, R.J., & Bhatnagar, S. (2010). Individual differences in reactivity to social stress predict susceptibility and resilience to a depressive phenotype: Role of corticotropin-releasing factor. Endocrinology, 151, 1795–1805. doi:10.1210/en.2009-1026
  • Wright, D., Ward, A.J.W., Croft, D.P., & Krause, J. (2006). Social organization, grouping, and domestication in fish. Zebrafish, 3, 141–155. doi:10.1089/zeb.2006.3.141
  • Yalcin, I., Belzung, C., & Surget, A. (2008). Mouse strain differences in the unpredictable chronic mild stress: A four-antidepressant survey. Behavioural Brain Research, 193, 140–143. doi:10.1016/j.bbr.2008.04.021
  • Yang, L.-K., Zhang, Z.-R., Wen, H.-S., & Tao, Y.-X. (2019). Characterization of channel catfish (Ictalurus punctatus) melanocortin-3 receptor reveals a potential network in regulation of energy homeostasis. General and Comparative Endocrinology, 277, 90–103. doi:10.1016/j.ygcen.2019.03.011
  • Yang-Yen, H.F., Chambard, J.C., Sun, Y.L., Smeal, T., Schmidt, T.J., Drouin, J., & Karin, M. (1990). Transcriptional interference between c-Jun and the glucocorticoid receptor: Mutual inhibition of DNA binding due to direct protein-protein interaction. Cell, 62, 1205–1215. doi:10.1016/0092-8674(90)90396-V
  • Zaletel, I., Filipović, D., & Puškaš, N. (2016). Chronic stress, hippocampus and parvalbumin-positive interneurons: What do we know so far? Reviews in the Neurosciences, 27, 397–409. doi:10.1515/revneuro-2015-0042
  • Zisapel, N. (2018). New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. British Journal of Pharmacology, 175, 3190–3199. doi:10.1111/bph.14116
  • Ziv, L., Muto, A., Schoonheim, P.J., Meijsing, S.H., Strasser, D., Ingraham, H.A., … Baier, H. (2013). An affective disorder in zebrafish with mutation of the glucocorticoid receptor. Molecular Psychiatry, 18, 681–691. doi:10.1038/mp.2012.64
  • Zupanc, G.K.H., Hinsch, K., & Gage, F.H. (2005). Proliferation, migration, neuronal differentiation, and long‐term survival of new cells in the adult zebrafish brain. The Journal of Comparative Neurology, 488, 290–319. doi:10.1002/cne.20571

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.