1,964
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Low glucocorticoids in stress-related disorders: the role of inflammation

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 651-661 | Received 04 Jan 2020, Accepted 03 May 2020, Published online: 22 May 2020

References

  • Ahasan, M. M., Hardy, R., Jones, C., Kaur, K., Nanus, D., Juarez, M., Morgan, S. A., Hassan-Smith, Z., Bénézech, C., Caamaño, J. H., Hewison, M., Lavery, G., Rabbitt, E. H., Clark, A. R., Filer, A., Buckley, C. D., Raza, K., Stewart, P. M., & Cooper, M. S. (2012). Inflammatory regulation of glucocorticoid metabolism in mesenchymal stromal cells. Arthritis and Rheumatism, 64(7), 2404–2413. https://doi.org/10.1002/art.34414
  • Alderman, S. L., & Vijayan, M. M. (2012). 11β-Hydroxysteroid dehydrogenase type 2 in zebrafish brain: A functional role in hypothalamus-pituitary-interrenal axis regulation. The Journal of Endocrinology, 215(3), 393–402. https://doi.org/10.1530/JOE-12-0379
  • Almawi, W. Y., Lipman, M. L., Stevens, A. C., Zanker, B., Hadro, E. T., & Strom, T. B. (1991). Abrogation of glucocorticoid-mediated inhibition of T cell proliferation by the synergistic action of IL-1, IL-6, and IFN-gamma. Journal of Immunology (Baltimore, Md.: 1950), 146(10), 3523–3527.
  • Altuna, M. E., Lelli, S. M., Martín de Viale, L. C. S., & Damasco, M. C. (2006). Effect of stress on hepatic 11beta-hydroxysteroid dehydrogenase activity and its influence on carbohydrate metabolism. Canadian Journal of Physiology and Pharmacology, 84(10), 977–984. https://doi.org/10.1139/y06-046
  • Arlt, W., & Stewart, P. M. (2005). Adrenal corticosteroid biosynthesis, metabolism, and action. Endocrinology and Metabolism Clinics of North America, 34(2), 293–313. https://doi.org/10.1016/j.ecl.2005.01.002
  • Ban, E., Milon, G., Prudhomme, N., Fillion, G., & Haour, F. (1991). Receptors for interleukin-1 (alpha and beta) in mouse brain: Mapping and neuronal localization in hippocampus. Neuroscience, 43(1), 21–30. https://doi.org/10.1016/0306-4522(91)90412-H
  • Banks, W. A., Kastin, A. J., & Broadwell, R. D. (1995). Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation, 2(4), 241–248. https://doi.org/10.1159/000097202
  • Berger, I., Werdermann, M., Bornstein, S. R., & Steenblock, C. (2019). The adrenal gland in stress - Adaptation on a cellular level. The Journal of Steroid Biochemistry and Molecular Biology, 190, 198–206. https://doi.org/10.1016/j.jsbmb.2019.04.006
  • Bharti, R., Dey, G., Das, A. K., & Mandal, M. (2018). Differential expression of IL-6/IL-6R and MAO-A regulates invasion/angiogenesis in breast cancer. British Journal of Cancer, 118(11), 1442–1452. https://doi.org/10.1038/s41416-018-0078-x
  • Bierer, L. M., Bader, H. N., Daskalakis, N. P., Lehrner, A. L., Makotkine, I., Seckl, J. R., & Yehuda, R. (2014). Elevation of 11β-hydroxysteroid dehydrogenase type 2 activity in Holocaust survivor offspring: Evidence for an intergenerational effect of maternal trauma exposure. Psychoneuroendocrinology, 48, 1–10. https://doi.org/10.1016/j.psyneuen.2014.06.001
  • Boero, G., Pisu, M. G., Biggio, F., Muredda, L., Carta, G., Banni, S., Paci, E., Follesa, P., Concas, A., Porcu, P., & Serra, M. (2018). Impaired glucocorticoid-mediated HPA axis negative feedback induced by juvenile social isolation in male rats. Neuropharmacology, 133, 242–253. https://doi.org/10.1016/j.neuropharm.2018.01.045
  • Bourne, P. G., Rose, R. M., & Mason, J. W. (1967). Urinary 17-OHCS levels. Data on seven helicopter ambulance medics in combat. Archives of General Psychiatry, 17(1), 104–110. https://doi.org/10.1001/archpsyc.1967.01730250106015
  • Carvalho, L. A., Bergink, V., Sumaski, L., Wijkhuijs, J., Hoogendijk, W. J., Birkenhager, T. K., & Drexhage, H. A. (2014). Inflammatory activation is associated with a reduced glucocorticoid receptor alpha/beta expression ratio in monocytes of inpatients with melancholic major depressive disorder. Translational Psychiatry, 4, e344https://doi.org/10.1038/tp.2013.118
  • Danese, A., Moffitt, T. E., Harrington, H., Milne, B. J., Polanczyk, G., Pariante, C. M., Poulton, R., & Caspi, A. (2009). Adverse childhood experiences and adult risk factors for age-related disease: Depression, inflammation, and clustering of metabolic risk markers. Archives of Pediatrics & Adolescent Medicine, 163(12), 1135–1143. https://doi.org/10.1001/archpediatrics.2009.214
  • Danese, A., Moffitt, T. E., Pariante, C. M., Ambler, A., Poulton, R., & Caspi, A. (2008). Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Archives of General Psychiatry, 65(4), 409–415. https://doi.org/10.1001/archpsyc.65.4.409
  • Danese, A., Pariante, C. M., Caspi, A., Taylor, A., & Poulton, R. (2007). Childhood maltreatment predicts adult inflammation in a life-course study. Proceedings of the National Academy of Sciences of the United States of America, 104(4), 1319–1324. https://doi.org/10.1073/pnas.0610362104
  • de Kloet, C. S., Vermetten, E., Bikker, A., Meulman, E., Geuze, E., Kavelaars, A., Westenberg, H. G. M., & Heijnen, C. J. (2007). Leukocyte glucocorticoid receptor expression and immunoregulation in veterans with and without post-traumatic stress disorder. Molecular Psychiatry, 12(5), 443–453. https://doi.org/10.1038/sj.mp.4001934
  • Douglas Bremner, J. (2019). Posttraumatic stress disorder: From neurobiology to treatment. Wiley. Retrieved September 19, 2019, from https://www.wiley.com/en-us/Posttraumatic+Stress+Disorder%3A+From+Neurobiology+to+Treatment-p-9781118356111
  • Dremencov, E., Lapshin, M., Komelkova, M., Alliluev, A., Tseilikman, O., Karpenko, M., Pestereva, N., Manukhina, E., Downey, H. F., & Tseilikman, V. (2019). Chronic predator scent stress alters serotonin and dopamine levels in the rat thalamus and hypothalamus, respectively. General Physiology and Biophysics, 38(2), 187–190. https://doi.org/10.4149/gpb_2019003
  • Duncko, R., Makatsori, A., Fickova, E., Selko, D., & Jezova, D. (2006). Altered coordination of the neuroendocrine response during psychosocial stress in subjects with high trait anxiety. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 30(6), 1058–1066. https://doi.org/10.1016/j.pnpbp.2006.04.002
  • Edwards, C. (2012). Sixty years after Hench-corticosteroids and chronic inflammatory disease. The Journal of Clinical Endocrinology and Metabolism, 97(5), 1443–1451. https://doi.org/10.1210/jc.2011-2879
  • Ferguson, S. E., Pallikaros, Z., Michael, A. E., & Cooke, B. A. (1999). The effects of different culture media, glucose, pyridine nucleotides and adenosine on the activity of 11beta-hydroxysteroid dehydrogenase in rat Leydig cells. Molecular and Cellular Endocrinology, 158(1–2), 37–44. https://doi.org/10.1016/S0303-7207(99)00186-0
  • Filipenko, M. L., Beilina, A. G., Alekseyenko, O. V., Dolgov, V. V., & Kudryavtseva, N. N. (2002). Repeated experience of social defeats increases serotonin transporter and monoamine oxidase A mRNA levels in raphe nuclei of male mice. Neuroscience Letters, 321(1-2), 25–28. https://doi.org/10.1016/S0304-3940(01)02495-8
  • Friedman, S. B., Mason, J. W., & Hamburg, D. A. (1963). Urinary 17-hydroxycorticosteroid levels in parents of children with neoplastic disease: A study of chronic psychological stress. Psychosomatic Medicine, 25, 364–376. https://doi.org/10.1097/00006842-196307000-00007
  • Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view on hypocortisolism. Psychoneuroendocrinology, 30(10), 1010–1016. https://doi.org/10.1016/j.psyneuen.2005.04.006
  • Geuze, E., van Wingen, G. A., van Zuiden, M., Rademaker, A. R., Vermetten, E., Kavelaars, A., Fernández, G., & Heijnen, C. J. (2012). Glucocorticoid receptor number predicts increase in amygdala activity after severe stress. Psychoneuroendocrinology, 37(11), 1837–1844. https://doi.org/10.1016/j.psyneuen.2012.03.017
  • Gill, J. M., Saligan, L., Woods, S., & Page, G. (2009). PTSD is associated with an excess of inflammatory immune activities. Perspectives in Psychiatric Care, 45(4), 262–277. https://doi.org/10.1111/j.1744-6163.2009.00229.x
  • Gola, H., Engler, H., Sommershof, A., Adenauer, H., Kolassa, S., Schedlowski, M., Groettrup, M., Elbert, T., & Kolassa, I.-T. (2013). Posttraumatic stress disorder is associated with an enhanced spontaneous production of pro-inflammatory cytokines by peripheral blood mononuclear cells. BMC Psychiatry, 13(1), 40https://doi.org/10.1186/1471-244X-13-40
  • Goshen, I., & Yirmiya, R. (2009). Interleukin-1 (IL-1): A central regulator of stress responses. Frontiers in Neuroendocrinology, 30(1), 30–45. https://doi.org/10.1016/j.yfrne.2008.10.001
  • Goshen, I., Yirmiya, R., Iverfeldt, K., & Weidenfeld, J. (2003). The role of endogenous interleukin-1 in stress-induced adrenal activation and adrenalectomy-induced adrenocorticotropic hormone hypersecretion. Endocrinology, 144(10), 4453–4458. https://doi.org/10.1210/en.2003-0338
  • Gotovac, K., Sabioncello, A., RabatíC, S., Berki, T., & Dekaris, D. (2003). Flow cytometric determination of glucocorticoid receptor (GCR) expression in lymphocyte subpopulations: Lower quantity of GCR in patients with post-traumatic stress disorder (PTSD). Clinical and Experimental Immunology, 131(2), 335–339. https://doi.org/10.1046/j.1365-2249.2003.02075.x
  • Grinchii, D., Paliokha, R., Tseilikman, V., & Dremencov, E. (2018). Inhibition of cytochrome P450 by proadifen diminishes the excitability of brain serotonin neurons in rats. General Physiology and Biophysics, 37(6), 711–713. https://doi.org/10.4149/gpb_2018040
  • Gupta, V., Khan, A. A., Sasi, B. K., & Mahapatra, N. R. (2015). Molecular mechanism of monoamine oxidase A gene regulation under inflammation and ischemia-like conditions: Key roles of the transcription factors GATA2, Sp1 and TBP. Journal of Neurochemistry, 134(1), 21–38. https://doi.org/10.1111/jnc.13099
  • Gutierrez, E. G., Banks, W. A., & Kastin, A. J. (1994). Blood-borne interleukin-1 receptor antagonist crosses the blood-brain barrier. Journal of Neuroimmunology, 55(2), 153–160. https://doi.org/10.1016/0165-5728(94)90005-1
  • Hammami, M. M., & Siiteri, P. K. (1991). Regulation of 11 beta-hydroxysteroid dehydrogenase activity in human skin fibroblasts: Enzymatic modulation of glucocorticoid action . The Journal of Clinical Endocrinology and Metabolism, 73(2), 326–334. https://doi.org/10.1210/jcem-73-2-326
  • Hammond, E. A., Smart, D., Toulmond, S., Suman-Chauhan, N., Hughes, J., & Hall, M. D. (1999). The interleukin-1 type I receptor is expressed in human hypothalamus. Brain, 122(9), 1697–1707. https://doi.org/10.1093/brain/122.9.1697
  • Hardy, R. S., Filer, A., Cooper, M. S., Parsonage, G., Raza, K., Hardie, D. L., & Hewison, M. (2006). Differential expression, function and response to inflammatory stimuli of 11β-hydroxysteroid dehydrogenase type 1 in human fibroblasts: A mechanism for tissue-specific regulation of inflammation. Arthritis Research & Therapy, 8(4), R108. https://doi.org/10.1186/ar1993
  • Harris, H. J., Kotelevtsev, Y., Mullins, J. J., Seckl, J. R., & Holmes, M. C. (2001). Intracellular regeneration of glucocorticoids by 11beta-hydroxysteroid dehydrogenase (11beta-HSD)-1 plays a key role in regulation of the hypothalamic-pituitary-adrenal axis: Analysis of 11beta-HSD-1-deficient mice. Endocrinology, 142(1), 114–120. https://doi.org/10.1210/endo.142.1.7887
  • Hauger, R. L., Lorang, M., Irwin, M., & Aguilera, G. (1990). CRF receptor regulation and sensitization of ACTH responses to acute ether stress during chronic intermittent immobilization stress. Brain Research, 532(1-2), 34–40. https://doi.org/10.1016/0006-8993(90)91738-3
  • Hellhammer, D. H., & Wade, S. (1993). Endocrine correlates of stress vulnerability. Psychotherapy and Psychosomatics, 60(1), 8–17. https://doi.org/10.1159/000288675
  • Higuchi, Y., Soga, T., & Parhar, I. S. (2017). Regulatory pathways of monoamine oxidase A during social stress. Frontiers in Neuroscience, 11, 604. https://doi.org/10.3389/fnins.2017.00604
  • Hoffman, C. J., McKenzie, H. C., Furr, M. O., & Desrochers, A. (2015). Glucocorticoid receptor density and binding affinity in healthy horses and horses with systemic inflammatory response syndrome. Journal of Veterinary Internal Medicine, 29(2), 626–635. https://doi.org/10.1111/jvim.12558
  • Hori, H., & Kim, Y. (2019). Inflammation and post-traumatic stress disorder. Psychiatry and Clinical Neurosciences, 73(4), 143–153. https://doi.org/10.1111/pcn.12820
  • Huang, L., Frampton, G., Rao, A., Zhang, K-s., Chen, W., Lai, J-m., Yin, X-y., Walker, K., Culbreath, B., Leyva-Illades, D., Quinn, M., McMillin, M., Bradley, M., Liang, L.-J., & DeMorrow, S. (2012). Monoamine oxidase A expression is suppressed in human cholangiocarcinoma via coordinated epigenetic and IL-6-driven events. Laboratory Investigation; A Journal of Technical Methods and Pathology, 92(10), 1451–1460. https://doi.org/10.1038/labinvest.2012.110
  • Ichikawa, Y., Yoshida, K., Kawagoe, M., Saito, E., Abe, Y., Arikawa, K., & Homma, M. (1977). Altered equilibrium between cortisol and cortisone in plasma in thyroid dysfunction and inflammatory diseases. Metabolism: Clinical and Experimental, 26(9), 989–997. https://doi.org/10.1016/0026-0495(77)90016-6
  • Igarreta, P., Calvo, J. C., & Damasco, M. C. (1999). Activity of renal 11βhydroxysteroid dehydrogenase 2 (11βHSD2) in stressed animals. Life Sciences, 64(24), 2285–2290. https://doi.org/10.1016/S0024-3205(99)00179-4
  • Jäättelä, M., Ilvesmäki, V., Voutilainen, R., Stenman, U.-H., & Saksela, E. (1991). Tumor necrosis factor as a potent inhibitor of adrenocorticotropin-induced cortisol production and steroidogenic P450 enzyme gene expression in cultured human fetal adrenal cells. Endocrinology, 128(1), 623–629. https://doi.org/10.1210/endo-128-1-623
  • Jezova, D., Makatsori, A., Duncko, R., Moncek, F., & Jakubek, M. (2004). High trait anxiety in healthy subjects is associated with low neuroendocrine activity during psychosocial stress. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 28(8), 1331–1336. https://doi.org/10.1016/j.pnpbp.2004.08.005
  • Jezova, D., Vigas, M., Hlavacova, N., & Kukumberg, P. (2010). Attenuated neuroendocrine response to hypoglycemic stress in patients with panic disorder. Neuroendocrinology, 92(2), 112–119. https://doi.org/10.1159/000283560
  • Kam, J. C., Szefler, S. J., Surs, W., Sher, E. R., & Leung, D. Y. (1993). Combination IL-2 and IL-4 reduces glucocorticoid receptor-binding affinity and T cell response to glucocorticoids. Journal of Immunology (Baltimore, Md.: 1950), 151((7), 3460–3466.
  • Känel, R. V., Kraemer, B., Saner, H., Schmid, J.-P., Abbas, C. C., & Begré, S. (2010). Posttraumatic stress disorder and dyslipidemia: Previous research and novel findings from patients with PTSD caused by myocardial infarction. The World Journal of Biological Psychiatry : The Official Journal of the World Federation of Societies of Biological Psychiatry, 11(2), 141–147. https://doi.org/10.3109/15622970903449846
  • Kassi, E., & Papavassiliou, A. G. (2012). Glucose can promote a glucocorticoid resistance state. Journal of Cellular and Molecular Medicine, 16(5), 1146–1149. https://doi.org/10.1111/j.1582-4934.2012.01532.x
  • Kino, T., Su, Y. A., & Chrousos, G. P. (2009). Human glucocorticoid receptor isoform beta: Recent understanding of its potential implications in physiology and pathophysiology. Cellular and Molecular Life Sciences : Cmls, 66(21), 3435–3448. https://doi.org/10.1007/s00018-009-0098-z
  • Koss, K. J., & Gunnar, M. R. (2018). Annual research review: Early adversity, the hypothalamic-pituitary-adrenocortical axis, and child psychopathology. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 59(4), 327–346. https://doi.org/10.1111/jcpp.12784
  • Lazuko, S. S., Kuzhel, O. P., Belyaeva, L. E., Manukhina, E. B., Downey, H. F., Fred Downey, H., Tseilikman, O. B., Komelkova, M. V., & Tseilikman, V. E. (2018). Posttraumatic Stress Disorder Disturbs Coronary Tone and Its Regulatory Mechanisms. Cellular and Molecular Neurobiology, 38(1), 209–217. https://doi.org/10.1007/s10571-017-0517-x
  • Levine, A. B., Levine, L. M., & Levine, T. B. (2014). Posttraumatic Stress Disorder and Cardiometabolic Disease. Cardiology, 127(1), 1–19. https://doi.org/10.1159/000354910
  • Lindqvist, D., Mellon, S. H., Dhabhar, F. S., Yehuda, R., Grenon, S. M., Flory, J. D., Bierer, L. M., Abu-Amara, D., Coy, M., Makotkine, I., Reus, V. I., Aschbacher, K., Bersani, F. S., Marmar, C. R., & Wolkowitz, O. M. (2017). Increased circulating blood cell counts in combat-related PTSD: Associations with inflammation and PTSD severity. Psychiatry Research, 258, 330–336. https://doi.org/10.1016/j.psychres.2017.08.052
  • Lindqvist, D., Wolkowitz, O. M., Mellon, S., Yehuda, R., Flory, J. D., Henn-Haase, C., Bierer, L. M., Abu-Amara, D., Coy, M., Neylan, T. C., Makotkine, I., Reus, V. I., Yan, X., Taylor, N. M., Marmar, C. R., & Dhabhar, F. S. (2014). Proinflammatory milieu in combat-related PTSD is independent of depression and early life stress. Brain, Behavior, and Immunity, 42, 81–88. https://doi.org/10.1016/j.bbi.2014.06.003
  • Longui, C. A., Vottero, A., Adamson, P. C., Cole, D. E., Kino, T., Monte, O., & Chrousos, G. P. (2000). Low glucocorticoid receptor α/β ratio in T-cell lymphoblastic leukemia. Hormone and Metabolic Research, 32(10), 401–406. https://doi.org/10.1055/s-2007-978661
  • Lopes, R. P., Grassi-Oliveira, R., de Almeida, L. R., Stein, L. M., Luz, C., Teixeira, A. L., & Bauer, M. E. (2012). Neuroimmunoendocrine interactions in patients with recurrent major depression, increased early life stress and long-standing posttraumatic stress disorder symptoms. Neuroimmunomodulation, 19(1), 33–42. https://doi.org/10.1159/000327352
  • Manoli, I., Le, H., Alesci, S., McFann, K. K., Su, Y. A., Kino, T., Chrousos, G. P., & Blackman, M. R. (2005). Monoamine oxidase-A is a major target gene for glucocorticoids in human skeletal muscle cells. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 19(10), 1359–1361. https://doi.org/10.1096/fj.04-3660fje
  • Manukhina, E. B., Tseilikman, V. E., Tseilikman, O. B., Komelkova, M. V., Kondashevskaya, M. V., Goryacheva, A. V., Lapshin, M. S., Platkovskii, P. O., Alliluev, A. V., & Downey, H. F. (2018). Intermittent hypoxia improves behavioral and adrenal gland dysfunction induced by posttraumatic stress disorder in rats. Journal of Applied Physiology (Bethesda, Md.: 1985)), 125(3), 931–937. https://doi.org/10.1152/japplphysiol.01123.2017
  • Marik, P. (2007). Mechanisms and clinical consequences of critical illness associated adrenal insufficiency. Current Opinion in Critical Care, 13(4), 363–369. https://doi.org/10.1097/MCC.0b013e32818a6d74
  • Matsumura, K., & Kobayashi, S. (2004). Signaling the brain in inflammation: The role of endothelial cells. Frontiers in Bioscience : A Journal and Virtual Library, 9, 2819–2826. https://doi.org/10.2741/1439
  • McEwen, B. S. (2000). Allostasis and allostatic load: Implications for neuropsychopharmacology. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 22(2), 108–124. https://doi.org/10.1016/S0893-133X(99)00129-3
  • Merkulov, V. M., Merkulova, T. I., & Bondar, N. P. (2017). Mechanisms of brain glucocorticoid resistance in stress-induced psychopathologies. Biochemistry. Biokhimiia, 82(3), 351–365. https://doi.org/10.1134/S0006297917030142
  • Meyer, J. H., Wilson, A. A., Sagrati, S., Miler, L., Rusjan, P., Bloomfield, P. M., Clark, M., Sacher, J., Voineskos, A. N., & Houle, S. (2009). Brain monoamine oxidase A binding in major depressive disorder: Relationship to selective serotonin reuptake inhibitor treatment, recovery, and recurrence. Archives of General Psychiatry, 66(12), 1304–1312. https://doi.org/10.1001/archgenpsychiatry.2009.156
  • Michopoulos, V., Rothbaum, A. O., Jovanovic, T., Almli, L. M., Bradley, B., Rothbaum, B. O., Gillespie, C. F., & Ressler, K. J. (2015). Association of CRP genetic variation and CRP level with elevated PTSD symptoms and physiological responses in a civilian population with high levels of trauma. The American Journal of Psychiatry, 172(4), 353–362. https://doi.org/10.1176/appi.ajp.2014.14020263
  • Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychological Bulletin, 133(1), 25–45. https://doi.org/10.1037/0033-2909.133.1.25
  • Ming, Z., Wotton, C. A., Appleton, R. T., Ching, J. C., Loewen, M. E., Sawicki, G., & Bekar, L. K. (2015). Systemic lipopolysaccharide-mediated alteration of cortical neuromodulation involves increases in monoamine oxidase-A and acetylcholinesterase activity. Journal of Neuroinflammation, 12, 37https://doi.org/10.1186/s12974-015-0259-y
  • Molijn, G. J., Spek, J. J., van Uffelen, J. C., de Jong, F. H., Brinkmann, A. O., Bruining, H. A., Lamberts, S. W., & Koper, J. W. (1995). Differential adaptation of glucocorticoid sensitivity of peripheral blood mononuclear leukocytes in patients with sepsis or septic shock. The Journal of Clinical Endocrinology & Metabolism, 80(6), 1799–1803. https://doi.org/10.1210/jcem.80.6.7775626
  • Morey, R. A., Haswell, C. C., Hooper, S. R., & Bellis, M. D. D. (2016). Amygdala, hippocampus, and ventral medial prefrontal cortex volumes differ in maltreated youth with and without chronic posttraumatic stress disorder. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 41(3), 791–801. https://doi.org/10.1038/npp.2015.205
  • Morrison, M. F., Ten Have, T., Freeman, E. W., Sammel, M. D., & Grisso, J. A. (2001). DHEA-S levels and depressive symptoms in a cohort of African American and Caucasian women in the late reproductive years. Biological Psychiatry, 50(9), 705–711. https://doi.org/10.1016/S0006-3223(01)01169-6
  • Nikkheslat, N., Zunszain, P. A., Horowitz, M. A., Barbosa, I. G., Parker, J. A., Myint, A.-M., Schwarz, M. J., Tylee, A. T., Carvalho, L. A., & Pariante, C. M. (2015). Insufficient glucocorticoid signaling and elevated inflammation in coronary heart disease patients with comorbid depression. Brain, Behavior, and Immunity, 48, 8–18. https://doi.org/10.1016/j.bbi.2015.02.002
  • O’Carroll, S. J., Kho, D. T., Wiltshire, R., Nelson, V., Rotimi, O., Johnson, R., Angel, C. E., & Graham, E. S. (2015). Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. Journal of Neuroinflammation, 12, 131https://doi.org/10.1186/s12974-015-0346-0
  • Oldehinkel, A. J., van den Berg, M. D., Flentge, F., Bouhuys, A. L., ter Horst, G. J., & Ormel, J. (2001). Urinary free cortisol excretion in elderly persons with minor and major depression. Psychiatry Research, 104(1), 39–47. https://doi.org/10.1016/S0165-1781(01)00300-6
  • Olsen, N., Sokka, T., Seehorn, C. L., Kraft, B., Maas, K., Moore, J., & Aune, T. M. (2004). A gene expression signature for recent onset rheumatoid arthritis in peripheral blood mononuclear cells. Annals of the Rheumatic Diseases, 63(11), 1387–1392. https://doi.org/10.1136/ard.2003.017194
  • Ott, D., Murgott, J., Rafalzik, S., Wuchert, F., Schmalenbeck, B., Roth, J., & Gerstberger, R. (2010). Neurons and glial cells of the rat organum vasculosum laminae terminalis directly respond to lipopolysaccharide and pyrogenic cytokines. Brain Research, 1363, 93–106. https://doi.org/10.1016/j.brainres.2010.09.083
  • Ou, X.-M., Chen, K., & Shih, J. C. (2006). Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1. Journal of Biological Chemistry, 281(30), 21512–21525. https://doi.org/10.1074/jbc.M600250200
  • Pariante, C. M. (2017). Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. European Neuropsychopharmacology : The Journal of the European College of Neuropsychopharmacology, 27(6), 554–559. https://doi.org/10.1016/j.euroneuro.2017.04.001
  • Pariante, C. M., Pearce, B. D., Pisell, T. L., Sanchez, C. I., Po, C., Su, C., & Miller, A. H. (1999). The Proinflammatory Cytokine, interleukin-1alpha, reduces glucocorticoid receptor translocation and function. Endocrinology, 140(9), 4359–4366. https://doi.org/10.1210/endo.140.9.6986
  • Paterson, J. M., Holmes, M. C., Kenyon, C. J., Carter, R., Mullins, J. J., & Seckl, J. R. (2007). Liver-Selective transgene rescue of hypothalamic-pituitary-adrenal axis dysfunction in 11β-hydroxysteroid dehydrogenase type 1-deficient mice. Endocrinology, 148, 961–966. https://doi.org/10.1210/en.2006-0603
  • Pearson, J., Tarabulsy, G. M., & Bussières, E.-L. (2015). Fetal programming and cortisol secretion in early childhood: A meta-analysis of different programming variables. Infant Behavior and Development, 40, 204–215. https://doi.org/10.1016/j.infbeh.2015.04.004
  • Perrin, A. J., Horowitz, M. A., Roelofs, J., Zunszain, P. A., & Pariante, C. M. (2019). Glucocorticoid resistance: Is it a requisite for increased cytokine production in depression? A systematic review and meta-analysis. Frontiers in Psychiatry, 10, 423. https://doi.org/10.3389/fpsyt.2019.00423
  • Petrowski, K., Herold, U., Joraschky, P., Wittchen, H.-U., & Kirschbaum, C. (2010). A striking pattern of cortisol non-responsiveness to psychosocial stress in patients with panic disorder with concurrent normal cortisol awakening responses. Psychoneuroendocrinology, 35(3), 414–421. https://doi.org/10.1016/j.psyneuen.2009.08.003
  • Pivac, N., Knezevic, J., Kozaric-Kovacic, D., Dezeljin, M., Mustapic, M., Rak, D., Matijevic, T., Pavelic, J., & Muck-Seler, D. (2007). Monoamine oxidase (MAO) intron 13 polymorphism and platelet MAO-B activity in combat-related posttraumatic stress disorder. Journal of Affective Disorders, 103(1-3), 131–138. https://doi.org/10.1016/j.jad.2007.01.017
  • Plant, D. T., Pawlby, S., Sharp, D., Zunszain, P. A., & Pariante, C. M. (2016). Prenatal maternal depression is associated with offspring inflammation at 25 years: A prospective longitudinal cohort study. Translational Psychiatry, 6(11), e936https://doi.org/10.1038/tp.2015.155
  • Preez, A. D., Leveson, J., Zunszain, P. A., & Pariante, C. M. (2016). Inflammatory insults and mental health consequences: Does timing matter when it comes to depression? Psychological Medicine, 46(10), 2041–2057. https://doi.org/10.1017/S0033291716000672
  • Quinkler, M., Troeger, H., Eigendorff, E., Maser-Gluth, C., Stiglic, A., Oelkers, W., Bähr, V., & Diederich, S. (2003). Enhanced 11beta-hydroxysteroid dehydrogenase type 1 activity in stress adaptation in the guinea pig. The Journal of Endocrinology, 176(2), 185–192. https://doi.org/10.1677/joe.0.1760185
  • Rohleder, N., Joksimovic, L., Wolf, J. M., & Kirschbaum, C. (2004). Hypocortisolism and increased glucocorticoid sensitivity of pro-Inflammatory cytokine production in Bosnian war refugees with posttraumatic stress disorder. Biological Psychiatry, 55(7), 745–751. https://doi.org/10.1016/j.biopsych.2003.11.018
  • Sarkar, S., Tsai, S.-W., Nguyen, T. T., Plevyak, M., Padbury, J. F., & Rubin, L. P. (2001). Inhibition of placental 11β-hydroxysteroid dehydrogenase type 2 by catecholamines via α-adrenergic signaling. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 281(6), R1966–R1974. https://doi.org/10.1152/ajpregu.2001.281.6.R1966
  • Schmidt, M., Weidler, C., Naumann, H., Anders, S., Schölmerich, J., & Straub, R. H. (2005). Reduced capacity for the reactivation of glucocorticoids in rheumatoid arthritis synovial cells: Possible role of the sympathetic nervous system? Arthritis and Rheumatism, 52(6), 1711–1720. https://doi.org/10.1002/art.21091
  • Sesti-Costa, R., Ignacchiti, M. D. C., Chedraoui-Silva, S., Marchi, L. F., & Mantovani, B. (2012). Chronic cold stress in mice induces a regulatory phenotype in macrophages: Correlation with increased 11β-hydroxysteroid dehydrogenase expression. Brain, Behavior, and Immunity, 26(1), 50–60. https://doi.org/10.1016/j.bbi.2011.07.234
  • Slotkin, T. A., Seidler, F. J., & Ritchie, J. C. (1998). Effects of aging and glucocorticoid treatment on monoamine oxidase subtypes in rat cerebral cortex: Therapeutic implications. Brain Research Bulletin, 47(4), 345–348. https://doi.org/10.1016/S0361-9230(98)00111-7
  • Smith, M. A., Davidson, J., Ritchie, J. C., Kudler, H., Lipper, S., Chappell, P., & Nemeroff, C. B. (1989). The corticotropin-releasing hormone test in patients with posttraumatic stress disorder. Biological Psychiatry, 26(4), 349–355. https://doi.org/10.1016/0006-3223(89)90050-4
  • Soliman, A., Udemgba, C., Fan, I., Xu, X., Miler, L., Rusjan, P., Houle, S., Wilson, A. A., Pruessner, J., Ou, X.-M., & Meyer, J. H. (2012). Convergent effects of acute stress and glucocorticoid exposure upon MAO-A in humans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 32(48), 17120–17127. https://doi.org/10.1523/JNEUROSCI.2091-12.2012
  • Sommershof, A., Aichinger, H., Engler, H., Adenauer, H., Catani, C., Boneberg, E.-M., Elbert, T., Groettrup, M., & Kolassa, I.-T. (2009). Substantial reduction of naïve and regulatory T cells following traumatic stress. Brain, Behavior, and Immunity, 23(8), 1117–1124. https://doi.org/10.1016/j.bbi.2009.07.003
  • Stegk, J. P., Ebert, B., Martin, H.-J., & Maser, E. (2009). Expression profiles of human 11beta-hydroxysteroid dehydrogenases type 1 and type 2 in inflammatory bowel diseases. Molecular and Cellular Endocrinology, 301(1-2), 104–108. https://doi.org/10.1016/j.mce.2008.10.030
  • Stein, M. B., Yehuda, R., Koverola, C., & Hanna, C. (1997). Enhanced dexamethasone suppression of plasma cortisol in adult women traumatized by childhood sexual abuse. Biological Psychiatry, 42(8), 680–686. https://doi.org/10.1016/S0006-3223(96)00489-1
  • Straub, R. H., & Cutolo, M. (2016). Glucocorticoids and chronic inflammation. Rheumatology (Oxford, England), 55(suppl 2), ii6–ii14. https://doi.org/10.1093/rheumatology/kew348
  • Ströhle, A., Scheel, M., Modell, S., & Holsboer, F. (2008). Blunted ACTH response to dexamethasone suppression-CRH stimulation in posttraumatic stress disorder. Journal of Psychiatric Research, 42(14), 1185–1188. https://doi.org/10.1016/j.jpsychires.2008.01.015
  • Teche, S. P., Rovaris, D. L., Aguiar, B. W., Hauck, S., Vitola, E. S., Bau, C. H. D., Freitas, L. H., & Grevet, E. H. (2017). Resilience to traumatic events related to urban violence and increased IL10 serum levels. Psychiatry Research, 250, 136–140. https://doi.org/10.1016/j.psychres.2017.01.072
  • Tseilikman, V., Dremencov, E., Tseilikman, O., Pavlovicova, M., Lacinova, L., & Jezova, D. (2019). Role of glucocorticoid- and monoamine-metabolizing enzymes in stress-related psychopathological processes. Stress (Amsterdam, Netherlands), 1–12. https://doi.org/10.1080/10253890.2019.1641080
  • Tseilikman, V., Dremencov, E., Tseilikman, O., Pavlovicova, M., Lacinova, L., & Jezova, D. (2020). Role of glucocorticoid- and monoamine-metabolizing enzymes in stress-related psychopathological processes. Stress, 23(1), 1–12. https://doi.org/10.1080/10253890.2019.1641080
  • Tsugita, M., Iwasaki, Y., Nishiyama, M., Taguchi, T., Shinahara, M., Taniguchi, Y., Kambayashi, M., Terada, Y., & Hashimoto, K. (2008). Differential regulation of 11beta-hydroxysteroid dehydrogenase type-1 and -2 gene transcription by proinflammatory cytokines in vascular smooth muscle cells. Life Sciences, 83(11-12), 426–432. https://doi.org/10.1016/j.lfs.2008.07.005
  • van der Voort, P. H. J., Gerritsen, R. T., Bakker, A. J., Boerma, E. C., Kuiper, M. A., & de Heide, L. (2003). HDL-cholesterol level and cortisol response to synacthen in critically ill patients. Intensive Care Med, 29, 2199–2203. https://doi.org/10.1007/s00134-003-2021-7
  • Vilibić, M., Jukić, V., Pandžić-Sakoman, M., Bilić, P., & Milošević, M. (2014). Association between total serum cholesterol and depression, aggression, and suicidal ideations in war veterans with posttraumatic stress disorder: A cross-sectional study. Croatian Medical Journal, 55(5), 520–529. https://doi.org/10.3325/cmj.2014.55.520
  • Von, R. K., Hepp, U., Kraemer, B., Traber, R., Keel, M., Mica, L., & Schnyder, U. (2007). Evidence for low-grade systemic proinflammatory activity in patients with posttraumatic stress disorder. Journal of Psychiatric Research, 41(9), 744–752. https://doi.org/10.1016/j.jpsychires.2006.06.009
  • Walczewska, J., Rutkowski, K., Wizner, B., Cwynar, M., & Grodzicki, T. (2011). Stiffness of large arteries and cardiovascular risk in patients with post-traumatic stress disorder. European Heart Journal, 32(6), 730–736. https://doi.org/10.1093/eurheartj/ehq354
  • Wang, Z., & Young, M. R. I. (2016). PTSD, a Disorder with an Immunological Component. Frontiers in Immunology, 7, 219https://doi.org/10.3389/fimmu.2016.00219
  • Webster, J. C., Oakley, R. H., Jewell, C. M., & Cidlowski, J. A. (2001). Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative beta isoform: A mechanism for the generation of glucocorticoid resistance. Proceedings of the National Academy of Sciences of the United States of America, 98(12), 6865–6870. https://doi.org/10.1073/pnas.121455098
  • Whitaker, A. M., Farooq, M. A., Edwards, S., & Gilpin, N. W. (2016). Post-traumatic stress avoidance is attenuated by corticosterone and associated with brain levels of steroid receptor co-activator-1 in rats. Stress (Amsterdam, Netherlands), 19(1), 69–77. https://doi.org/10.3109/10253890.2015.1094689
  • Wong, M. L., & Licinio, J. (1994). Localization of interleukin 1 type I receptor mRNA in rat brain. Neuroimmunomodulation, 1(2), 110–115. https://doi.org/10.1159/000097143
  • Woon, F. L., & Hedges, D. W. (2008). Hippocampal and amygdala volumes in children and adults with childhood maltreatment-related posttraumatic stress disorder: A meta-analysis. Hippocampus, 18(8), 729–736. https://doi.org/10.1002/hipo.20437
  • Yaguchi, H., Tsutsumi, K., Shimono, K., Omura, M., Sasano, H., & Nishikawa, T. (1998). Involvement of high density lipoprotein as substrate cholesterol for steroidogenesis by bovine adrenal fasciculo-reticularis cells. Life Sciences, 62(16), 1387–1395. https://doi.org/10.1016/S0024-3205(98)00077-0
  • Yehuda, R. (2001). Biology of posttraumatic stress disorder. The Journal of Clinical Psychiatry, 62 (Suppl 17), 41–46.
  • Yehuda, R., Boisoneau, D., Lowy, M. T., & Giller, E. L. (1995). Dose-response changes in plasma cortisol and lymphocyte glucocorticoid receptors following dexamethasone administration in combat veterans with and without posttraumatic stress disorder. Archives of General Psychiatry, 52(7), 583–593. https://doi.org/10.1001/archpsyc.1995.03950190065010
  • Yehuda, R., Golier, J. A., Yang, R. K., & Tischler, L. (2004). Enhanced sensitivity to glucocorticoids in peripheral mononuclear leukocytes in posttraumatic stress disorder. Biological Psychiatry, 55(11), 1110–1116. https://doi.org/10.1016/j.biopsych.2004.02.010
  • Yehuda, R., Halligan, S. L., Grossman, R., Golier, J. A., & Wong, C. (2002). The cortisol and glucocorticoid receptor response to low dose dexamethasone administration in aging combat veterans and holocaust survivors with and without posttraumatic stress disorder. Biological Psychiatry, 52(5), 393–403. https://doi.org/10.1016/S0006-3223(02)01357-4
  • Yehuda, R., Lowy, M. T., Southwick, S. M., Shaffer, D., & Giller, E. L. (1991). Lymphocyte glucocorticoid receptor number in posttraumatic stress disorder. The American Journal of Psychiatry, 148(4), 499–504. https://doi.org/10.1176/ajp.148.4.499
  • Yehuda, R., Southwick, S. M., Krystal, J. H., Bremner, D., Charney, D. S., & Mason, J. W. (1993). Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder. The American Journal of Psychiatry, 150(1), 83–86. https://doi.org/10.1176/ajp.150.1.83
  • Yirmiya, R., & Goshen, I. (2011). Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain, Behavior, and Immunity, 25(2), 181–213. https://doi.org/10.1016/j.bbi.2010.10.015
  • Ysrraelit, M. C., Gaitán, M. I., Lopez, A. S., & Correale, J. (2008). Impaired hypothalamic-pituitary-adrenal axis activity in patients with multiple sclerosis. Neurology, 71(24), 1948–1954. https://doi.org/10.1212/01.wnl.0000336918.32695.6b
  • Zaba, M., Kirmeier, T., Ionescu, I. A., Wollweber, B., Buell, D. R., Gall-Kleebach, D. J., Schubert, C. F., Novak, B., Huber, C., Köhler, K., Holsboer, F., Pütz, B., Müller-Myhsok, B., Höhne, N., Uhr, M., Ising, M., Herrmann, L., & Schmidt, U. (2015). Identification and characterization of HPA-axis reactivity endophenotypes in a cohort of female PTSD patients. Psychoneuroendocrinology, 55, 102–115. https://doi.org/10.1016/j.psyneuen.2015.02.005
  • Zallocchi, M., Matkovic, L., & Damasco, M. C. (2004). Adrenal 11-beta hydroxysteroid dehydrogenase activity in response to stress. Canadian Journal of Physiology and Pharmacology, 82(6), 422–425. https://doi.org/10.1139/y04-035
  • Zhou, J., Nagarkatti, P., Zhong, Y., Ginsberg, J. P., Singh, N. P., Zhang, J., & Nagarkatti, M. (2014). Dysregulation in microRNA expression is associated with alterations in immune functions in combat veterans with post-traumatic stress disorder. PLOS One, 9(4), e94075https://doi.org/10.1371/journal.pone.0094075
  • Ziegler, C., Wolf, C., Schiele, M. A., Feric Bojic, E., Kucukalic, S., Sabic Dzananovic, E., Goci Uka, A., Hoxha, B., Haxhibeqiri, V., Haxhibeqiri, S., Kravic, N., Muminovic Umihanic, M., Cima Franc, A., Jaksic, N., Babic, R., Pavlovic, M., Warrings, B., Bravo Mehmedbasic, A., Rudan, D., … Domschke, K. (2018). Monoamine oxidase A gene methylation and its role in posttraumatic stress disorder: First evidence from the South Eastern Europe (SEE)-PTSD Study. International Journal of Neuropsychopharmacology, 21(5), 423–432. https://doi.org/10.1093/ijnp/pyx111

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.