Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 24, 2021 - Issue 2: Commemorating the 2nd Munich Stress Conference
1,706
Views
7
CrossRef citations to date
0
Altmetric
Reviews

A proposed role for glucocorticoids in mediating dopamine-dependent cue-reward learning

&
Pages 154-167 | Received 14 Jan 2020, Accepted 03 May 2020, Published online: 11 Jun 2020

References

  • Abercrombie, E. D., Keefe, K. A., DiFrischia, D. S., & Zigmond, M. J. (1989). Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. Journal of Neurochemistry, 52(5), 1655–1658. https://doi.org/10.1111/j.1471-4159.1989.tb09224.x
  • Ahima, R. S., & Harlan, R. E. (1990). Charting of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system. Neuroscience, 39(3), 579–604. https://doi.org/10.1016/0306-4522(90)90244-X
  • Ahrens, A. M., Meyer, P. J., Ferguson, L. M., Robinson, T. E., & Aldridge, J. W. (2016). Neural activity in the ventral pallidum encodes variation in the incentive value of a reward cue. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(30), 7957–7970. https://doi.org/10.1523/Jneurosci.0736-16.2016
  • Akil, H. (2005). Stressed and depressed. Nature Medicine, 11(2), 116–118. https://doi.org/10.1038/nm0205-116
  • Ambroggi, F., Turiault, M., Milet, A., Deroche-Gamonet, V., Parnaudeau, S., Balado, E., Barik, J., van der Veen, R., Maroteaux, G., Lemberger, T., Schütz, G., Lazar, M., Marinelli, M., Piazza, P. V., & Tronche, F. (2009). Stress and addiction: Glucocorticoid receptor in dopaminoceptive neurons facilitates cocaine seeking. Nature Neuroscience, 12(3), 247–249. https://doi.org/10.1038/nn.2282
  • Ambrosio, E., Goldberg, S. R., & Elmer, G. I. (1995). Behavior genetic investigation of the relationship between spontaneous locomotor activity and the acquisition of morphine self-administration behavior. Behavioural Pharmacology, 6(3), 229–237.
  • Aouizerate, B., Guehl, D., Cuny, E., Rougier, A., Bioulac, B., Tignol, J., & Burbaud, P. (2004). Pathophysiology of obsessive-compulsive disorder: A necessary link between phenomenology, neuropsychology, imagery and physiology. Progress in Neurobiology, 72(3), 195–221. https://doi.org/10.1016/j.pneurobio.2004.02.004
  • Apergis-Schoute, A. M., Gillan, C. M., Fineberg, N. A., Fernandez-Egea, E., Sahakian, B. J., & Robbins, T. W. (2017). Neural basis of impaired safety signaling in Obsessive Compulsive Disorder. Proceedings of the National Academy of Sciences of the United States of America, 114(12), 3216–3221. https://doi.org/10.1073/pnas.1609194114
  • Atsak, P., Guenzel, F. M., Kantar-Gok, D., Zalachoras, I., Yargicoglu, P., Meijer, O. C., Quirarte, G. L., Wolf, O. T., Schwabe, L., & Roozendaal, B. (2016). Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory. Psychoneuroendocrinology, 67, 207–215. https://doi.org/10.1016/j.psyneuen.2016.02.006
  • Bale, T. L., Abel, T., Akil, H., Carlezon, W. A., Moghaddam, B., Nestler, E. J., Ressler, K. J., & Thompson, S. M. (2019). The critical importance of basic animal research for neuropsychiatric disorders. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 44(8), 1349–1353. https://doi.org/10.1038/s41386-019-0405-9
  • Barik, J., Parnaudeau, S., Saint Amaux, A. L., Guiard, B. P., Golib Dzib, J. F., Bocquet, O., Bailly, A., Benecke, A., & Tronche, F. (2010). Glucocorticoid receptors in dopaminoceptive neurons, key for cocaine, are dispensable for molecular and behavioral morphine responses. Biological Psychiatry, 68(3), 231–239. https://doi.org/10.1016/j.biopsych.2010.03.037
  • Belfort-DeAguiar, R., & Seo, D. (2018). Food cues and obesity: Overpowering hormones and energy balance regulation. Current Obesity Reports, 7(2), 122–129. https://doi.org/10.1007/s13679-018-0303-1
  • Bennett, M. C., Diamond, D. M., Fleshner, M., & Rose, G. M. (1991). Serum corticosterone level predicts the magnitude of hippocampal primed burst potentiation and depression in urethane-anesthetized rats. Psychobiology, 19(4), 301–307.
  • Berridge, K. C., Ho, C. Y., Richard, J. M., & DiFeliceantonio, A. G. (2010). The tempted brain eats: Pleasure and desire circuits in obesity and eating disorders. Brain Research, 1350, 43–64. https://doi.org/10.1016/j.brainres.2010.04.003
  • Berridge, K. C., & Robinson, T. E. (2016). Liking, wanting, and the incentive-sensitization theory of addiction. The American psychologist, 71(8), 670–679. https://doi.org/10.1037/amp0000059
  • Beylin, A. V., & Shors, T. J. (2003). Glucocorticoids are necessary for enhancing the acquisition of associative memories after acute stressful experience. Hormones and Behavior, 43(1), 124–131. https://doi.org/10.1016/S0018-506X(02)00025-9
  • Bodnoff, S. R., Humphreys, A. G., Lehman, J. C., Diamond, D. M., Rose, G. M., & Meaney, M. J. (1995). Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged rats. The Journal of Neuroscience, 15(1), 61–69. https://doi.org/10.1523/JNEUROSCI.15-01-00061.1995
  • Brunton, P. J., & Russell, J. A. (2010). Prenatal social stress in the rat programmes neuroendocrine and behavioural responses to stress in the adult offspring: Sex-specific effects. Journal of Neuroendocrinology, 22(4), 258–271. https://doi.org/10.1111/j.1365-2826.2010.01969.x
  • Busada, J. T., & Cidlowski, J. A. (2017). Mechanisms of glucocorticoid action during development. Current Topics in Developmental Biology, 125, 147–170. https://doi.org/10.1016/bs.ctdb.2016.12.004
  • Cador, M., Dulluc, J., & Mormede, P. (1993). Modulation of the locomotor response to amphetamine by corticosterone. Neuroscience, 56(4), 981–988. https://doi.org/10.1016/0306-4522(93)90144-5
  • Caesar, P. M., Collins, G. G., & Sandler, M. (1970). Catecholamine metabolism and monoamine oxidase activity in adrenalectomized rats. Biochem Pharmacol, 19(3), 921–926. https://doi.org/10.1016/0006-2952(70)90255-8
  • Cain, D. W., & Cidlowski, J. A. (2017). Immune regulation by glucocorticoids. Nature Reviews. Immunology, 17(4), 233–247. https://doi.org/10.1038/nri.2017.1
  • Campus, P., Covelo, I. R., Kim, Y., Parsegian, A., Kuhn, B. N., Lopez, S. A., Neumaier, J. F., Ferguson, S. M., Solberg Woods, L. C., Sarter, M., & Flagel, S. B. (2019). The paraventricular thalamus is a critical mediator of top-down control of cue-motivated behavior in rats. eLife, 8, e49041. https://doi.org/10.7554/eLife.49041
  • Chao, H. M., Choo, P. H., & McEwen, B. S. (1989). Glucocorticoid and mineralocorticoid receptor mRNA expression in rat brain. Neuroendocrinology, 50(4), 365–371. https://doi.org/10.1159/000125250
  • Chen, Y., & Baram, T. Z. (2016). Toward understanding how early-life stress reprograms cognitive and emotional brain networks. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 41(1), 197–206. https://doi.org/10.1038/npp.2015.181
  • Conrad, C. D., Lupien, S. J., & McEwen, B. S. (1999). Support for a bimodal role for type II adrenal steroid receptors in spatial memory. Neurobiology of Learning and Memory, 72(1), 39–46. https://doi.org/10.1006/nlme.1998.3898
  • Daftary, S. S., Panksepp, J., Dong, Y., & Saal, D. B. (2009). Stress-induced, glucocorticoid-dependent strengthening of glutamatergic synaptic transmission in midbrain dopamine neurons. Neuroscience Letters, 452(3), 273–276. https://doi.org/10.1016/j.neulet.2009.01.070
  • Dallman, M. F., & Jones, M. T. (1973). Corticosteroid feedback control of ACTH secretion: Effect of stress-induced corticosterone ssecretion on subsequent stress responses in the rat. Endocrinology, 92(5), 1367–1375. https://doi.org/10.1210/endo-92-5-1367
  • De Bosscher, K., & Haegeman, G. (2009). Minireview: Latest perspectives on antiinflammatory actions of glucocorticoids. Molecular Endocrinology (Baltimore, Md.), 23(3), 281–291. https://doi.org/10.1210/me.2008-0283
  • De Kloet, E. R., Karst, H., & Joels, M. (2008). Corticosteroid hormones in the central stress response: Quick-and-slow. Frontiers in neuroendocrinology, 29(2), 268–272. https://doi.org/10.1016/j.yfrne.2007.10.002
  • De Kloet, E. R., Oitzl, M. S., & Joels, M. (1999). Stress and cognition: Are corticosteroids good or bad guys? Trends in Neurosciences, 22(10), 422–426. https://doi.org/10.1016/s0166-2236(99)01438-1
  • De Kloet, E. R., & Reul, J. M. (1987). Feedback action and tonic influence of corticosteroids on brain function: A concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology, 12(2), 83–105. https://doi.org/10.1016/0306-4530(87)90040-0
  • De Kloet, E. R., Rosenfeld, P., Van Eekelen, J. A., Sutanto, W., & Levine, S. (1988). Stress, glucocorticoids and development. Progress in Brain Research, 73, 101–120. https://doi.org/10.1016/S0079-6123(08)60500-2
  • De Kloet, E. R., Van Acker, S. A., Sibug, R. M., Oitzl, M. S., Meijer, O. C., Rahmouni, K., & de Jong, W. (2000). Brain mineralocorticoid receptors and centrally regulated functions. Kidney International, 57(4), 1329–1336. https://doi.org/10.1046/j.1523-1755.2000.00971.x
  • Deroche, V., Marinelli, M., Le Moal, M., & Piazza, P. V. (1997). Glucocorticoids and behavioral effects of psychostimulants. II: Cocaine intravenous self-administration and reinstatement depend on glucocorticoid levels. The Journal of Pharmacology and Experimental Therapeutics, 281(3), 1401–1407.
  • Deroche, V., Piazza, P. V., Deminiere, J. M., Le Moal, M., & Simon, H. (1993). Rats orally self-administer corticosterone. Brain research, 622(1–2), 315–320. https://doi.org/10.1016/0006-8993(93)90837-D
  • Diamond, D. M., Bennett, M. C., Fleshner, M., & Rose, G. M. (1992). Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus, 2(4), 421–430. https://doi.org/10.1002/hipo.450020409
  • DiFeliceantonio, A. G., & Berridge, K. C. (2016). Dorsolateral neostriatum contribution to incentive salience: Opioid or dopamine stimulation makes one reward cue more motivationally attractive than another. The European journal of neuroscience, 43(9), 1203–1218. https://doi.org/10.1111/ejn.13220
  • Dubrovsky, B. O., Liquornik, M. S., Noble, P., & Gijsbers, K. (1987). Effects of 5 alpha-dihydrocorticosterone on evoked responses and long-term potentiation. Brain Research Bulletin, 19(6), 635–638. https://doi.org/10.1016/0361-9230(87)90049-9
  • Evans, R. M., & Arriza, J. L. (1989). A molecular framework for the actions of glucocorticoid hormones in the nervous system. Neuron, 2(2), 1105–1112. https://doi.org/10.1016/0896-6273(89)90177-3
  • Fanselow, M. S. (1980). Conditioned and unconditional components of post-shock freezing. The Pavlovian Journal of Biological Science, 15(4), 177–182. https://doi.org/10.1007/bf03001163
  • Fitzpatrick, C. J., Creeden, J. F., Perrine, S. A., & Morrow, J. D. (2016). Lesions of the ventral hippocampus attenuate the acquisition but not expression of sign-tracking behavior in rats. Hippocampus, 26(11), 1424–1434. https://doi.org/10.1002/hipo.22619
  • Fitzpatrick, C. J., Jagannathan, L., Lowenstein, E. D., Robinson, T. E., Becker, J. B., & Morrow, J. D. (2019). Single prolonged stress decreases sign-tracking and cue-induced reinstatement of cocaine-seeking. Behavioural Brain Research, 359, 799–806. https://doi.org/10.1016/j.bbr.2018.07.026
  • Flagel, S. B., Akil, H., & Robinson, T. E. (2009). Individual differences in the attribution of incentive salience to reward-related cues: Implications for addiction. Neuropharmacology, 56(Suppl 1), 139–148. https://doi.org/10.1016/j.neuropharm.2008.06.027
  • Flagel, S. B., Cameron, C. M., Pickup, K. N., Watson, S. J., Akil, H., & Robinson, T. E. (2011). A food predictive cue must be attributed with incentive salience for it to induce c-fos mRNA expression in cortico-striatal-thalamic brain regions. Neuroscience, 196, 80–96. https://doi.org/10.1016/j.neuroscience.2011.09.004
  • Flagel, S. B., Clark, J. J., Robinson, T. E., Mayo, L., Czuj, A., Willuhn, I., Akers, C. A., Clinton, S. M., Phillips, P. E. M., & Akil, H. (2011). A selective role for dopamine in stimulus-reward learning. Nature, 469(7328), 53–57. https://doi.org/10.1038/nature09588
  • Flagel, S. B., & Robinson, T. E. (2017). Neurobiological basis of individual variation in stimulus-reward learning. Current Opinion in Behavioral Sciences, 13, 178–185. https://doi.org/10.1016/j.cobeha.2016.12.004
  • Flagel, S. B., Watson, S. J., Akil, H., & Robinson, T. E. (2008). Individual differences in the attribution of incentive salience to a reward-related cue: Influence on cocaine sensitization. Behavioural Brain Research, 186(1), 48–56. https://doi.org/10.1016/j.bbr.2007.07.022
  • Fuxe, K., Härfstrand, A., Agnati, L. F., Yu, Z. Y., Cintra, A., Wikström, A. C., Okret, S., Cantoni, E., & Gustafsson, J. A. (1985). Immunocytochemical studies on the localization of glucocorticoid receptor immunoreactive nerve cells in the lower brain stem and spinal cord of the male rat using a monoclonal antibody against rat liver glucocorticoid receptor. Neuroscience Letters, 60(1), 1–6. https://doi.org/10.1016/0304-3940(85)90372-6
  • Fuxe, K., Wikström, A. C., Okret, S., Agnati, L. F., Härfstrand, A., Yu, Z. Y., Granholm, L., Zoli, M., Vale, W., & Gustafsson, J. A. (1985). Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel- and diencephalon using a monoclonal antibody against rat liver glucocorticoid receptor. Endocrinology, 117(5), 1803–1812. https://doi.org/10.1210/endo-117-5-1803
  • Gilad, G. M., Rabey, J. M., & Gilad, V. H. (1987). Presynaptic effects of glucocorticoids on dopaminergic and cholinergic synaptosomes. Implications for rapid endocrine-neural interactions in stress. Life sciences, 40(25), 2401–2408. https://doi.org/10.1016/0024-3205(87)90754-5
  • Gjerstad, J. K., Lightman, S. L., & Spiga, F. (2018). Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress (Amsterdam, Netherlands), 21(5), 403–416. https://doi.org/10.1080/10253890.2018.1470238
  • Graf, E. N., Wheeler, R. A., Baker, D. A., Ebben, A. L., Hill, J. E., McReynolds, J. R., Robble, M. A., Vranjkovic, O., Wheeler, D. S., Mantsch, J. R., & Gasser, P. J. (2013). Corticosterone acts in the nucleus accumbens to enhance dopamine signaling and potentiate reinstatement of cocaine seeking. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(29), 11800–11810. https://doi.org/10.1523/JNEUROSCI.1969-13.2013
  • Groeneweg, F. L., Karst, H., de Kloet, E. R., & Joels, M. (2011). Rapid non-genomic effects of corticosteroids and their role in the central stress response. The Journal of Endocrinology, 209(2), 153–167. https://doi.org/10.1530/JOE-10-0472
  • Guenzel, F. M., Wolf, O. T., & Schwabe, L. (2014). Glucocorticoids boost stimulus-response memory formation in humans. Psychoneuroendocrinology, 45, 21–30. https://doi.org/10.1016/j.psyneuen.2014.02.015
  • Haight, J. L., Fuller, Z. L., Fraser, K. M., & Flagel, S. B. (2017). A food-predictive cue attributed with incentive salience engages subcortical afferents and efferents of the paraventricular nucleus of the thalamus. Neuroscience, 340, 135–152. https://doi.org/10.1016/j.neuroscience.2016.10.043
  • Hall, F. S., Wilkinson, L. S., Humby, T., Inglis, W., Kendall, D. A., Marsden, C. A., & Robbins, T. W. (1998). Isolation rearing in rats: Pre- and postsynaptic changes in striatal dopaminergic systems. Pharmacology, Biochemistry, and Behavior, 59(4), 859–872. https://doi.org/10.1016/S0091-3057(97)00510-8
  • Hellberg, S. N., Russell, T. I., & Robinson, M. J. F. (2019). Cued for risk: Evidence for an incentive sensitization framework to explain the interplay between stress and anxiety, substance abuse, and reward uncertainty in disordered gambling behavior. Cognitive, affective & behavioral neuroscience, 19(3), 737–758. https://doi.org/10.3758/s13415-018-00662-3
  • Henry, J. P. (1992). Biological basis of the stress response. Integrative Physiological and Behavioral Science: The Official Journal of the Pavlovian Society, 27(1), 66–83. https://doi.org/10.1007/bf02691093
  • Henry, C., Kabbaj, M., Simon, H., Le Moal, M., & Maccari, S. (1994). Prenatal stress increases the hypothalamo-pituitary-adrenal axis response in young and adult rats. Journal of Neuroendocrinology, 6(3), 341–345. https://doi.org/10.1111/j.1365-2826.1994.tb00591.x
  • Hensleigh, E., & Pritchard, L. M. (2013). Glucocorticoid receptor expression and sub-cellular localization in dopamine neurons of the rat midbrain. Neuroscience Letters, 556, 191–195. https://doi.org/10.1016/j.neulet.2013.09.067
  • Herman, J. P., & Cullinan, W. E. (1997). Neurocircuitry of stress: Central control of the hypothalamo-pituitary-adrenocortical axis. Trends in Neurosciences, 20(2), 78–84. https://doi.org/10.1016/S0166-2236(96)10069-2
  • Herman, J. P., Figueiredo, H., Mueller, N. K., Ulrich-Lai, Y., Ostrander, M. M., Choi, D. C., & Cullinan, W. E. (2003). Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Frontiers in Neuroendocrinology, 24(3), 151–180. https://doi.org/10.1016/j.yfrne.2003.07.001
  • Herman, J. P., McKlveen, J. M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., Scheimann, J., & Myers, B. (2016). Regulation of the hypothalamic-pituitary-adrenocortical stress response. Comprehensive Physiology, 6(2), 603–621. https://doi.org/10.1002/cphy.c150015
  • Herman, J. P., McKlveen, J. M., Solomon, M. B., Carvalho-Netto, E., & Myers, B. (2012). Neural regulation of the stress response: Glucocorticoid feedback mechanisms. Brazilian Journal of Medical and Biological Research = Revista brasileira de pesquisas medicas e biologicas, 45(4), 292–298. https://doi.org/10.1590/s0100-879x2012007500041
  • Herman, J. P., & Mueller, N. K. (2006). Role of the ventral subiculum in stress integration. Behavioural Brain Research, 174(2), 215–224. https://doi.org/10.1016/j.bbr.2006.05.035
  • Herman, J. P., Patel, P. D., Akil, H., & Watson, S. J. (1989). Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. Molecular Endocrinology (Baltimore, Md.), 3(11), 1886–1894. https://doi.org/10.1210/mend-3-11-1886
  • Howes, O. D., & Nour, M. M. (2016). Dopamine and the aberrant salience hypothesis of schizophrenia. World Psychiatry: Official Journal of the World Psychiatric Association (WPA), 15(1), 3–4. https://doi.org/10.1002/wps.20276
  • Hueston, C. M., Barnum, C. J., Eberle, J. A., Ferraioli, F. J., Buck, H. M., & Deak, T. (2011). Stress-dependent changes in neuroinflammatory markers observed after common laboratory stressors are not seen following acute social defeat of the Sprague Dawley rat. Physiology & Behavior, 104(2), 187–198. https://doi.org/10.1016/j.physbeh.2011.03.013
  • Hynes, T. J., Thomas, C. S., Zumbusch, A. S., Samson, A., Petriman, I., Mrdja, U., Orr, A., Cutts, E., Ruzindana, B. G., Hazari, A., Zjadewicz, M., & Lovic, V. (2018). Early life adversity potentiates expression of addiction-related traits. Progress in Neuro-psychopharmacology & Biological Psychiatry, 87(Pt A), 56–67. https://doi.org/10.1016/j.pnpbp.2017.09.005
  • Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: Variability and change with practice. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(13), 5945–5952. https://doi.org/10.1523/JNEUROSCI.23-13-05945.2003
  • Imperato, A., Puglisi-Allegra, S., Casolini, P., Zocchi, A., & Angelucci, L. (1989). Stress-induced enhancement of dopamine and acetylcholine release in limbic structures: Role of corticosterone. European Journal of Pharmacology, 165(2-3), 337–338. https://doi.org/10.1016/0014-2999(89)90735-8
  • Jacobson, L., & Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocrine Reviews, 12(2), 118–134. https://doi.org/10.1210/edrv-12-2-118
  • Jaferi, A., & Bhatnagar, S. (2006). Corticosterone can act at the posterior paraventricular thalamus to inhibit hypothalamic-pituitary-adrenal activity in animals that habituate to repeated stress. Endocrinology, 147(10), 4917–4930. https://doi.org/10.1210/en.2005-1393
  • Kabbaj, M., Devine, D. P., Savage, V. R., & Akil, H. (2000). Neurobiological correlates of individual differences in novelty-seeking behavior in the rat: Differential expression of stress-related molecules. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(18), 6983–6988. https://doi.org/10.1523/JNEUROSCI.20-18-06983.2000
  • Kalivas, P. W., & Duffy, P. (1995). Selective activation of dopamine transmission in the shell of the nucleus accumbens by stress. Brain Research, 675(1-2), 325–328. https://doi.org/10.1016/0006-8993(95)00013-G
  • Kalivas, P. W., & Volkow, N. D. (2005). The neural basis of addiction: A pathology of motivation and choice. The American Journal of Psychiatry, 162(8), 1403–1413. https://doi.org/10.1176/appi.ajp.162.8.1403
  • Kalsbeek, A., van der Spek, R., Lei, J., Endert, E., Buijs, R. M., & Fliers, E. (2012). Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Molecular and Cellular Endocrinology, 349(1), 20–29. https://doi.org/10.1016/j.mce.2011.06.042
  • Kapur, S. (2003). Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia. The American Journal of Psychiatry, 160(1), 13–23. https://doi.org/10.1176/appi.ajp.160.1.13
  • Kelley, A. E., Baldo, B. A., Pratt, W. E., & Will, M. J. (2005). Corticostriatal-hypothalamic circuitry and food motivation: Integration of energy, action and reward. Physiology & Behavior, 86(5), 773–795. https://doi.org/10.1016/j.physbeh.2005.08.066
  • Kim, J. J., & Jung, M. W. (2006). Neural circuits and mechanisms involved in Pavlovian fear conditioning: A critical review. Neuroscience and Biobehavioral Reviews, 30(2), 188–202. https://doi.org/10.1016/j.neubiorev.2005.06.005
  • Kuhn, B. N., Campus, P., & Flagel, S. B. (2018). Chapter 3: The neurobiological mechanisms underlying sign-tracking behavior. In T. Arthur, & J. Morrow (Ed.), Sign-tracking and drug addiction. Michigan Publishing, University of Michigan Library.
  • Ladd, C. O., Huot, R. L., Thrivikraman, K. V., Nemeroff, C. B., & Plotsky, P. M. (2004). Long-term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA and negative feedback on the hypothalamo-pituitary-adrenal axis following neonatal maternal separation. Biological Psychiatry, 55(4), 367–375. https://doi.org/10.1016/j.biopsych.2003.10.007
  • Leal, A. M., & Moreira, A. C. (1997). Food and the circadian activity of the hypothalamic-pituitary-adrenal axis. Brazilian Journal of Medical and Biological Research = Revista brasileira de pesquisas medicas e biologicas, 30(12), 1391–1405. https://doi.org/10.1590/s0100-879x1997001200003
  • Lesuis, S. L., Catsburg, L. A. E., Lucassen, P. J., & Krugers, H. J. (2018). Effects of corticosterone on mild auditory fear conditioning and extinction; role of sex and training paradigm. Learning & Memory (Cold Spring Harbor, N.Y.), 25(10), 544–549. https://doi.org/10.1101/lm.047811.118
  • Lightman, S. L., & Conway-Campbell, B. L. (2010). The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nature Reviews. Neuroscience, 11(10), 710–718. https://doi.org/10.1038/nrn2914
  • Lomanowska, A. M., Lovic, V., Rankine, M. J., Mooney, S. J., Robinson, T. E., & Kraemer, G. W. (2011). Inadequate early social experience increases the incentive salience of reward-related cues in adulthood. Behavioural Brain Research, 220(1), 91–99. https://doi.org/10.1016/j.bbr.2011.01.033
  • Lovic, V., Saunders, B. T., Yager, L. M., & Robinson, T. E. (2011). Rats prone to attribute incentive salience to reward cues are also prone to impulsive action. Behavioural Brain Research, 223(2), 255–261. https://doi.org/10.1016/j.bbr.2011.04.006
  • Lupien, S. J., & McEwen, B. S. (1997). The acute effects of corticosteroids on cognition: Integration of animal and human model studies. Brain Research. Brain Research Reviews, 24(1), 1–27. https://doi.org/10.1016/S0165-0173(97)00004-0
  • Madan, A. P., & DeFranco, D. B. (1993). Bidirectional transport of glucocorticoid receptors across the nuclear envelope. Proceedings of the National Academy of Sciences of the United States of America, 90(8), 3588–3592. https://doi.org/10.1073/pnas.90.8.3588
  • Marchand, A. R., Barbelivien, A., Seillier, A., Herbeaux, K., Sarrieau, A., & Majchrzak, M. (2007). Contribution of corticosterone to cued versus contextual fear in rats. Behavioural Brain Research, 183(1), 101–110. https://doi.org/10.1016/j.bbr.2007.05.034
  • Marinelli, M., Rouge-Pont, F., De Jesus-Oliveira, C., Le Moal, M., & Piazza, P. V. (1997). Acute blockade of corticosterone secretion decreases the psychomotor stimulant effects of cocaine. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 16(2), 156–161. https://doi.org/10.1016/S0893-133X(96)00169-8
  • Marinelli, M., Rouge-Pont, F., Deroche, V., Barrot, M., De Jesus-Oliveira, C., Le Moal, M., & Piazza, P. V. (1997). Glucocorticoids and behavioral effects of psychostimulants. I: Locomotor response to cocaine depends on basal levels of glucocorticoids. The Journal of Pharmacology and Experimental Therapeutics, 281(3), 1392–1400.
  • Marinelli, M., & White, F. J. (2000). Enhanced vulnerability to cocaine self-administration is associated with elevated impulse activity of midbrain dopamine neurons. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 20(23), 8876–8885. https://doi.org/10.1523/JNEUROSCI.20-23-08876.2000
  • Marques, A. H., Silverman, M. N., & Sternberg, E. M. (2009). Glucocorticoid dysregulations and their clinical correlates. From receptors to therapeutics. Annals of the New York Academy of Sciences, 1179, 1–18. https://doi.org/10.1111/j.1749-6632.2009.04987.x
  • McEwen, B. S., & Akil, H. (2020). Revisiting the stress concept: Implications for affective disorders. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 40(1), 12–21. https://doi.org/10.1523/JNEUROSCI.0733-19.2019
  • McEwen, B. S., & Sapolsky, R. M. (1995). Stress and cognitive function. Current Opinion in Neurobiology, 5(2), 205–216. https://doi.org/10.1016/0959-4388(95)80028-X
  • McEwen, B. S., Weiss, J. M., & Schwartz, L. S. (1968). Selective retention of corticosterone by limbic structures in rat brain. Nature, 220(5170), 911–912. https://doi.org/10.1038/220911a0
  • Meaney, M. J., Brake, W., & Gratton, A. (2002). Environmental regulation of the development of mesolimbic dopamine systems: A neurobiological mechanism for vulnerability to drug abuse? Psychoneuroendocrinology, 27(1-2), 127–138. https://doi.org/10.1016/S0306-4530(01)00040-3
  • Moisan, M. P., Minni, A. M., Dominguez, G., Helbling, J. C., Foury, A., Henkous, N., Dorey, R., & Béracochéa, D. (2014). Role of corticosteroid binding globulin in the fast actions of glucocorticoids on the brain. Steroids, 81, 109–115. https://doi.org/10.1016/j.steroids.2013.10.013
  • Morris, R. G., Schenk, F., Tweedie, F., & Jarrard, L. E. (1990). Ibotenate lesions of hippocampus and/or subiculum: Dissociating components of allocentric spatial learning. The European Journal of Neuroscience, 2(12), 1016–1028. https://doi.org/10.1111/j.1460-9568.1990.tb00014.x
  • Morrow, J. D., Maren, S., & Robinson, T. E. (2011). Individual variation in the propensity to attribute incentive salience to an appetitive cue predicts the propensity to attribute motivational salience to an aversive cue. Behavioural Brain Research, 220(1), 238–243. https://doi.org/10.1016/j.bbr.2011.02.013
  • Morrow, J. D., Saunders, B. T., Maren, S., & Robinson, T. E. (2015). Sign-tracking to an appetitive cue predicts incubation of conditioned fear in rats. Behavioural Brain Research, 276, 59–66. https://doi.org/10.1016/j.bbr.2014.04.002
  • Muck-Seler, D., Pivac, N., Jakovljevic, M., & Brzovic, Z. (1999). Platelet serotonin, plasma cortisol, and dexamethasone suppression test in schizophrenic patients. Biological Psychiatry, 45(11), 1433–1439. https://doi.org/10.1016/S0006-3223(98)00174-7
  • Mukhara, D., Banks, M. L., & Neigh, G. N. (2018). Stress as a risk factor for substance use disorders: A mini-review of molecular mediators. Frontiers in Behavioral Neuroscience, 12, 309. https://doi.org/10.3389/fnbeh.2018.00309
  • Myers, B., McKlveen, J. M., & Herman, J. P. (2014). Glucocorticoid actions on synapses, circuits, and behavior: Implications for the energetics of stress. Frontiers in Neuroendocrinology, 35(2), 180–196. https://doi.org/10.1016/j.yfrne.2013.12.003
  • Nadal, R., Armario, A., & Janak, P. H. (2002). Positive relationship between activity in a novel environment and operant ethanol self-administration in rats. Psychopharmacology, 162(3), 333–338. https://doi.org/10.1007/s00213-002-1091-5
  • Oitzl, M. S., & de Kloet, E. R. (1992). Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning. Behavioral Neuroscience, 106(1), 62–71. https://doi.org/10.1037//0735-7044.106.1.62
  • Oitzl, M. S., Fluttert, M., Sutanto, W., & de Kloet, E. R. (1998). Continuous blockade of brain glucocorticoid receptors facilitates spatial learning and memory in rats. The European Journal of Neuroscience, 10(12), 3759–3766. https://doi.org/10.1046/j.1460-9568.1998.00381.x
  • Ortiz, J., DeCaprio, J. L., Kosten, T. A., & Nestler, E. J. (1995). Strain-selective effects of corticosterone on locomotor sensitization to cocaine and on levels of tyrosine hydroxylase and glucocorticoid receptor in the ventral tegmental area. Neuroscience, 67(2), 383–397. https://doi.org/10.1016/0306-4522(95)00018-E
  • Packard, M. G., & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65(1), 65–72. https://doi.org/10.1006/nlme.1996.0007
  • Packard, M. G., & Wingard, J. C. (2004). Amygdala and “emotional” modulation of the relative use of multiple memory systems. Neurobiology of Learning and Memory, 82(3), 243–252. https://doi.org/10.1016/j.nlm.2004.06.008
  • Palamarchouk, V., Smagin, G., & Goeders, N. E. (2009). Self-administered and passive cocaine infusions produce different effects on corticosterone concentrations in the medial prefrontal cortex (MPC) of rats. Pharmacology, Biochemistry, and Behavior, 94(1), 163–168. https://doi.org/10.1016/j.pbb.2009.08.003
  • Paolone, G., Angelakos, C. C., Meyer, P. J., Robinson, T. E., & Sarter, M. (2013). Cholinergic control over attention in rats prone to attribute incentive salience to reward cues. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(19), 8321–8335. https://doi.org/10.1523/JNEUROSCI.0709-13.2013
  • Parnaudeau, S., Dongelmans, M.-L., Turiault, M., Ambroggi, F., Delbes, A.-S., Cansell, C., Luquet, S., Piazza, P.-V., Tronche, F., & Barik, J. (2014). Glucocorticoid receptor gene inactivation in dopamine-innervated areas selectively decreases behavioral responses to amphetamine. Frontiers in Behavioral Neuroscience, 8, 35. https://doi.org/10.3389/fnbeh.2014.00035
  • Pavlides, C., Watanabe, Y., Magarinos, A. M., & McEwen, B. S. (1995). Opposing roles of type I and type II adrenal steroid receptors in hippocampal long-term potentiation. Neuroscience, 68(2), 387–394. https://doi.org/10.1016/0306-4522(95)00151-8
  • Pavlides, C., Watanabe, Y., & McEwen, B. S. (1993). Effects of glucocorticoids on hippocampal long-term potentiation. Hippocampus, 3(2), 183–192. https://doi.org/10.1002/hipo.450030210
  • Piazza, P. V., Deminiere, J. M., Le Moal, M., & Simon, H. (1989). Factors that predict individual vulnerability to amphetamine self-administration. Science (New York, N.Y.), 245(4925), 1511–1513. https://doi.org/10.1126/science.2781295
  • Piazza, P. V., Deminiere, J. M., Maccari, S., Mormede, P., Le Moal, M., & Simon, H. (1990). Individual reactivity to novelty predicts probability of amphetamine self-administration. Behavioural Pharmacology, 1(4), 339–345. https://doi.org/10.1097/00008877-199000140-00007
  • Piazza, P. V., Deroche, V., Deminiere, J. M., Maccari, S., Le Moal, M., & Simon, H. (1993). Corticosterone in the range of stress-induced levels possesses reinforcing properties: Implications for sensation-seeking behaviors. Proceedings of the National Academy of Sciences of the United States of America, 90(24), 11738–11742. https://doi.org/10.1073/pnas.90.24.11738
  • Piazza, P. V., Deroche-Gamonent, V., Rouge-Pont, F., & Le Moal, M. (2000). Vertical shifts in self-administration dose-response functions predict a drug-vulnerable phenotype predisposed to addiction. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(11), 4226–4232. https://doi.org/10.1523/JNEUROSCI.20-11-04226.2000
  • Piazza, P. V., & Le Moal, M. (1997). Glucocorticoids as a biological substrate of reward: physiological pathophysiological implications. Brain Research. Brain Research Reviews, 25(3), 359–372. https://doi.org/10.1016/S0165-0173(97)00025-8
  • Piazza, P. V., & Le Moal, M. (1998). The role of stress in drug self-administration. Trends in Pharmacological Sciences, 19(2), 67–74. https://doi.org/10.1016/S0165-6147(97)01115-2
  • Piazza, P. V., & Le Moal, M. L. (1996). Pathophysiological basis of vulnerability to drug abuse: Role of an interaction between stress, glucocorticoids, and dopaminergic neurons. Annual Review of Pharmacology and Toxicology, 36, 359–378. https://doi.org/10.1146/annurev.pa.36.040196.002043
  • Piazza, P. V., Maccari, S., Deminiere, J. M., Le Moal, M., Mormede, P., & Simon, H. (1991). Corticosterone levels determine individual vulnerability to amphetamine self-administration. Proceedings of the National Academy of Sciences of the United States of America, 88(6), 2088–2092. https://doi.org/10.1073/pnas.88.6.2088
  • Piazza, P. V., Rouge-Pont, F., Deminiere, J. M., Kharoubi, M., Le Moal, M., & Simon, H. (1991). Dopaminergic activity is reduced in the prefrontal cortex and increased in the nucleus accumbens of rats predisposed to develop amphetamine self-administration. Brain Research, 567(1), 169–174. https://doi.org/10.1016/0006-8993(91)91452-7
  • Piazza, P. V., Rouge-Pont, F., Deroche, V., Maccari, S., Simon, H., & Le Moal, M. (1996). Glucocorticoids have state-dependent stimulant effects on the mesencephalic dopaminergic transmission. Proceedings of the National Academy of Sciences of the United States of America, 93(16), 8716–8720. https://doi.org/10.1073/pnas.93.16.8716
  • Polter, A. M., & Kauer, J. A. (2014). Stress and VTA synapses: Implications for addiction and depression. The European Journal of Neuroscience, 39(7), 1179–1188. https://doi.org/10.1111/ejn.12490
  • Puglisi-Allegra, S., Imperato, A., Angelucci, L., & Cabib, S. (1991). Acute stress induces time-dependent responses in dopamine mesolimbic system. Brain Research, 554(1-2), 217–222. https://doi.org/10.1016/0006-8993(91)90192-X
  • Qian, X., Droste, S. K., Lightman, S. L., Reul, J. M., & Linthorst, A. C. (2012). Circadian and ultradian rhythms of free glucocorticoid hormone are highly synchronized between the blood, the subcutaneous tissue, and the brain. Endocrinology, 153(9), 4346–4353. https://doi.org/10.1210/en.2012-1484
  • Rescorla, R. A. (1988). Pavlovian conditioning: It’s not what you think it is. American Psychological Association, 43(3), 151–160. https://doi.org/10.1037/0003-066X.43.3.151
  • Reul, J. M., & de Kloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology, 117(6), 2505–2511. https://doi.org/10.1210/endo-117-6-2505
  • Reul, J. M., van den Bosch, F. R., & de Kloet, E. R. (1987a). Differential response of type I and type II corticosteroid receptors to changes in plasma steroid level and circadian rhythmicity. Neuroendocrinology, 45(5), 407–412. https://doi.org/10.1159/000124766
  • Reul, J. M., van den Bosch, F. R., & de Kloet, E. R. (1987b). Relative occupation of type-I and type-II corticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications. The Journal of Endocrinology, 115(3), 459–467. https://doi.org/10.1677/joe.0.1150459
  • Rice, B. A., Eaton, S. E., Prendergast, M. A., & Akins, C. K. (2018). A glucocorticoid receptor antagonist reduces sign-tracking behavior in male Japanese quail. Experimental and Clinical Psychopharmacology, 26(4), 329–334. https://doi.org/10.1037/pha0000195
  • Rice, B. A., Saunders, M. A., Jagielo-Miller, J. E., Prendergast, M. A., & Akins, C. K. (2019). Repeated subcutaneous administration of PT150 has dose-dependent effects on sign tracking in male Japanese quail. Experimental and Clinical Psychopharmacology, 27(6), 515–521. https://doi.org/10.1037/pha0000275
  • Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research. Brain Research Reviews, 18(3), 247–291. https://doi.org/10.1016/0165-0173(93)90013-P
  • Robinson, T. E., & Flagel, S. B. (2009). Dissociating the predictive and incentive motivational properties of reward-related cues through the study of individual differences. Biological Psychiatry, 65(10), 869–873. https://doi.org/10.1016/j.biopsych.2008.09.006
  • Roozendaal, B. (2000). 1999 Curt P. Richter award. Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology, 25(3), 213–238. https://doi.org/10.1016/S0306-4530(99)00058-X
  • Rose, A. J., Vegiopoulos, A., & Herzig, S. (2010). Role of glucocorticoids and the glucocorticoid receptor in metabolism: Insights from genetic manipulations. The Journal of Steroid Biochemistry and Molecular Biology, 122(1-3), 10–20. https://doi.org/10.1016/j.jsbmb.2010.02.010
  • Rouge-Pont, F., Deroche, V., Le Moal, M., & Piazza, P. V. (1998). Individual differences in stress-induced dopamine release in the nucleus accumbens are influenced by corticosterone. The European Journal of Neuroscience, 10(12), 3903–3907. https://doi.org/10.1046/j.1460-9568.1998.00438.x
  • Saal, D., Dong, Y., Bonci, A., & Malenka, R. C. (2003). Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron, 37(4), 577–582. https://doi.org/10.1016/S0896-6273(03)00021-7
  • Sandi, C. (2013). Stress and cognition. Wiley Interdisciplinary Reviews. Cognitive Science, 4(3), 245–261. https://doi.org/10.1002/wcs.1222
  • Sandi, C., Loscertales, M., & Guaza, C. (1997). Experience-dependent facilitating effect of corticosterone on spatial memory formation in the water maze. The European Journal of Neuroscience, 9(4), 637–642. https://doi.org/10.1111/j.1460-9568.1997.tb01412.x
  • Sandi, C., & Pinelo-Nava, M. T. (2007). Stress and memory: Behavioral effects and neurobiological mechanisms. Neural Plasticity, 2007, 78970. https://doi.org/10.1155/2007/78970
  • Sarabdjitsingh, R. A., Isenia, S., Polman, A., Mijalkovic, J., Lachize, S., Datson, N., de Kloet, E. R., & Meijer, O. C. (2010). Disrupted corticosterone pulsatile patterns attenuate responsiveness to glucocorticoid signaling in rat brain. Endocrinology, 151(3), 1177–1186. https://doi.org/10.1210/en.2009-1119
  • Sarnyai, Z., McKittrick, C. R., McEwen, B. S., & Kreek, M. J. (1998). Selective regulation of dopamine transporter binding in the shell of the nucleus accumbens by adrenalectomy and corticosterone-replacement. Synapse, 30(3), 334–337. https://doi.org/10.1002/(SICI)1098-2396(199811)30:3 < 334::AID-SYN11 > 3.0.CO;2-#
  • Sarter, M., & Phillips, K. B. (2018). The neuroscience of cognitive-motivational styles: Sign- and goal-trackers as animal models. Behavioral Neuroscience, 132(1), 1–12. https://doi.org/10.1037/bne0000226
  • Saunders, B. T., & Robinson, T. E. (2010). A cocaine cue acts as an incentive stimulus in some but not others: Implications for addiction. Biological Psychiatry, 67(8), 730–736. https://doi.org/10.1016/j.biopsych.2009.11.015
  • Saunders, B. T., & Robinson, T. E. (2011). Individual variation in the motivational properties of cocaine. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 36(8), 1668–1676. https://doi.org/10.1038/npp.2011.48
  • Saunders, B. T., & Robinson, T. E. (2012). The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses. The European journal of neuroscience, 36(4), 2521–2532. https://doi.org/10.1111/j.1460-9568.2012.08217.x
  • Saunders, B. T., & Robinson, T. E. (2013). Individual variation in resisting temptation: Implications for addiction. Neuroscience and Biobehavioral Reviews, 37(9 Pt A), 1955–1975. https://doi.org/10.1016/j.neubiorev.2013.02.008
  • Scheimann, J. R., Moloney, R. D., Mahbod, P., Morano, R. L., Fitzgerald, M., Hoskins, O., Packard, B. A., Cotella, E. M., Hu, Y.-C., & Herman, J. P. (2019). Conditional deletion of glucocorticoid receptors in rat brain results in sex-specific deficits in fear and coping behaviors. eLife, 8, e44672. https://doi.org/10.7554/eLife.44672
  • Scheschowitsch, K., Leite, J. A., & Assreuy, J. (2017). New insights in glucocorticoid receptor signaling-more than just a ligand-binding receptor. Frontiers in Endocrinology, 8, 16. https://doi.org/10.3389/fendo.2017.00016
  • Schwabe, L., Dalm, S., Schachinger, H., & Oitzl, M. S. (2008). Chronic stress modulates the use of spatial and stimulus-response learning strategies in mice and man. Neurobiology of Learning and Memory, 90(3), 495–503. https://doi.org/10.1016/j.nlm.2008.07.015
  • Schwabe, L., Oitzl, M. S., Philippsen, C., Richter, S., Bohringer, A., Wippich, W., & Schachinger, H. (2007). Stress modulates the use of spatial versus stimulus-response learning strategies in humans. Learning & Memory (Cold Spring Harbor, N.Y.), 14(1), 109–116. https://doi.org/10.1101/lm.435807
  • Schwabe, L., Oitzl, M. S., Richter, S., & Schachinger, H. (2009). Modulation of spatial and stimulus-response learning strategies by exogenous cortisol in healthy young women. Psychoneuroendocrinology, 34(3), 358–366. https://doi.org/10.1016/j.psyneuen.2008.09.018
  • Schwabe, L., Schachinger, H., de Kloet, E. R., & Oitzl, M. S. (2010). Corticosteroids operate as a switch between memory systems. Journal of Cognitive Neuroscience, 22(7), 1362–1372. https://doi.org/10.1162/jocn.2009.21278
  • Selye, H. (1955). Stress and disease. Science (New York, N.Y.), 122(3171), 625–631. https://doi.org/10.1126/science.122.3171.625
  • Shors, T. J. (2001). Acute stress rapidly and persistently enhances memory formation in the male rat. Neurobiology of Learning and Memory, 75(1), 10–29. https://doi.org/10.1006/nlme.1999.3956
  • Shors, T. J., Weiss, C., & Thompson, R. F. (1992). Stress-induced facilitation of classical conditioning. Science (New York, N.Y.), 257(5069), 537–539. https://doi.org/10.1126/science.1636089
  • Singer, B. F., Guptaroy, B., Austin, C. J., Wohl, I., Lovic, V., Seiler, J. L., Vaughan, R. A., Gnegy, M. E., Robinson, T. E., & Aragona, B. J. (2016). Individual variation in incentive salience attribution and accumbens dopamine transporter expression and function. The European Journal of Neuroscience, 43(5), 662–670. https://doi.org/10.1111/ejn.13134
  • Sinha, R. (2001). How does stress increase risk of drug abuse and relapse? Psychopharmacology, 158(4), 343–359. https://doi.org/10.1007/s002130100917
  • Sonino, N., Fallo, F., & Fava, G. A. (2010). Psychosomatic aspects of Cushing’s syndrome. Reviews in Endocrine & Metabolic Disorders, 11(2), 95–104. https://doi.org/10.1007/s11154-009-9123-7
  • Spencer, R. L., & Deak, T. (2017). A users guide to HPA axis research. Physiology & Behavior, 178, 43–65. https://doi.org/10.1016/j.physbeh.2016.11.014
  • Spiga, F., Walker, J. J., Terry, J. R., & Lightman, S. L. (2014). HPA axis-rhythms. Comprehensive Physiology, 4(3), 1273–1298. https://doi.org/10.1002/cphy.c140003
  • Stelly, C. E., Pomrenze, M. B., Cook, J. B., & Morikawa, H. (2016). Repeated social defeat stress enhances glutamatergic synaptic plasticity in the VTA and cocaine place conditioning. eLife, 5. https://doi.org/10.7554/eLife.15448
  • Stringfield, S. J., Palmatier, M. I., Boettiger, C. A., & Robinson, D. L. (2017). Orbitofrontal participation in sign- and goal-tracking conditioned responses: Effects of nicotine. Neuropharmacology, 116, 208–223. https://doi.org/10.1016/j.neuropharm.2016.12.020
  • Suto, N., Austin, J. D., & Vezina, P. (2001). Locomotor response to novelty predicts a rat’s propensity to self-administer nicotine. Psychopharmacology, 158(2), 175–180. https://doi.org/10.1007/s002130100867
  • Szeszko, P. R., Lehrner, A., & Yehuda, R. (2018). Glucocorticoids and hippocampal structure and function in PTSD. Harvard Review of psychiatry, 26(3), 142–157. https://doi.org/10.1097/HRP.0000000000000188
  • Tomie, A., Silberman, Y., Williams, K., & Pohorecky, L. A. (2002). Pavlovian autoshaping procedures increase plasma corticosterone levels in rats. Pharmacology, Biochemistry, and Behavior, 72(3), 507–513. https://doi.org/10.1016/S0091-3057(01)00781-X
  • Tomie, A., Tirado, A. D., Yu, L., & Pohorecky, L. A. (2004). Pavlovian autoshaping procedures increase plasma corticosterone and levels of norepinephrine and serotonin in prefrontal cortex in rats. Behavioural Brain Research, 153(1), 97–105. https://doi.org/10.1016/j.bbr.2003.11.006
  • VanElzakker, M. B., Dahlgren, M. K., Davis, F. C., Dubois, S., & Shin, L. M. (2014). From Pavlov to PTSD: The extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiology of Learning and Memory, 113, 3–18. https://doi.org/10.1016/j.nlm.2013.11.014
  • Veals, J. W., Korduba, C. A., & Symchowicz, S. (1977). Effect of dexamethasone on monoamine oxidase inhibiton by iproniazid in rat brain. European Journal of Pharmacology, 41(3), 291–299. https://doi.org/10.1016/0014-2999(77)90322-3
  • Vegiopoulos, A., & Herzig, S. (2007). Glucocorticoids, metabolism and metabolic diseases. Molecular and Cellular Endocrinology, 275(1-2), 43–61. https://doi.org/10.1016/j.mce.2007.05.015
  • Wheeler, D. S., Ebben, A. L., Kurtoglu, B., Lovell, M. E., Bohn, A. T., Jasek, I. A., Baker, D. A., Mantsch, J. R., Gasser, P. J., & Wheeler, R. A. (2017). Corticosterone regulates both naturally occurring and cocaine-induced dopamine signaling by selectively decreasing dopamine uptake. The European Journal of Neuroscience, 46(10), 2638–2646. https://doi.org/10.1111/ejn.13730
  • Yager, L. M., Pitchers, K. K., Flagel, S. B., & Robinson, T. E. (2015). Individual variation in the motivational and neurobiological effects of an opioid cue. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 40(5), 1269–1277. https://doi.org/10.1038/npp.2014.314
  • Zorawski, M., & Killcross, S. (2002). Posttraining glucocorticoid receptor agonist enhances memory in appetitive and aversive Pavlovian discrete-cue conditioning paradigms. Neurobiology of learning and memory, 78(2), 458–464. https://doi.org/10.1006/nlme.2002.4075

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.