861
Views
9
CrossRef citations to date
0
Altmetric
Original Research Reports

Stress-induced expression pattern of glutamate signaling genes associated with anhedonia

, &
Pages 700-707 | Received 21 Feb 2020, Accepted 14 Aug 2020, Published online: 02 Sep 2020

References

  • Andriessen, K., & Videtic-Paska, A. (2015). Genetic vulnerability as a distal risk factor for suicidal behaviour: Historical perspective and current knowledge. Zdravstveno Varstvo, 54(3), 238–251. https://doi.org/10.1515/sjph-2015-0026
  • Belzung, C., Turiault, M., & Griebel, G. (2014). Optogenetics to study the circuits of fear- and depression-like behaviors: A critical analysis. Pharmacology, Biochemistry, and Behavior, 122, 144–157. https://doi.org/10.1016/j.pbb.2014.04.002
  • Biselli, T., Lange, S. S., Sablottny, L., Steffen, J., & Walther, A. (2019). Optogenetic and chemogenetic insights into the neurocircuitry of depression-like behaviour: A systematic review. European Journal of Neuroscience. https://doi.org/10.1111/ejn.14603
  • Caldeira, M. V. 1., Melo, C. V., Pereira, D. B., Carvalho, R. F., Carvalho, A. L., & Duarte, C. B. (2007b). BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Molecular and Cellular Neurosciences, 35(2), 208–219. https://doi.org/10.1016/j.mcn.2007.02.019
  • Caldeira, M. V., Melo, C. V., Pereira, D. B., Carvalho, R., Correia, S. S., Backos, D. S., Carvalho, A. L., Esteban, J. A., & Duarte, C. B. (2007a). Brain-derived neurotrophic factor regulates the expression and synaptic delivery of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. The Journal of Biological Chemistry, 282(17), 12619–12628. https://doi.org/10.1074/jbc.M700607200
  • Chandley, M. J., Szebeni, A., Szebeni, K., Crawford, J. D., Stockmeier, C. A., Turecki, G., Kostrzewa, R. M., Gregory  ., & Ordway, G. A. (2014). Elevated gene expression of glutamate receptors in noradrenergic neurons from the locus coeruleus in major depression. The International Journal of Neuropsychopharmacology, 17(10), 1569–1578. https://doi.org/10.1017/S1461145714000662
  • Costa-Nunes, J. P., Gorlova, A., Pavlov, D., Cespuglio, R., Gorovaya, A., Proshin, A., Umriukhin, A., Ponomarev, E. D., Kalueff, A. V., Strekalova, T., & Schroeter, C. A. (2020). Ultrasound stress compromises the correlates of emotional-like states and brain AMPAR expression in mice: Effects of antioxidant and anti-inflammatory herbal treatment. Stress, 23(4), 415–481. https://doi.org/10.1080/10253890.2019.1709435
  • de Sousa, R. T., Loch, A. A., Carvalho, A. F., Brunoni, A. R., Haddad, M. R., Henter, I. D., Zarate, C. A., & Machado-Vieira, R. (2017). Genetic studies on the tripartite glutamate synapse in the pathophysiology and therapeutics of mood disorders. Neuropsychopharmacology, 42(4), 787–800. https://doi.org/10.1038/npp.2016.149
  • Dean, B., Gibbons, A. S., Boer, S., Uezato, A., Meador-Woodruff, J., Scarr, E., & McCullumsmith, R. E. (2016). Changes in cortical N-methyl-D-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide. Australian and New Zealand Journal of Psychiatry, 50(3), 275–283. https://doi.org/10.1177/0004867415586601
  • Duman, R. S., Sanacora, G., & Krystal, J. H. (2019). Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron, 102(1), 75–90. https://doi.org/10.1016/j.neuron.2019.03.013
  • Duric, V., Banasr, M., Stockmeier, C. A., Simen, A. A., Newton, S. S., Overholser, J. C., Jurjus, G. J., Dieter, L., & Duman, R. S. (2013). Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. The International Journal of Neuropsychopharmacology, 16(1), 69–82. https://doi.org/10.1017/S1461145712000016
  • Freudenberg, F. (2019). Quantitative analysis of Gria1, Gria2, Dlg1 and Dlg4 expression levels in hippocampus following forced swim stress in mice. Scientific Reports, 9(1), 14060. https://doi.org/10.1038/s41598-019-50689-w
  • Gong, Q., & He, Y. (2015). He 2. Depression, neuroimaging and connectomics: A selective overview. Biological Psychiatry, 77(3), 223–235. https://doi.org/10.1016/j.biopsych.2014.08.009
  • Grooms, S. Y. 1., Noh, K. M., Regis, R., Bassell, G. J., Bryan, M. K., Carroll, R. C., & Zukin, R. S. (2006). Activity bidirectionally regulates AMPA receptor mRNA abundance in dendrites of hippocampal neurons. Journal of Neuroscience, 26(32), 8339–8351. https://doi.org/10.1523/JNEUROSCI.0472-06.2006
  • Kirby, L. G., Pan, Y.-Z., Freeman-Daniels, E., Rani, S., Nunan, J. D., Akanwa, A., & Beck, S. G. (2007). Cellular effects of swim stress in the dorsal raphe nucleus (published correction appears in Psychoneuroendocrinology. 2007 Sep-Nov;32(8-10):1167). Psychoneuroendocrinology, 32(6), 712–723. https://doi.org/10.1016/j.psyneuen.2007.05.001
  • Lanshakov, D. A., Sukhareva, E. V., Kalinina, T. S., & Dygalo, N. N. (2016). Dexamethasone-induced acute excitotoxic cell death in the developing brain. Neurobiology of Disease, 91, 1–9. https://doi.org/10.1016/j.nbd.2016.02.009
  • Lee, Y. A., & Goto, Y. (2011). Chronic stress modulation of prefrontal cortical NMDA receptor expression disrupts limbic structure-prefrontal cortex interaction. The European Journal of Neuroscience, 34(3), 426–436. https://doi.org/10.1111/j.1460-9568.2011.07750.x
  • Lener, M. S., Niciu, M. J., Ballard, E. D., Park, M., Park, L. T., Nugent, A. C., & Zarate, C. A. (2017). Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biological Psychiatry, 81(10), 886–897. https://doi.org/10.1016/j.biopsych.2016.05.005
  • Li, Y. F. (2020). A hypothesis of monoamine (5-HT)-glutamate/GABA long neural circuit: Aiming for fast-onset antidepressant discovery. Pharmacology & Therapeutics, 208, 107494. https://doi.org/10.1016/j.pharmthera.2020.107494
  • Liu, Q., Sun, N. N., Wu, Z. Z., Fan, D. H., & Cao, M. Q. (2018). Chaihu-Shugan-San exerts an antidepressive effect by downregulating miR-124 and releasing inhibition of the MAPK14 and Gria3 signaling pathways. Neural Regeneration Research, 13(5), 837–845. https://doi.org/10.4103/1673-5374.232478
  • McEwen, B. S., & Akil, H. (2020). Revisiting the stress concept: Implications for affective disorders. The Journal of Neuroscience, 40(1), 12–21. https://doi.org/10.1523/JNEUROSCI.0733-19.2019
  • McWhirt, J., Sathyanesan, M., Sampath, D., & Newton, S. S. (2019). Effects of restraint stress on the regulation of hippocampal glutamate receptor and inflammation genes in female C57BL/6 and BALB/c mice. Neurobiology of Stress, 10, 100169. https://doi.org/10.1016/j.ynstr.2019.100169
  • Moench, K. M., Breach, M. R., & Wellman, C. L. (2020). Prior stress followed by a novel stress challenge results in sex-specific deficits in behavioral flexibility and changes in gene expression in rat medial prefrontal cortex. Hormones and Behavior, 117, 104615. https://doi.org/10.1016/j.yhbeh.2019.104615
  • Montalvo-Ortiz, J. L., Bordner, K. A., Carlyle, B. C., Gelernter, J., Simen, A. A., & Kaufman, J. (2016). The role of genes involved in stress, neural plasticity, and brain circuitry in depressive phenotypes: Convergent findings in a mouse model of neglect. Behavioural Brain Research, 315, 71–74. https://doi.org/10.1016/j.bbr.2016.08.010
  • Mozhui, K., Karlsson, R.-M., Kash, T. L., Ihne, J., Norcross, M., Patel, S., Farrell, M. R., Hill, E. E., Graybeal, C., Martin, K. P., Camp, M., Fitzgerald, P. J., Ciobanu, D. C., Sprengel, R., Mishina, M., Wellman, C. L., Winder, D. G., Williams, R. W., & Holmes, A. (2010). Strain differences in stress responsivity are associated with divergent amygdala gene expression and glutamate-mediated neuronal excitability. The Journal of Neuroscience, 30(15), 5357–5367. https://doi.org/10.1523/JNEUROSCI.5017-09.2010
  • Myers, B., Scheimann, J. R., Franco-Villanueva, A., & Herman, J. P. (2017). Ascending mechanisms of stress integration: Implications for brainstem regulation of neuroendocrine and behavioral stress responses. Neuroscience and Biobehavioral Reviews, 74(Pt B), 366–375. https://doi.org/10.1016/j.neubiorev.2016.05.011
  • Nagy, C., Suderman, M., Yang, J., Szyf, M., Mechawar, N., Ernst, C., & Turecki, G. (2015). Astrocytic abnormalities and global DNA methylation patterns in depression and suicide. Molecular Psychiatry, 20(3), 320–328. https://doi.org/10.1038/mp.2014.21
  • Nair-Roberts, R. G., Chatelain-Badie, S. D., Benson, E., White-Cooper, H., Bolam, J. P., & Ungless, M. A. (2008). Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience, 152(4), 1024–1031. https://doi.org/10.1016/j.neuroscience.2008.01.046
  • Nasca, C., Bigio, B., Zelli, D., Angelis, P., Lau, T., Okamoto, M., Soya, H., Ni, J., Brichta, L., Greengard, P., Neve, R. L., Lee, F. S., & McEwen, B. S. (2017). Role of the astroglial glutamate exchanger xCT in ventral hippocampus in resilience to stress. Neuron, 96(2), 402–413.e5. https://doi.org/10.1016/j.neuron.2017.09.020
  • Paxinos, G., & Watson, C. (1998). The rat brain in stereotaxic coordinates. Academic Press.
  • Porsolt, R. D., Anton, G., Blavet, N., & Jalfre, M. (1978). Behavioural despair in rats: a new model sensitive to antidepressant treatments. European Journal of Pharmacology, 47(4), 379–391. https://doi.org/10.1016/0014-2999(78)90118-8 204499
  • Sanacora, G., Treccani, G., & Popoli, M. (2012). Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology, 62(1), 63–77. https://doi.org/10.1016/j.neuropharm.2011.07.036
  • Shepard, R., & Coutellier, L. (2018). Changes in the prefrontal glutamatergic and parvalbumin systems of mice exposed to unpredictable chronic stress. Molecular Neurobiology, 55(3), 2591–2602. https://doi.org/10.1007/s12035-017-0528-0
  • Shishkina, G. T., Kalinina, T. S., Berezova, I. V., & Dygalo, N. N. (2012). Stress-induced activation of the brainstem Bcl-xL gene expression in rats treated with fluoxetine: Correlations with serotonin metabolism and depressive-like behavior. Neuropharmacology, 62(1), 177–183. https://doi.org/10.1016/j.neuropharm.2011.06.016
  • Shishkina, G. T., Kalinina, T. S., & Dygalo, N. N. (2007). Up-regulation of tryptophan hydroxylase-2 mRNA in the rat brain by chronic fluoxetine treatment correlates with its antidepressant effect. Neuroscience, 150(2), 404–412. ‐https://doi.org/10.1016/j.neuroscience.2007.09.017
  • Teyssier, J.-R., Ragot, S., Chauvet-Gélinier, J.-C., Trojak, B., & Bonin, B. (2011). Activation of a ΔFOSB dependent gene expression pattern in the dorsolateral prefrontal cortex of patients with major depressive disorder. Journal of Affective Disorders, 133(1–2), 174–178. https://doi.org/10.1016/j.jad.2011.04.021
  • Wei, J., Yuen, E. Y., Liu, W., Li, X., Zhong, P., Karatsoreos, I. N., McEwen, B. S., & Yan, Z. (2014). Estrogen protects against the detrimental effects of repeated stress on glutamatergic transmission and cognition. Molecular Psychiatry, 19(5), 588–598. https://doi.org/10.1038/mp.2013.83
  • Wilson, M. A., Grillo, C. A., Fadel, J. R., & Reagan, L. P. (2015). Stress as a one-armed bandit: Differential effects of stress paradigms on the morphology, neurochemistry and behavior in the rodent amygdala. Neurobiology of Stress, 1, 195–208. https://doi.org/10.1016/j.ynstr.2015.06.001
  • Wu, T., & Donohoe, M. E. (2019). Yy1 regulates Senp1 contributing to AMPA receptor GluR1 expression following neuronal depolarization. Journal of Biomedical Science, 26(1), 79. https://doi.org/10.1186/s12929-019-0582-1
  • Yu, M., Zhang, Y., Chen, X. Y., & Zhang, T. (2016). Antidepressant-like effects and possible mechanisms of amantadine on cognitive and synaptic deficits in a rat model of chronic stress. Stress, 19(1), 104–113. https://doi.org/10.3109/10253890.2015.1108302
  • Yuen, E. Y., Liu, W., Karatsoreos, I. N., Feng, J., McEwen, B. S., & Yan, Z. (2009). Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14075–14079. https://doi.org/10.1073/pnas.0906791106
  • Yuen, E. Y., Wei, J., Liu, W., Zhong, P., Li, X., & Yan, Z. (2012). Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron, 73(5), 962–977. https://doi.org/10.1016/j.neuron.2011.12.033
  • Yun, S., Reynolds, R. P., Petrof, I., White, A., Rivera, P. D., Segev, A., Gibson, A. D., Suarez, M., DeSalle, M. J., Ito, N., Mukherjee, S., Richardson, D. R., Kang, C. E., Ahrens-Nicklas, R. C., Soler, I., Chetkovich, D. M., Kourrich, S., Coulter, D. A., & Eisch, A. J. (2018). Stimulation of entorhinal cortex-dentate gyrus circuitry is antidepressive. Nature Medicine, 24(5), 658–666. https://doi.org/10.1038/s41591-018-0002-1
  • Zhao, J., Verwer, R. W. H., Gao, S.-F., Qi, X.-R., Lucassen, P. J., Kessels, H. W., & Swaab, D. F. (2018). Prefrontal alterations in GABAergic and glutamatergic gene expression in relation to depression and suicide. Journal of Psychiatric Research, 102, 261–274. https://doi.org/10.1016/j.jpsychires.2018.04.020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.