1,598
Views
4
CrossRef citations to date
0
Altmetric
Review

Vasopressin and post-traumatic stress disorder

, , , &
Pages 732-745 | Received 12 May 2020, Accepted 16 Sep 2020, Published online: 12 Oct 2020

References

  • Adamec, R., Kent, P., Anisman, H., Shallow, T., & Merali, Z. (1998). Neural plasticity, neuropeptides and anxiety in animals – Implications for understanding and treating affective disorder following traumatic stress in humans. Neuroscience & Biobehavioral Reviews, 23(2), 301–318. https://doi.org/10.1016/S0149-7634(98)00032-3
  • Akan, S., Urkmez, A., Yildirim, C., Sahin, A., Yuksel, O. H., & Verit, A. (2015). Late-onset secondary nocturnal enuresis in adolescents associated with post-traumatic stress disorder developed after a traffic accident. Archivio Italiano di Urologia, Andrologia : Organo Ufficiale [di] Societa Italiana di Ecografia Urologica e Nefrologica, 87(3), 250–251. https://doi.org/10.4081/aiua.2015.3.250
  • Alonso, R., Griebel, G., Pavone, G., Stemmelin, J., Le Fur, G., & Soubrie, P. (2004). Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Molecular Psychiatry, 9(3), 278–286, 24. https://doi.org/10.1038/sj.mp.4001464
  • American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). American Psychiatric Association.
  • An, D., Chen, W., Yu, D. Q., Wang, S. W., Yu, W. Z., Xu, H., Wang, D. M., Zhao, D., Sun, Y. P., Wu, J. C., Tang, Y. Y., & Yin, S. M. (2017). Effects of social isolation, re-socialization and age on cognitive and aggressive behaviors of Kunming mice and BALB/c mice. Animal Science Journal = Nihon Chikusan Gakkaiho, 88(5), 798–806. https://doi.org/10.1111/asj.12688
  • An, X. L., & Tai, F. D. (2014). AVP and Glu systems interact to regulate levels of anxiety in BALB/cJ mice. Dong Wu Xue Yan Jiu = Zoological Research, 35(4), 319–325. https://doi.org/10.13918/j.issn.2095-8137.2014.4.319
  • Balazsfi, D., Pinter, O., Klausz, B., Kovacs, K. B., Fodor, A., Torok, B., Engelmann, M., & Zelena, D. (2015). Restoration of peripheral V2 receptor vasopressin signaling fails to correct behavioral changes in Brattleboro rats. Psychoneuroendocrinology, 51, 11–23. https://doi.org/10.1016/j.psyneuen.2014.09.011
  • Barsegyan, A., Atsak, P., Hornberger, W. B., Jacobson, P. B., van Gaalen, M. M., & Roozendaal, B. (2015). The Vasopressin 1b receptor antagonist A-988315 blocks stress effects on the retrieval of object-recognition memory. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 40(8), 1979–1989. https://doi.org/10.1038/npp.2015.48
  • Beiderbeck, D. I., Neumann, I. D., & Veenema, A. H. (2007). Differences in intermale aggression are accompanied by opposite vasopressin release patterns within the septum in rats bred for low and high anxiety. The European Journal of Neuroscience, 26(12), 3597–3605. https://doi.org/10.1111/j.1460-9568.2007.05974.x
  • Benus, R. F., Bohus, B., Koolhaas, J. M., & van Oortmerssen, G. A. (1991). Behavioural differences between artificially selected aggressive and non-aggressive mice: response to apomorphine. Behavioural Brain Research, 43(2), 203–208. https://doi.org/10.1016/s0166-4328(05)80072-5
  • Blanchard, R. J., Griebel, G., Farrokhi, C., Markham, C., Yang, M., & Blanchard, D. C. (2005). AVP V1b selective antagonist SSR149415 blocks aggressive behaviors in hamsters. Pharmacology, Biochemistry, and Behavior, 80(1), 189–194. https://doi.org/10.1016/j.pbb.2004.10.024
  • Bleickardt, C. J., Mullins, D. E., Macsweeney, C. P., Werner, B. J., Pond, A. J., Guzzi, M. F., Martin, F. D., Varty, G. B., & Hodgson, R. A. (2009). Characterization of the V1a antagonist, JNJ-17308616, in rodent models of anxiety-like behavior. Psychopharmacology, 202(4), 711–718. https://doi.org/10.1007/s00213-008-1354-x
  • Boccia, M. M., Kopf, S. R., & Baratti, C. M. (1998). Effects of a single administration of oxytocin or vasopressin and their interactions with two selective receptor antagonists on memory storage in mice. Neurobiology of Learning and Memory, 69(2), 136–146. https://doi.org/10.1006/nlme.1997.3817
  • Boldrini, M., Santiago, A. N., Hen, R., Dwork, A. J., Rosoklija, G. B., Tamir, H., Arango, V., & John Mann, J. (2013). Hippocampal granule neuron number and dentate gyrus volume in antidepressant-treated and untreated major depression. Neuropsychopharmacology, 38(6), 1068–1077. https://doi.org/10.1038/npp.2013.5
  • Bowen, M. T., Dass, S. A., Booth, J., Suraev, A., Vyas, A., & McGregor, I. S. (2014). Active coping toward predatory stress is associated with lower corticosterone and progesterone plasma levels and decreased methylation in the medial amygdala vasopressin system. Hormones and Behavior, 66(3), 561–566. https://doi.org/10.1016/j.yhbeh.2014.08.004
  • Brinks, V., de Kloet, E. R., & Oitzl, M. S. (2008). Strain specific fear behaviour and glucocorticoid response to aversive events: modelling PTSD in mice. Progress in Brain Research, 167, 257–261. https://doi.org/10.1016/S0079-6123(07)67019-8
  • Brunnlieb, C., Munte, T. F., Tempelmann, C., & Heldmann, M. (2013). Vasopressin modulates neural responses related to emotional stimuli in the right amygdala. Brain Research, 1499, 29–42. https://doi.org/10.1016/j.brainres.2013.01.009
  • Brunnlieb, C., Nave, G., Camerer, C. F., Schosser, S., Vogt, B., Munte, T. F., & Heldmann, M. (2016). Vasopressin increases human risky cooperative behavior. Proceedings of the National Academy of Sciences of the United States of America, 113(8), 2051–2056. https://doi.org/10.1073/pnas.1518825113
  • Caldwell, H. K., & Albers, H. E. (2016). Oxytocin, vasopressin, and the motivational forces that drive social behaviors. Current Topics in Behavioral Neurosciences, 27, 51–103. https://doi.org/10.1007/7854_2015_390
  • Chappell, A. R., Freeman, S. M., Lin, Y. K., LaPrairie, J. L., Inoue, K., Young, L. J., & Hayes, L. D. (2016). Distributions of oxytocin and vasopressin 1a receptors in the Taiwan vole and their role in social monogamy. Journal of Zoology (London, England : 1987), 299(2), 106–115. https://doi.org/10.1111/jzo.12332
  • Chen, L. W., Sun, D., Davis, S. L., Haswell, C. C., Dennis, E. L., Swanson, C. A., Whelan, C. D., Gutman, B., Jahanshad, N., Iglesias, J. E., Thompson, P., Mid-Atlantic, M. W., Wagner, H. R., Saemann, P., LaBar, K. S., & Morey, R. A, Mid-Atlantic MIRECC Workgroup. (2018). Smaller hippocampal CA1 subfield volume in posttraumatic stress disorder. Depression and Anxiety, 35(11), 1018–1029. https://doi.org/10.1002/da.22833
  • Chen, Y., Xu, F., Zhang, L., Wang, X., Wang, Y., Woo, A. Y., & Zhu, W. (2017). GRK2/β-arrestin mediates arginine vasopressin-induced cardiac fibroblast proliferation. Clinical and Experimental Pharmacology & Physiology, 44(2), 285–293. https://doi.org/10.1111/1440-1681.12696
  • Cilz, N. I., Cymerblit-Sabba, A., & Young, W. S. (2019). Oxytocin and vasopressin in the rodent hippocampus. Genes, Brain, and Behavior, 18(1), e12535. https://doi.org/10.1111/gbb.12535
  • Corbani, M., Marir, R., Trueba, M., Chafai, M., Vincent, A., Borie, A. M., Desarmenien, M. G., Ueta, Y., Tomboly, C., Olma, A., Manning, M., & Guillon, G. (2018). Neuroanatomical distribution and function of the vasopressin V1B receptor in the rat brain deciphered using specific fluorescent ligands. General and Comparative Endocrinology, 258, 15–32. https://doi.org/10.1016/j.ygcen.2017.10.011
  • Csikota, P., Fodor, A., Balazsfi, D., Pinter, O., Mizukami, H., Weger, S., Heilbronn, R., Engelmann, M., & Zelena, D. (2016). Vasopressinergic control of stress-related behavior: studies in Brattleboro rats. Stress (Amsterdam, Netherlands), 19(4), 349–361. https://doi.org/10.1080/10253890.2016.1183117
  • Daskalakis, N. P., Bagot, R. C., Parker, K. J., Vinkers, C. H., & de Kloet, E. R. (2013). The three-hit concept of vulnerability and resilience: toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology, 38(9), 1858–1873. https://doi.org/10.1016/j.psyneuen.2013.06.008
  • Daviu, N., Delgado-Morales, R., Nadal, R., & Armario, A. (2012). Not all stressors are equal: behavioral and endocrine evidence for development of contextual fear conditioning after a single session of footshocks but not of immobilization. Frontiers in Behavioral Neuroscience., 6, 69.
  • Dayan, J., Rauchs, G., & Guillery-Girard, B. (2016). Rhythms dysregulation: A new perspective for understanding PTSD? Journal of Physiology, Paris, 110(4 Pt B), 453–460. https://doi.org/10.1016/j.jphysparis.2017.01.004
  • de Kloet, C. S., Vermetten, E., Geuze, E., Wiegant, V. M., & Westenberg, H. G. (2008). Elevated plasma arginine vasopressin levels in veterans with posttraumatic stress disorder. Journal of Psychiatric Research, 42(3), 192–198. https://doi.org/10.1016/j.jpsychires.2006.11.009
  • Demeter, K., Torok, B., Fodor, A., Varga, J., Ferenczi, S., Kovacs, K. J., Eszik, I., Szegedi, V., & Zelena, D. (2016). Possible contribution of epigenetic changes in the development of schizophrenia-like behavior in vasopressin-deficient Brattleboro rats. Behavioural Brain Research, 300, 123–134. https://doi.org/10.1016/j.bbr.2015.12.007
  • Dopfel, D., Perez, P. D., Verbitsky, A., Bravo-Rivera, H., Ma, Y., Quirk, G. J., & Zhang, N. (2019). Individual variability in behavior and functional networks predicts vulnerability using an animal model of PTSD. Nature Communications, 10(1), 2372. https://doi.org/10.1038/s41467-019-09926-z
  • Ebner, K., Wotjak, C. T., Holsboer, F., Landgraf, R., & Engelmann, M. (1999). Vasopressin released within the septal brain area during swim stress modulates the behavioural stress response in rats. European Journal of Neuroscience, 11(3), 997–1002. https://doi.org/10.1046/j.1460-9568.1999.00508.x
  • Ebner, K., Wotjak, C. T., Landgraf, R., & Engelmann, M. (2002). Forced swimming triggers vasopressin release within the amygdala to modulate stress-coping strategies in rats. European Journal of Neuroscience, 15(2), 384–388. https://doi.org/10.1046/j.0953-816x.2001.01869.x
  • Egashira, N., Mishima, K., Iwasaki, K., Oishi, R., & Fujiwara, M. (2009). New topics in vasopressin receptors and approach to novel drugs: role of the vasopressin receptor in psychological and cognitive functions. Journal of Pharmacological Sciences, 109(1), 44–49. https://doi.org/10.1254/jphs.08r14fm
  • Egashira, N., Tanoue, A., Matsuda, T., Koushi, E., Harada, S., Takano, Y., Tsujimoto, G., Mishima, K., Iwasaki, K., & Fujiwara, M. (2007). Impaired social interaction and reduced anxiety-related behavior in vasopressin V1a receptor knockout mice. Behavioural Brain Research, 178(1), 123–127. https://doi.org/10.1016/j.bbr.2006.12.009
  • Engelmann, M., Bures, J., & Landgraf, R. (1992). Vasopressin administration via microdialysis into the septum interferes with the acquisition of spatial memory in rats. Neuroscience Letters, 142(1), 69–72. https://doi.org/10.1016/0304-3940(92)90622-e
  • Engelmann, M., Landgraf, R., & Wotjak, C. T. (2004). The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: an old concept revisited. Frontiers in Neuroendocrinology, 25(3-4), 132–149. https://doi.org/10.1016/j.yfrne.2004.09.001
  • Feifel, D., & Priebe, K. (2001). Vasopressin-deficient rats exhibit sensorimotor gating deficits that are reversed by subchronic haloperidol. Biological Psychiatry, 50(6), 425–433. https://doi.org/10.1016/s0006-3223(01)01100-3
  • Feng, C., DeMarco, A. C., Haroon, E., & Rilling, J. K. (2015). Neuroticism modulates the effects of intranasal vasopressin treatment on the neural response to positive and negative social interactions. Neuropsychologia, 73, 108–115. https://doi.org/10.1016/j.neuropsychologia.2015.05.004
  • Fodor, A., Barsvari, B., Aliczki, M., Balogh, Z., Zelena, D., Goldberg, S. R., & Haller, J. (2014). The effects of vasopressin deficiency on aggression and impulsiveness in male and female rats. Psychoneuroendocrinology, 47, 141–150. https://doi.org/10.1016/j.psyneuen.2014.05.010
  • Fodor, A., Klausz, B., Pinter, O., Daviu, N., Rabasa, C., Rotllant, D., Balazsfi, D., Kovacs, K. B., Nadal, R., & Zelena, D. (2012). Maternal neglect with reduced depressive-like behavior and blunted c-fos activation in Brattleboro mothers, the role of central vasopressin. Hormones and Behavior, 62(4), 539–551. https://doi.org/10.1016/j.yhbeh.2012.09.003
  • Fodor, A., Klausz, B., Toth, B., & Zelena, D. (2016a). The prepulse inhibition deficit appearance is largely independent on the circadian cycle, body weight, and the gender of vasopressin deficient Brattleboro rat. Endocrine Regulations, 50(1), 16–23. https://doi.org/10.1515/enr-2016-0004
  • Fodor, A., Kovacs, K. B., Balazsfi, D., Klausz, B., Pinter, O., Demeter, K., Daviu, N., Rabasa, C., Rotllant, D., Nadal, R., & Zelena, D. (2016b). Depressive- and anxiety-like behaviors and stress-related neuronal activation in vasopressin-deficient female Brattleboro rats. Physiology & Behavior, 158, 100–111. https://doi.org/10.1016/j.physbeh.2016.02.041
  • Fodor, A., Pinter, O., Domokos, A., Langnaese, K., Barna, I., Engelmann, M., & Zelena, D. (2013). Blunted HPA axis response in lactating, vasopressin-deficient Brattleboro rats. The Journal of Endocrinology, 219(2), 89–100. https://doi.org/10.1530/JOE-13-0224
  • Frijling, J. L., van Zuiden, M., Nawijn, L., Koch, S. B., Neumann, I. D., Veltman, D. J., & Olff, M. (2015). Salivary oxytocin and vasopressin levels in police officers with and without post-traumatic stress disorder. Journal of Neuroendocrinology, 27(10), 743–751. https://doi.org/10.1111/jne.12300
  • Griebel, G., Beeske, S., & Stahl, S. M. (2012). The vasopressin V(1b) receptor antagonist SSR149415 in the treatment of major depressive and generalized anxiety disorders: results from 4 randomized, double-blind, placebo-controlled studies. The Journal of Clinical Psychiatry, 73(11), 1403–1411. https://doi.org/10.4088/JCP.12m07804
  • Griebel, G., Simiand, J., Serradeil-Le Gal, C., Wagnon, J., Pascal, M., Scatton, B., Maffrand, J. P., & Soubrie, P. (2002). Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proceedings of the National Academy of Sciences of the United States of America, 99(9), 6370–6375. https://doi.org/10.1073/pnas.092012099
  • Handa, R. J., Zoeller, R. T., & McGivern, R. F. (2007). Changes in vasoactive intestinal peptide and arginine vasopressin expression in the suprachiasmatic nucleus of the rat brain following footshock stress. Neuroscience Letters, 425(2), 99–104. https://doi.org/10.1016/j.neulet.2007.08.044
  • Hodgson, R. A., Higgins, G. A., Guthrie, D. H., Lu, S. X., Pond, A. J., Mullins, D. E., Guzzi, M. F., Parker, E. M., & Varty, G. B. (2007). Comparison of the V1b antagonist, SSR149415, and the CRF1 antagonist, CP-154,526, in rodent models of anxiety and depression. Pharmacology, Biochemistry, and Behavior, 86(3), 431–440. https://doi.org/10.1016/j.pbb.2006.12.021
  • Iijima, M., & Chaki, S. (2007). An arginine vasopressin V1b antagonist, SSR149415 elicits antidepressant-like effects in an olfactory bulbectomy model. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 31(3), 622–627. https://doi.org/10.1016/j.pnpbp.2006.12.008
  • Izquierdo, I., Dalmaz, C., Dias, R. D., & Godoy, M. G. (1988). Memory facilitation by posttraining and pretest ACTH, epinephrine, and vasopressin administration: Two separate effects. Behavioral Neuroscience, 102(5), 803–806. https://doi.org/10.1037//0735-7044.102.5.803
  • Jezova, D., Ochedalski, T., Glickman, M., Kiss, A., & Aguilera, G. (1999). Central corticotropin-releasing hormone receptors modulate hypothalamic-pituitary-adrenocortical and sympathoadrenal activity during stress. Neuroscience, 94(3), 797–802. https://doi.org/10.1016/S0306-4522(99)00333-4
  • Katz, D. A., Liu, W., Locke, C., Dutta, S., & Tracy, K. A. (2016). Clinical safety and hypothalamic-pituitary-adrenal axis effects of the arginine vasopressin type 1B receptor antagonist ABT-436. Psychopharmacology, 233(1), 71–81. https://doi.org/10.1007/s00213-015-4089-5
  • Katz, D. A., Locke, C., Greco, N., Liu, W., & Tracy, K. A. (2017). Hypothalamic-pituitary-adrenal axis and depression symptom effects of an arginine vasopressin type 1B receptor antagonist in a one-week randomized Phase 1b trial. Brain and Behavior, 7(3), e00628. https://doi.org/10.1002/brb3.628
  • Kida, S. (2019). Reconsolidation/destabilization, extinction and forgetting of fear memory as therapeutic targets for PTSD. Psychopharmacology, 236(1), 49–57. https://doi.org/10.1007/s00213-018-5086-2
  • Kikuchi, A., Shimizu, K., Nibuya, M., Hiramoto, T., Kanda, Y., Tanaka, T., Watanabe, Y., Takahashi, Y., & Nomura, S. (2008). Relationship between post-traumatic stress disorder-like behavior and reduction of hippocampal 5-bromo-2'-deoxyuridine-positive cells after inescapable shock in rats. Psychiatry and Clinical Neurosciences, 62(6), 713–720. https://doi.org/10.1111/j.1440-1819.2008.01875.x
  • Kim, B. K., & Seo, J. H. (2013). Treadmill exercise alleviates post-traumatic stress disorder-induced impairment of spatial learning memory in rats. Journal of Exercise Rehabilitation, 9(4), 413–419. https://doi.org/10.12965/jer.130058
  • Kim, T. K., Lee, J. E., Kim, J. E., Park, J. Y., Choi, J., Kim, H., Lee, E. H., & Han, P. L. (2016). G9a-mediated regulation of OXT and AVP expression in the basolateral amygdala mediates stress-induced lasting behavioral depression and its reversal by exercise. Molecular Neurobiology, 53(5), 2843–2856. https://doi.org/10.1007/s12035-015-9160-z
  • Koolhaas, J. M., de Boer, S. F., Coppens, C. M., & Buwalda, B. (2010). Neuroendocrinology of coping styles: Towards understanding the biology of individual variation. Frontiers in Neuroendocrinology, 31(3), 307–321. https://doi.org/10.1016/j.yfrne.2010.04.001
  • Koshimizu, T. A., & Tsujimoto, G. (2009). New topics in vasopressin receptors and approach to novel drugs: Vasopressin and pain perception. Journal of Pharmacological Sciences, 109(1), 33–37. https://doi.org/10.1254/jphs.08r18fm
  • Kozlovsky, N., Matar, M. A., Kaplan, Z., Kotler, M., Zohar, J., & Cohen, H. (2007). Long-term down-regulation of BDNF mRNA in rat hippocampal CA1 subregion correlates with PTSD-like behavioural stress response. The International Journal of Neuropsychopharmacology, 10(6), 741–758. https://doi.org/10.1017/S1461145707007560
  • Kozorovitskiy, Y., Hughes, M., Lee, K., & Gould, E. (2006). Fatherhood affects dendritic spines and vasopressin V1a receptors in the primate prefrontal cortex. Nature Neuroscience, 9(9), 1094–1095. https://doi.org/10.1038/nn1753
  • Kumar, K. B., & Karanth, K. S. (1995). Effects of central administration of arginine-vasopressin on aversive memory retrieval. Brain Research, 699(2), 293–296. https://doi.org/10.1016/0006-8993(95)00921-c
  • Laczi, F., Gaffori, O., Fekete, M., de Kloet, E. R., & de Wied, D. (1984). Levels of arginine-vasopressin in cerebrospinal fluid during passive avoidance behavior in rats. Life Sciences, 34(24), 2385–2391. https://doi.org/10.1016/0024-3205(84)90426-0
  • Landgraf, R., & Wigger, A. (2002). High vs low anxiety-related behavior rats: An animal model of extremes in trait anxiety. Behavior Genetics, 32(5), 301–314. https://doi.org/10.1023/a:1020258104318
  • Lau, C., Hebert, M., Vani, M. A., Walling, S., Hayley, S., Lagace, D. C., & Blundell, J. (2016). Absence of neurogenic response following robust predator-induced stress response. Neuroscience, 339, 276–286. https://doi.org/10.1016/j.neuroscience.2016.10.001
  • Lee, R. J., Coccaro, E. F., Cremers, H., McCarron, R., Lu, S. F., Brownstein, M. J., & Simon, N. G. (2013). A novel V1a receptor antagonist blocks vasopressin-induced changes in the CNS response to emotional stimuli: an fMRI study. Frontiers in Systems Neuroscience, 7, 100.
  • Leng, G., & Ludwig, M. (2016). Intranasal oxytocin: Myths and delusions. Biological Psychiatry, 79(3), 243–250. https://doi.org/10.1016/j.biopsych.2015.05.003
  • Leroy, F., Park, J., Asok, A., Brann, D. H., Meira, T., Boyle, L. M., Buss, E. W., Kandel, E. R., & Siegelbaum, S. A. (2018). A circuit from hippocampal CA2 to lateral septum disinhibits social aggression. Nature, 564(7735), 213–218. https://doi.org/10.1038/s41586-018-0772-0
  • Lolait, S. J., Stewart, L. Q., Jessop, D. S., Young, W. S., 3rd, & O'Carroll, A. M. (2007). The hypothalamic-pituitary-adrenal axis response to stress in mice lacking functional vasopressin V1b receptors. Endocrinology, 148(2), 849–856. https://doi.org/10.1210/en.2006-1309
  • Ludwig, M., Tobin, V. A., Callahan, M. F., Papadaki, E., Becker, A., Engelmann, M., & Leng, G. (2013). Intranasal application of vasopressin fails to elicit changes in brain immediate early gene expression, neural activity and behavioural performance of rats. Journal of Neuroendocrinology, 25(7), 655–667. https://doi.org/10.1111/jne.12046
  • Marshall, A. D. (2013). Posttraumatic stress disorder and partner-specific social cognition: A pilot study of sex differences in the impact of arginine vasopressin. Biological Psychology, 93(2), 296–303. https://doi.org/10.1016/j.biopsycho.2013.02.014
  • Miao, X. R., Chen, Q. B., Wei, K., Tao, K. M., & Lu, Z. J. (2018). Posttraumatic stress disorder: From diagnosis to prevention. Military Medical Research, 5(1), 32. https://doi.org/10.1186/s40779-018-0179-0
  • Mikics, E., Baranyi, J., & Haller, J. (2008a). Rats exposed to traumatic stress bury unfamiliar objects-a novel measure of hyper-vigilance in PTSD models? Physiology & Behavior, 94(3), 341–348. https://doi.org/10.1016/j.physbeh.2008.01.023
  • Mikics, E., Toth, M., Varju, P., Gereben, B., Liposits, Z., Ashaber, M., Halasz, J., Barna, I., Farkas, I., & Haller, J. (2008b). Lasting changes in social behavior and amygdala function following traumatic experience induced by a single series of foot-shocks. Psychoneuroendocrinology, 33(9), 1198–1210. https://doi.org/10.1016/j.psyneuen.2008.06.006
  • Miro, L., Perez-Bosque, A., Maijo, M., Naftalin, R. J., & Moreto, M. (2014). Vasopressin regulation of epithelial colonic proliferation and permeability is mediated by pericryptal platelet-derived growth factor A. Experimental Physiology, 99(10), 1325–1334. https://doi.org/10.1113/expphysiol.2014.080952
  • Mironova, V. I., & Rybnikova, E. A. (2010). Stable modifications to the expression of neurohormones in the rat hypothalamus in a model of post-traumatic stress disorder. Neuroscience and Behavioral Physiology, 40(1), 111–115. https://doi.org/10.1007/s11055-009-9216-5
  • Mironova, V. I., Rakitskaya, V. V., Pivina, S. G., & Ordyan, N. E. (2015). [Stress-induced patterns of the hypothalamic Crh and vasopressin expression in female rats in a model of posttraumatic stress disorder]. Rossiiskii Fiziologicheskii Zhurnal Imeni I.M. Sechenova, 101(12), 1355–1365.
  • Mittapalli, G., Abgaryan, L., Brown, S. J., Saldanha, S. A., Volmar, C. H., Ferguson, J., Roberts, E., Hodder, P., & Rosen, H. (2010). Optimization and characterization of an antagonist for vasopressin 1a (V1a) receptor. Probe Reports from the NIH Molecular Libraries Program. National Center for Biotechnology Information (US).
  • Mlynarik, M., Zelena, D., Bagdy, G., Makara, G. B., & Jezova, D. (2007). Signs of attenuated depression-like behavior in vasopressin deficient Brattleboro rats. Hormones and Behavior, 51(3), 395–405. https://doi.org/10.1016/j.yhbeh.2006.12.007
  • Morris, M. C., Hellman, N., Abelson, J. L., & Rao, U. (2016). Cortisol, heart rate, and blood pressure as early markers of PTSD risk: A systematic review and meta-analysis. Clinical Psychology Review, 49, 79–91. https://doi.org/10.1016/j.cpr.2016.09.001
  • Muigg, P., Hetzenauer, A., Hauer, G., Hauschild, M., Gaburro, S., Frank, E., Landgraf, R., & Singewald, N. (2008). Impaired extinction of learned fear in rats selectively bred for high anxiety-evidence of altered neuronal processing in prefrontal-amygdala pathways. The European Journal of Neuroscience, 28(11), 2299–2309. https://doi.org/10.1111/j.1460-9568.2008.06511.x
  • Nie, H., Peng, Z., Lao, N., Wang, H., Chen, Y., Fang, Z., Hou, W., Gao, F., Li, X., Xiong, L., & Tan, Q. (2014). Rosmarinic acid ameliorates PTSD-like symptoms in a rat model and promotes cell proliferation in the hippocampus. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 51, 16–22. https://doi.org/10.1016/j.pnpbp.2014.01.002
  • Nishitani, S., Ikematsu, K., Takamura, T., Honda, S., Yoshiura, K. I., & Shinohara, K. (2017). Genetic variants in oxytocin receptor and arginine-vasopressin receptor 1A are associated with the neural correlates of maternal and paternal affection towards their child. Hormones and Behavior, 87, 47–56. https://doi.org/10.1016/j.yhbeh.2016.09.010
  • Onaka, T., Hamamura, M., & Yagi, K. (1986). Suppression of vasopressin secretion by classically conditioned stimuli in rats. The Japanese Journal of Physiology, 36(6), 1261–1266. https://doi.org/10.2170/jjphysiol.36.1261
  • Onaka, T., Serino, R., & Ueta, Y. (2003). Intermittent footshock facilitates dendritic vasopressin release but suppresses vasopressin synthesis within the rat supraoptic nucleus. Journal of Neuroendocrinology, 15(7), 629–632. https://doi.org/10.1046/j.1365-2826.2003.01053.x
  • Paban, V., Alescio-Lautier, B., Devigne, C., & Soumireu-Mourat, B. (1999). Fos protein expression induced by intracerebroventricular injection of vasopressin in unconditioned and conditioned mice. Brain Research, 825(1-2), 115–131. https://doi.org/10.1016/s0006-8993(99)01232-9
  • Pagani, J. H., Zhao, M., Cui, Z., Avram, S. K., Caruana, D. A., Dudek, S. M., & Young, W. S. (2015). Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Molecular Psychiatry, 20(4), 490–499. https://doi.org/10.1038/mp.2014.47
  • Paul, M. J., Peters, N. V., Holder, M. K., Kim, A. M., Whylings, J., Terranova, J. I., & de Vries, G. J. (2016). Atypical social development in vasopressin-deficient Brattleboro rats. eNeuro, 3(2), ENEURO.0150-15.2016. https://doi.org/10.1523/ENEURO.0150-15.2016
  • Ponder, C. A., Kliethermes, C. L., Drew, M. R., Muller, J., Das, K., Risbrough, V. B., Crabbe, J. C., Gilliam, T. C., & Palmer, A. A. (2007). Selection for contextual fear conditioning affects anxiety-like behaviors and gene expression. Genes, Brain, and Behavior, 6(8), 736–749. https://doi.org/10.1111/j.1601-183X.2007.00306.x
  • Poulos, A. M., Reger, M., Mehta, N., Zhuravka, I., Sterlace, S. S., Gannam, C., Hovda, D. A., Giza, C. C., & Fanselow, M. S. (2014). Amnesia for early life stress does not preclude the adult development of posttraumatic stress disorder symptoms in rats. Biological Psychiatry, 76(4), 306–314. https://doi.org/10.1016/j.biopsych.2013.10.007
  • Reijnen, A., Geuze, E., & Vermetten, E. (2017). Individual variation in plasma oxytocin and vasopressin levels in relation to the development of combat-related PTSD in a large military cohort. Journal of Psychiatric Research, 94, 88–95. https://doi.org/10.1016/j.jpsychires.2017.06.010
  • Roper, J., O'Carroll, A. M., Young, W., 3rd, & Lolait, S. (2011). The vasopressin Avpr1b receptor: molecular and pharmacological studies. Stress (Amsterdam, Netherlands), 14(1), 98–115. https://doi.org/10.3109/10253890.2010.512376
  • Rotzinger, S., Lovejoy, D. A., & Tan, L. A. (2010). Behavioral effects of neuropeptides in rodent models of depression and anxiety. Peptides, 31(4), 736–756. https://doi.org/10.1016/j.peptides.2009.12.015
  • Schatz, K. C., Kyne, R. F., Parmeter, S. L., & Paul, M. J. (2018). Investigation of social, affective, and locomotor behavior of adolescent Brattleboro rats reveals a link between vasopressin’s actions on arousal and social behavior. Hormones and Behavior, 106, 1–9. https://doi.org/10.1016/j.yhbeh.2018.08.015
  • Schmale, H., & Richter, D. (1984). Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature, 308(5961), 705–709. https://doi.org/10.1038/308705a0
  • Shanks, N., & Anisman, H. (1988). Stressor-provoked behavioral changes in six strains of mice. Behavioral Neuroscience, 102(6), 894–905. https://doi.org/10.1037//0735-7044.102.6.894
  • Shimizu, K., Nakamura, K., Yokosuka, M., & Kondo, Y. (2018). Modulation of male mouse sociosexual and anxiety-like behaviors by vasopressin receptors. Physiology & Behavior, 197, 37–41. https://doi.org/10.1016/j.physbeh.2018.09.016
  • Sluyter, F., Korte, S. M., Bohus, B., & Van Oortmerssen, G. A. (1996). Behavioral stress response of genetically selected aggressive and nonaggressive wild house mice in the shock-probe/defensive burying test. Pharmacology, Biochemistry, and Behavior, 54(1), 113–116. https://doi.org/10.1016/0091-3057(95)02164-7
  • Smeltzer, M. D., Curtis, J. T., Aragona, B. J., & Wang, Z. (2006). Dopamine, oxytocin, and vasopressin receptor binding in the medial prefrontal cortex of monogamous and promiscuous voles. Neuroscience Letters, 394(2), 146–151. https://doi.org/10.1016/j.neulet.2005.10.019
  • Smethurst, C. A., Borthwick, J. A., Gaines, S., Watson, S., Green, A., Schulz, M. J., Burton, G., Buson, A. A., & Arban, R. (2011). The characterization of a novel V1b antagonist lead series. Bioorganic & Medicinal Chemistry Letters, 21(1), 92–96. https://doi.org/10.1016/j.bmcl.2010.11.061
  • Subburaju, S., & Aguilera, G. (2007). Vasopressin mediates mitogenic responses to adrenalectomy in the rat anterior pituitary. Endocrinology, 148(7), 3102–3110. https://doi.org/10.1210/en.2007-0103
  • Surget, A., & Belzung, C. (2008). Involvement of vasopressin in affective disorders. European Journal of Pharmacology, 583(2-3), 340–349. https://doi.org/10.1016/j.ejphar.2007.11.065
  • Takarada, T., Nakamichi, N., Kakuda, T., Nakazato, R., Kokubo, H., Ikeno, S., Nakamura, S., Hinoi, E., & Yoneda, Y. (2015). Daily oral intake of theanine prevents the decline of 5-bromo-2'-deoxyuridine incorporation in hippocampal dentate gyrus with concomitant alleviation of behavioral abnormalities in adult mice with severe traumatic stress. Journal of Pharmacological Sciences, 127(3), 292–297. https://doi.org/10.1016/j.jphs.2014.12.018
  • Tamaki, K., Yamada, K., Nakamichi, N., Taniura, H., & Yoneda, Y. (2008). Transient suppression of progenitor cell proliferation through NMDA receptors in hippocampal dentate gyrus of mice with traumatic stress experience. Journal of Neurochemistry, 105(5), 1642–1655. https://doi.org/10.1111/j.1471-4159.2008.05253.x
  • Tanaka, K. I., Yagi, T., Nanba, T., & Asanuma, M. (2018). Application of single prolonged stress induces post-traumatic stress disorder-like characteristics in mice. Acta Medica Okayama, 72(5), 479–485. https://doi.org/10.18926/AMO/56245
  • Tong, W. H., Abdulai-Saiku, S., & Vyas, A. (2019). Testosterone reduces fear and causes drastic hypomethylation of arginine vasopressin promoter in medial extended amygdala of male mice. Frontiers in Behavioral Neuroscience, 13, 33. https://doi.org/10.3389/fnbeh.2019.00033
  • Torok, B., Sipos, E., Pivac, N., & Zelena, D. (2019). Modelling posttraumatic stress disorders in animals. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 90, 117–133. https://doi.org/10.1016/j.pnpbp.2018.11.013
  • van Dijken, H. H., de Goeij, D. C., Sutanto, W., Mos, J., de Kloet, E. R., & Tilders, F. J. (1993). Short inescapable stress produces long-lasting changes in the brain-pituitary-adrenal axis of adult male rats. Neuroendocrinology, 58(1), 57–64. https://doi.org/10.1159/000126512
  • Varga, J., Klausz, B., Domokos, Á., Kálmán, S., Pákáski, M., Szűcs, S., Garab, D., Zvara, Á., Puskás, L., Kálmán, J., Tímár, J., Bagdy, G., & Zelena, D. (2014). Increase in Alzheimer’s related markers preceeds memory disturbances: studies in vasopressin-deficient Brattleboro rat. Brain Research Bulletin, 100, 6–13. https://doi.org/10.1016/j.brainresbull.2013.10.010
  • Veenema, A. H., & Neumann, I. D. (2007). Neurobiological mechanisms of aggression and stress coping: a comparative study in mouse and rat selection lines. Brain, Behavior and Evolution, 70(4), 274–285. https://doi.org/10.1159/000105491
  • Veenema, A. H., Koolhaas, J. M., & de Kloet, E. R. (2004). Basal and stress-induced differences in HPA axis, 5-HT responsiveness, and hippocampal cell proliferation in two mouse lines. Annals of the New York Academy of Sciences, 1018, 255–265. https://doi.org/10.1196/annals.1296.030
  • Veenema, A. H., Meijer, O. C., de Kloet, E. R., & Koolhaas, J. M. (2003). Genetic selection for coping style predicts stressor susceptibility. Journal of Neuroendocrinology, 15(3), 256–267. https://doi.org/10.1046/j.1365-2826.2003.00986.x
  • Watters, J. J., Wilkinson, C. W., & Dorsa, D. M. (1996). Glucocorticoid regulation of vasopressin V1a receptors in rat forebrain. Brain Research. Molecular Brain Research, 38(2), 276–284. https://doi.org/10.1016/0169-328x(95)00345-s
  • Wigger, A., Sanchez, M. M., Mathys, K. C., Ebner, K., Frank, E., Liu, D., Kresse, A., Neumann, I. D., Holsboer, F., Plotsky, P. M., & Landgraf, R. (2004). Alterations in central neuropeptide expression, release, and receptor binding in rats bred for high anxiety: critical role of vasopressin. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 29(1), 1–14. https://doi.org/10.1038/sj.npp.1300290
  • Williams Avram, S. K., Lee, H. J., Fastman, J., Cymerblit-Sabba, A., Smith, A., Vincent, M., Song, J., Granovetter, M. C., Lee, S. H., Cilz, N. I., Stackmann, M., Chaturvedi, R., & Young, W. S. (2019). NMDA receptor in vasopressin 1b neurons is not required for short-term social memory, object memory or aggression. Frontiers in Behavioral Neuroscience, 13, 218. https://doi.org/10.3389/fnbeh.2019.00218
  • Yamaguchi, Y., Suzuki, T., Mizoro, Y., Kori, H., Okada, K., Chen, Y., Fustin, J.-M., Yamazaki, F., Mizuguchi, N., Zhang, J., Dong, X., Tsujimoto, G., Okuno, Y., Doi, M., & Okamura, H. (2013). Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science (New York, N.Y.), 342(6154), 85–90. https://doi.org/10.1126/science.1238599
  • Yang, C., Zhang, X., Gao, J., Wang, M., & Yang, Z. (2017). Arginine vasopressin ameliorates spatial learning impairments in chronic cerebral hypoperfusion via V1a receptor and autophagy signaling partially. Translational Psychiatry, 7(7), e1174. https://doi.org/10.1038/tp.2017.121
  • Yayou, K., Sato, Y., Ito, S., & Nakamura, M. (2008). Comparison between the central effects of CRH and AVP in steers. Physiology & Behavior, 93(3), 537–545. https://doi.org/10.1016/j.physbeh.2007.10.014
  • Yehuda, R. (2002). Post-traumatic stress disorder. The New England Journal of Medicine, 346(2), 108–114. https://doi.org/10.1056/NEJMra012941
  • Yoshii, T., Sakamoto, H., Kawasaki, M., Ozawa, H., Ueta, Y., Onaka, T., Fukui, K., & Kawata, M. (2008). The single-prolonged stress paradigm alters both the morphology and stress response of magnocellular vasopressin neurons. Neuroscience, 156(3), 466–474. https://doi.org/10.1016/j.neuroscience.2008.07.049
  • Zelena, D. (2012). Vasopressin in health and disease with a focus on affective disorders. Central Nervous System Agents in Medicinal Chemistry, 12(4), 286–303. https://doi.org/10.2174/187152412803760609
  • Zelena, D., & Engelmann, M. (2018). The Brattleboro rat: the first and still up‐to‐date mutant rodent model for neuroendocrine research. In M. Ludwig & G. Levkowitz (Eds.), Model Animals in Neuroendocrinology: From Worm to Mouse to Man. Wiley & Sons.
  • Zelena, D., Domokos, A., Jain, S. K., Jankord, R., & Filaretova, L. (2009a). The stimuli-specific role of vasopressin in the hypothalamus-pituitary-adrenal axis response to stress. The Journal of Endocrinology, 202(2), 263–278. https://doi.org/10.1677/JOE-09-0096
  • Zelena, D., Langnaese, K., Domokos, A., Pinter, O., Landgraf, R., Makara, G. B., & Engelmann, M. (2009b). Vasopressin administration into the paraventricular nucleus normalizes plasma oxytocin and corticosterone levels in Brattleboro rats. Endocrinology, 150(6), 2791–2798. https://doi.org/10.1210/en.2008-1007
  • Zelena, D., Mikics, E., Balazsfi, D., Varga, J., Klausz, B., Urban, E., Sipos, E., Biro, L., Miskolczi, C., Kovacs, K., Ferenczi, S., & Haller, J. (2016). Enduring abolishment of remote but not recent expression of conditioned fear by the blockade of calcium-permeable AMPA receptors before extinction training. Psychopharmacology, 233(11), 2065–2076. https://doi.org/10.1007/s00213-016-4255-4
  • Zelena, D., Pinter, O., Balazsfi, D. G., Langnaese, K., Richter, K., Landgraf, R., Makara, G. B., & Engelmann, M. (2015). Vasopressin signaling at brain level controls stress hormone release: The vasopressin-deficient Brattleboro rat as a model. Amino Acids, 47(11), 2245–2253. https://doi.org/10.1007/s00726-015-2026-x
  • Zhang, X., Zhao, F., Wang, C., Zhang, J., Bai, Y., Zhou, F., Wang, Z., Wu, M., Yang, W., Guo, J., & Qi, J. (2019). AVP(4-8) improves cognitive behaviors and hippocampal synaptic plasticity in the APP/PS1 mouse model of Alzheimer’s disease. Neuroscience Bulletin, 36, 254–262.
  • Zink, C. F., Stein, J. L., Kempf, L., Hakimi, S., & Meyer-Lindenberg, A. (2010). Vasopressin modulates medial prefrontal cortex-amygdala circuitry during emotion processing in humans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 30(20), 7017–7022. https://doi.org/10.1523/JNEUROSCI.4899-09.2010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.