Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 25, 2022 - Issue 1
2,122
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A single dose of ketamine cannot prevent protracted stress-induced anhedonia and neuroinflammation in rats

, , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 145-155 | Received 06 Mar 2021, Accepted 17 Feb 2022, Published online: 06 Apr 2022

References

  • Abdallah, C. G., Sanacora, G., Duman, R. S., & Krystal, J. H. (2018). The neurobiology of depression, ketamine and rapid-acting antidepressants: Is it glutamate inhibition or activation? Pharmacology & Therapeutics, 190, 148–158. https://doi.org/10.1016/j.pharmthera.2018.05.010
  • Barresi, E., Robello, M., Costa, B., Da Pozzo, E., Baglini, E., Salerno, S., Da Settimo, F., Martini, C., & Taliani, S. (2021). An update into the medicinal chemistry of translocator protein (TSPO) ligands. European Journal of Medicinal Chemistry, 209, 112924. https://doi.org/10.1016/j.ejmech.2020.112924
  • Beurel, E., Toups, M., & Nemeroff, C. B. (2020). The bidirectional relationship of depression and inflammation: Double trouble. Neuron, 107(2), 234–256. https://doi.org/10.1016/j.neuron.2020.06.002
  • Cai, M., Wang, H., & Zhang, X. (2019). Potential anti-depressive treatment maneuvers from bench to bedside. In Y. Fang (Ed.), Depressive disorders: Mechanisms, measurement and management (pp. 277–295). Springer Singapore. https://doi.org/10.1007/978-981-32-9271-0_15
  • Carvalho, L. A., Torre, J. P., Papadopoulos, A. S., Poon, L., Juruena, M. F., Markopoulou, K., Cleare, A. J., & Pariante, C. M. (2013). Lack of clinical therapeutic benefit of antidepressants is associated overall activation of the inflammatory system. Journal of Affective Disorders, 148(1), 136–140. https://doi.org/10.1016/j.jad.2012.10.036
  • Cumming, P., Burgher, B., Patkar, O., Breakspear, M., Vasdev, N., Thomas, P., Liu, G.-J., & Banati, R. (2018). Sifting through the surfeit of neuroinflammation tracers. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 38(2), 204–224. https://doi.org/10.1177/0271678X17748786
  • Czéh, B., Fuchs, E., Wiborg, O., & Simon, M. (2016). Animal models of major depression and their clinical implications. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 64, 293–310. https://doi.org/10.1016/j.pnpbp.2015.04.004
  • Dahoun, T., Calcia, M. A., Veronese, M., Bloomfield, P., Reis Marques, T., Turkheimer, F., & Howes, O. D. (2019). The association of psychosocial risk factors for mental health with a brain marker altered by inflammation: A translocator protein (TSPO) PET imaging study. Brain, Behavior, and Immunity, 80, 742–750. https://doi.org/10.1016/j.bbi.2019.05.023
  • Friedman, A. (2014). Neuroscience. Jump-starting natural resilience reverses stress susceptibility . Science (New York, N.Y.), 346(6209), 555–555. https://doi.org/10.1126/science.1260781
  • Gartlehner, G., Hansen, R. A., Morgan, L. C., Thaler, K., Lux, L., Van Noord, M., Mager, U., Thieda, P., Gaynes, B. N., Wilkins, T., Strobelberger, M., Lloyd, S., Reichenpfader, U., & Lohr, K. N. (2011). Comparative benefits and harms of second-generation antidepressants for treating major depressive disorder: An updated meta-analysis. Annals of Internal Medicine, 155(11), 772–785. https://doi.org/10.7326/0003-4819-155-11-201112060-00009
  • Gerritsen, L., Comijs, H. C., van der Graaf, Y., Knoops, A. J. G., Penninx, B. W. J. H., & Geerlings, M. I. (2011). Depression, hypothalamic pituitary adrenal axis, and hippocampal and entorhinal cortex volumes—The SMART Medea study. Biological Psychiatry, 70(4), 373–380. https://doi.org/10.1016/j.biopsych.2011.01.029
  • Ghosal, S., Duman, C. H., Liu, R.-J., Wu, M., Terwilliger, R., Girgenti, M. J., Wohleb, E., Fogaca, M. V., Teichman, E. M., Hare, B., & Duman, R. S. (2020). Ketamine rapidly reverses stress-induced impairments in GABAergic transmission in the prefrontal cortex in male rodents. Neurobiology of Disease, 134, 104669. https://doi.org/10.1016/j.nbd.2019.104669
  • Giacobbo, B. L., Doorduin, J., Moraga-Amaro, R., Nazario, L. R., Schildt, A., Bromberg, E., Dierckx, R. A. J. O., & de Vries, E. F. J. (2020). Chronic harmine treatment has a delayed effect on mobility in control and socially defeated rats. Psychopharmacology, 237(6), 1595–1606. https://doi.org/10.1007/s00213-020-05483-2
  • Guo, W., Sun, X., Liu, L., Xu, Q., Wu, R., Liu, Z., Tan, C., Chen, H., & Zhao, J.-P. (2011). Disrupted regional homogeneity in treatment-resistant depression: A resting-state fMRI study. Progress in Neuro-Psychopharmacology and Biological Psychiatry , 35(5), 1297–1302. https://doi.org/10.1016/j.pnpbp.2011.02.006
  • Hashimoto, K. (2015). Inflammatory biomarkers as differential predictors of antidepressant response. International Journal of Molecular Sciences, 16(4), 7796–7801. https://doi.org/10.3390/ijms16047796
  • Henje Blom, E., Connolly, C. G., Ho, T. C., LeWinn, K. Z., Mobayed, N., Han, L., Paulus, M. P., Wu, J., Simmons, A. N., & Yang, T. T. (2015). Altered insular activation and increased insular functional connectivity during sad and happy face processing in adolescent major depressive disorder. Journal of Affective Disorders, 178, 215–223. https://doi.org/10.1016/j.jad.2015.03.012
  • Holmes, S. E., Hinz, R., Conen, S., Gregory, C. J., Matthews, J. C., Anton-Rodriguez, J. M., Gerhard, A., & Talbot, P. S. (2018). Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: A Positron Emission Tomography Study. Biological Psychiatry, 83(1), 61–69. https://doi.org/10.1016/j.biopsych.2017.08.005
  • Jaisinghani, S., & Rosenkranz, J. A. (2015). Repeated social defeat stress enhances the anxiogenic effect of bright light on operant reward-seeking behavior in rats. Behavioural Brain Research, 290, 172–179. https://doi.org/10.1016/j.bbr.2015.04.048
  • Kato, T., Pothula, S., Liu, R. J., Duman, C. H., Terwilliger, R., Vlasuk, G. P., Saiah, E., Hahm, S., & Duman, R. S. (2019). Sestrin modulator NV-5138 produces rapid antidepressant effects via direct mTORC1 activation. The Journal of Clinical Investigation, 129(6), 2542–2554. https://doi.org/10.1172/JCI126859
  • Kiecolt-Glaser, J. K., Derry, H. M., Fagundes, C. P., & Health, B. (2015). Inflammation: Depression fans the flames and feasts on the heat. The American Journal of Psychiatry, 172(11), 1075–1091. https://doi.org/10.1176/appi.ajp.2015.15020152
  • Kopschina Feltes, P., de Vries, E. F., Juarez-Orozco, L. E., Kurtys, E., Dierckx, R. A., Moriguchi-Jeckel, C. M., & Doorduin, J. (2019). Repeated social defeat induces transient glial activation and brain hypometabolism: A positron emission tomography imaging study. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 39(3), 439–453. https://doi.org/10.1177/0271678X17747189
  • Lehmann, M. L., Cooper, H. A., Maric, D., & Herkenham, M. (2016). Social defeat induces depressive-like states and microglial activation without involvement of peripheral macrophages. Journal of Neuroinflammation, 13(1), 224. https://doi.org/10.1186/s12974-016-0672-x
  • Lehnert, W., Gregoire, M.-C., Reilhac, A., & Meikle, S. R. (2012). Characterisation of partial volume effect and region-based correction in small animal positron emission tomography (PET) of the rat brain. Neuroimage, 60(4), 2144–2157. https://doi.org/10.1016/j.neuroimage.2012.02.032
  • Leonard, B., & Maes, M. (2012). Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neuroscience and Biobehavioral Reviews, 36(2), 764–785. https://doi.org/10.1016/j.neubiorev.2011.12.005
  • Li, H., Sagar, A. P., & Kéri, S. (2018). Microglial markers in the frontal cortex are related to cognitive dysfunctions in major depressive disorder. Journal of Affective Disorders, 241, 305–310. https://doi.org/10.1016/j.jad.2018.08.021
  • Lisboa, S. F., Niraula, A., Resstel, L. B., Guimaraes, F. S., Godbout, J. P., & Sheridan, J. F. (2018). Repeated social defeat-induced neuroinflammation, anxiety-like behavior and resistance to fear extinction were attenuated by the cannabinoid receptor agonist WIN55,212-2. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 43(9), 1924–1933. https://doi.org/10.1038/s41386-018-0064-2
  • Liu, C.-H., Ma, X., Wu, X., Fan, T.-T., Zhang, Y., Zhou, F.-C., Li, L.-J., Li, F., Tie, C.-L., Li, S.-F., Zhang, D., Zhou, Z., Dong, J., Wang, Y.-J., Yao, L., & Wang, C.-Y. (2013). Resting-state brain activity in major depressive disorder patients and their siblings. Journal of Affective Disorders, 149(1–3), 299–306. https://doi.org/10.1016/j.jad.2013.02.002
  • Liu, L., Zhao, Z., Lu, L., Liu, J., Sun, J., & Dong, J. (2019). Icariin and icaritin ameliorated hippocampus neuroinflammation via mediating HMGB1 expression in social defeat model in mice. International Immunopharmacology, 75, 105799. https://doi.org/10.1016/j.intimp.2019.105799
  • Liu, Y.-Y., Zhou, X.-Y., Yang, L.-N., Wang, H.-Y., Zhang, Y.-Q., Pu, J.-C., Liu, L.-X., Gui, S.-W., Zeng, L., Chen, J.-J., Zhou, C.-J., & Xie, P. (2017). Social defeat stress causes depression-like behavior with metabolite changes in the prefrontal cortex of rats. PLoS One, 12(4), e0176725. https://doi.org/10.1371/journal.pone.0176725
  • Liu, Y., Yang, L., Yu, J., & Zhang, Y. Q. (2015). Persistent, comorbid pain and anxiety can be uncoupled in a mouse model. Physiology & Behavior, 151, 55–63. https://doi.org/10.1016/j.physbeh.2015.07.004
  • Maes, M., Song, C., & Yirmiya, R. (2012). Targeting IL-1 in depression. Expert Opinion on Therapeutic Targets, 16(11), 1097–1112. https://doi.org/10.1517/14728222.2012.718331
  • Majd, M., Saunders, E. F. H., & Engeland, C. G. (2020). Inflammation and the dimensions of depression: A review. Frontiers in Neuroendocrinology, 56, 100800. https://doi.org/10.1016/j.yfrne.2019.100800
  • Marx, C., Lex, B., Calaminus, C., Hauber, W., Backes, H., Neumaier, B., Mies, G., Graf, R., & Endepols, H. (2012). Conflict processing in the rat brain: Behavioral analysis and functional μPET imaging using [F]fluorodeoxyglucose. Frontiers in Behavioral Neuroscience, 6, 4–12. https://doi.org/10.3389/fnbeh.2012.00004
  • Mathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 3(11), e442–e2030. https://doi.org/10.1371/journal.pmed.0030442
  • Miller, A. H., Maletic, V., & Raison, C. L. (2009). Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biological Psychiatry, 65(9), 732–741. https://doi.org/10.1016/j.biopsych.2008.11.029
  • Niraula, A., Witcher, K. G., Sheridan, J. F., & Godbout, J. P. (2019). Interleukin-6 induced by social stress promotes a unique transcriptional signature in the monocytes that facilitate anxiety. Biological Psychiatry, 85(8), 679–689. https://doi.org/10.1016/j.biopsych.2018.09.030
  • Nutma, E., Ceyzériat, K., Amor, S., Tsartsalis, S., Millet, P., Owen, D. R., Papadopoulos, V., & Tournier, B. B. (2021). Cellular sources of TSPO expression in healthy and diseased brain. European Journal of Nuclear Medicine and Molecular Imaging, 49(1):146–163. https://doi.org/10.1007/s00259-020-05166-2
  • Olivares, E. L., Silva-Almeida, C., Pestana, F. M., Sonoda-Côrtes, R., Araujo, I. G., Rodrigues, N. C., Mecawi, A. S., Côrtes, W. S., Marassi, M. P., Reis, L. C., & Rocha, F. F. (2012). Social stress-induced hypothyroidism is attenuated by antidepressant treatment in rats. Neuropharmacology, 62(1), 446–456. https://doi.org/10.1016/j.neuropharm.2011.08.035
  • Pulliam, J. V. K., Dawaghreh, A. M., Alema-Mensah, E., & Plotsky, P. M. (2010). Social defeat stress produces prolonged alterations in acoustic startle and body weight gain in male Long Evans rats. Journal of Psychiatric Research, 44(2), 106–111. https://doi.org/10.1016/j.jpsychires.2009.05.005
  • Raedler, T. J. (2011). Inflammatory mechanisms in major depressive disorder. Current Opinion in Psychiatry, 24(6), 519–525. https://doi.org/10.1097/YCO.0b013e32834b9db6
  • Repple, J., Mauritz, M., Meinert, S., de Lange, S. C., Grotegerd, D., Opel, N., Redlich, R., Hahn, T., Förster, K., Leehr, E. J., Winter, N., Goltermann, J., Enneking, V., Fingas, S. M., Lemke, H., Waltemate, L., Nenadic, I., Krug, A., Brosch, K., … van den Heuvel, M. P. (2019). Severity of current depression and remission status are associated with structural connectome alterations in major depressive disorder. Molecular Psychiatry, 25(7):1550–1558. https://doi.org/10.1038/s41380-019-0603-1
  • Réus, G. Z., Carlessi, A. S., Titus, S. E., Abelaira, H. M., Ignácio, Z. M., da Luz, J. R., Matias, B. I., Bruchchen, L., Florentino, D., Vieira, A., Petronilho, F., & Quevedo, J. (2015). A single dose of S-ketamine induces long-term antidepressant effects and decreases oxidative stress in adulthood rats following maternal deprivation. Developmental Neurobiology, 75(11), 1268–1281. https://doi.org/10.1002/dneu.22283
  • Réus, G. Z., Simões, L. R., Colpo, G. D., Scaini, G., Oses, J. P., Generoso, J. S., Prossin, A. R., Kaddurah-Daouk, R., Quevedo, J., & Barichello, T. (2017). Ketamine potentiates oxidative stress and influences behavior and inflammation in response to lipolysaccharide (LPS) exposure in early life. Neuroscience, 353, 17–25. https://doi.org/10.1016/j.neuroscience.2017.04.016
  • Richards, E. M., Zanotti-Fregonara, P., Fujita, M., Newman, L., Farmer, C., Ballard, E. D., Machado-Vieira, R., Yuan, P., Niciu, M. J., Lyoo, C. H., Henter, I. D., Salvadore, G., Drevets, W. C., Kolb, H., Innis, R. B., & Zarate C. A. Jr. (2018). PET radioligand binding to translocator protein (TSPO) is increased in unmedicated depressed subjects. EJNMMI Research, 8(1), 57. https://doi.org/10.1186/s13550-018-0401-9
  • Rincón-Cortés, M., & Grace, A. A. (2020). Antidepressant effects of ketamine on depression-related phenotypes and dopamine dysfunction in rodent models of stress. Behavioural Brain Research, 379, 112367. https://doi.org/10.1016/j.bbr.2019.112367
  • Schwarz, A. J., Danckaert, A., Reese, T., Gozzi, A., Paxinos, G., Watson, C., Merlo-Pich, E. V., & Bifone, A. (2006). A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: Application to pharmacological MRI. Neuroimage, 32(2), 538–550. https://doi.org/10.1016/j.neuroimage.2006.04.214
  • Setiawan, E., Attwells, S., Wilson, A. A., Mizrahi, R., Rusjan, P. M., Miler, L., Xu, C., Sharma, S., Kish, S., Houle, S., & Meyer, J. H. (2018). Association of translocator protein total distribution volume with duration of untreated major depressive disorder: A cross-sectional study. The Lancet Psychiatry, 5(4), 339–347. https://doi.org/10.1016/S2215-0366(18)30048-8
  • Setiawan, E., Wilson, A. A., Mizrahi, R., Rusjan, P. M., Miler, L., Rajkowska, G., Suridjan, I., Kennedy, J. L., Rekkas, V., Houle, S., & Meyer, J. H. (2015). Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry, 72(3), 268–275. https://doi.org/10.1001/jamapsychiatry.2014.2427
  • Sprengelmeyer, R., Steele, J. D., Mwangi, B., Kumar, P., Christmas, D., Milders, M., & Matthews, K. (2011). The insular cortex and the neuroanatomy of major depression. Journal of Affective Disorders, 133(1–2), 120–127. https://doi.org/10.1016/j.jad.2011.04.004
  • Su, L., Faluyi, Y. O., Hong, Y. T., Fryer, T. D., Mak, E., Gabel, S., Hayes, L., Soteriades, S., Williams, G. B., Arnold, R., Passamonti, L., Rodríguez, P. V., Surendranathan, A., Bevan-Jones, R. W., Coles, J., Aigbirhio, F., Rowe, J. B., & O’Brien, J. T. (2016). Neuroinflammatory and morphological changes in late-life depression: The NIMROD study. The British Journal of Psychiatry: The Journal of Mental Science, 209(6), 525–526. https://doi.org/10.1192/bjp.bp.116.190165
  • Tornese, P., Sala, N., Bonini, D., Bonifacino, T., La Via, L., Milanese, M., Treccani, G., Seguini, M., Ieraci, A., Mingardi, J., Nyengaard, J. R., Calza, S., Bonanno, G., Wegener, G., Barbon, A., Popoli, M., & Musazzi, L. (2019). Chronic mild stress induces anhedonic behavior and changes in glutamate release, BDNF trafficking and dendrite morphology only in stress vulnerable rats. The rapid restorative action of ketamine. Neurobiology of Stress, 10, 100160. https://doi.org/10.1016/j.ynstr.2019.100160
  • Vállez Garcia, D., Casteels, C., Schwarz, A. J., Dierckx, R. A. J. O., Koole, M., & Doorduin, J. (2015). A standardized method for the construction of tracer specific PET and SPECT rat brain templates: Validation and implementation of a toolbox. PLoS One, 10(3), e0122363. https://doi.org/10.1371/journal.pone.0122363
  • Van Laeken, N., Pauwelyn, G., Dockx, R., Descamps, B., Brans, B., Peremans, K., Baeken, C., Goethals, I., Vanhove, C., & De Vos, F. (2018). Regional alterations of cerebral [18F]FDG metabolism in the chronic unpredictable mild stress- and the repeated corticosterone depression model in rats. Journal of Neural Transmission (Vienna), 125(9), 1381–1393. https://doi.org/10.1007/s00702-018-1899-8
  • Viana, G. S. B., Do Vale, E. M., de Araujo, A. R. A., Coelho, N. C., Andrade, S. M., da Costa, R. O., de Aquino, P. E. A., de Sousa, C. N. S., de Medeiros, I. S., de Vasconcelos, S. M. M., & Neves, K. R. T. (2021). Rapid and long-lasting antidepressant-like effects of ketamine and their relationship with the expression of brain enzymes, bdnf, and astrocytes. Brazilian Journal of Medical and Biological Research, 54, 1–9. https://doi.org/10.1590/1414-431x202010107
  • Wan, Y.-Q., Feng, J.-G., Li, M., Wang, M.-Z., Liu, L., Liu, X., Duan, X.-X., Zhang, C.-X., & Wang, X.-B. (2018). Prefrontal cortex miR-29b-3p plays a key role in the antidepressant-like effect of ketamine in rats. Experimental & Molecular Medicine, 50(10), 1–14. https://doi.org/10.1038/s12276-018-0164-4
  • Wang, C.-Q., Ye, Y., Chen, F., Han, W.-C., Sun, J.-M., Lu, X., Guo, R., Cao, K., Zheng, M.-J., & Liao, L.-C. (2017). Posttraumatic administration of a sub-anesthetic dose of ketamine exerts neuroprotection via attenuating inflammation and autophagy. Neuroscience, 343, 30–38. https://doi.org/10.1016/j.neuroscience.2016.11.029
  • Wang, Y.-L., Han, Q.-Q., Gong, W.-Q., Pan, D.-H., Wang, L.-Z., Hu, W., Yang, M., Li, B., Yu, J., & Liu, Q. (2018). Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. Journal of Neuroinflammation, 15(1), 21. https://doi.org/10.1186/s12974-018-1054-3
  • Wei, K., Bao, W., Zhao, Z., Zhou, W., Liu, J., Wei, Y., Li, M., Wu, X., Liu, B., Du, Y., Gong, W., & Dong, J. (2018). Changes of the brain activities after chronic restraint stress in rats: A study based on 18F-FDG PET. Neuroscience Letters, 665, 104–109. https://doi.org/10.1016/j.neulet.2017.11.047
  • Werry, E. L., Bright, F. M., Piguet, O., Ittner, L. M., Halliday, G. M., Hodges, J. R., Kiernan, M. C., Loy, C. T., Kril, J. J., & Kassiou, M. (2019). Recent developments in TSPO PET imaging as a biomarker of neuroinflammation in neurodegenerative disorders. International Journal of Molecular Sciences, 20(13), 3161. https://doi.org/10.3390/ijms20133161
  • Xiong, Z., Fujita, Y., Zhang, K., Pu, Y., Chang, L., Ma, M., Chen, J., & Hashimoto, K. (2019a). Beneficial effects of (R)-ketamine, but not its metabolite (2R,6R)-hydroxynorketamine, in the depression-like phenotype, inflammatory bone markers, and bone mineral density in a chronic social defeat stress model. Behavioural Brain Research, 368, 111904. https://doi.org/10.1016/j.bbr.2019.111904
  • Xiong, Z., Zhang, K., Ishima, T., Ren, Q., Ma, M., Pu, Y., Chang, L., Chen, J., & Hashimoto, K. (2019b). Lack of rapid antidepressant effects of Kir4.1 channel inhibitors in a chronic social defeat stress model: Comparison with (R)-ketamine. Pharmacology, Biochemistry and Behavior, 176, 57–62. https://doi.org/10.1016/j.pbb.2018.11.010
  • Yang, H., Wang, C., Ji, G., Feng, Z., Duan, J., Chen, F., Zhou, X. J., Shi, Y., & Xie, H. (2019). Aberrant interhemispheric functional connectivity in first-episode, drug-naïve major depressive disorder. Brain Imaging and Behavior, 13(5), 1302–1310. https://doi.org/10.1007/s11682-018-9917-x
  • Yao, Z., Wang, L., Lu, Q., Liu, H., & Teng, G. (2009). Regional homogeneity in depression and its relationship with separate depressive symptom clusters: A resting-state fMRI study. Journal of Affective Disorders, 115(3), 430–438. https://doi.org/10.1016/j.jad.2008.10.013
  • Yin, Z., Chang, M., Wei, S., Jiang, X., Zhou, Y., Cui, L., Lv, J., Wang, F., & Tang, Y. (2018). Decreased functional connectivity in insular subregions in depressive episodes of bipolar disorder and major depressive disorder. Frontiers in Neuroscience, 12, 842–849. https://doi.org/10.3389/fnins.2018.00842
  • Yoshimura, R., Hori, H., Ikenouchi-Sugita, A., Umene-Nakano, W., Ueda, N., & Nakamura, J. (2009). Higher plasma interleukin-6 (IL-6) level is associated with SSRI- or SNRI-refractory depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33(4), 722–726. https://doi.org/10.1016/j.pnpbp.2009.03.020
  • Zhang, G. F., Wang, J., Han, J. F., Guo, J., Xie, Z. M., Pan, W., Yang, J. J., & Sun, K. J. (2016). Acute single dose of ketamine relieves mechanical allodynia and consequent depression-like behaviors in a rat model. Neuroscience Letters, 631, 7–12. https://doi.org/10.1016/j.neulet.2016.08.006
  • Zhang, J., Qu, Y., Chang, L., Pu, Y., & Hashimoto, K. (2019). (R)-Ketamine rapidly ameliorates the decreased spine density in the medial prefrontal cortex and hippocampus of susceptible mice after chronic social defeat stress. International Journal of Neuropsychopharmacology, 22(10), 675–679. https://doi.org/10.1093/ijnp/pyz048
  • Zhang, L., Hu, K., Shao, T., Hou, L., Zhang, S., Ye, W., Josephson, L., Meyer, J. H., Zhang, M.-R., Vasdev, N., Wang, J., Xu, H., Wang, L., & Liang, S. H. (2021). Recent developments on PET radiotracers for TSPO and their applications in neuroimaging. Acta Pharmaceutica Sinica. B, 11(2), 373–393. https://doi.org/10.1016/j.apsb.2020.08.006
  • Zimmerman, M., & Thongy, T. (2007). How often do SSRIs and other new-generation antidepressants lose their effect during continuation treatment? Evidence suggesting the rate of true tachyphylaxis during continuation treatment is low. Journal of Clinical Psychiatry, 68(8), 1271–1276. https://doi.org/10.4088/jcp.v68n0814