Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 25, 2022 - Issue 1
1,156
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The pathological involvement of spinal cord EphB2 in visceral sensitization in male rats

, ORCID Icon, , , , , & ORCID Icon show all
Pages 166-178 | Received 04 Feb 2021, Accepted 13 Mar 2022, Published online: 18 Apr 2022

References

  • Battaglia, A. A., Sehayek, K., Grist, J., McMahon, S. B., & Gavazzi, I. (2003). EphB receptors and ephrin-B ligands regulate spinal sensory connectivity and modulate pain processing. Nature Neuroscience, 6(4), 339–340. https://doi.org/10.1038/nn1034
  • Blanke, M. L., & VanDongen, A. (2009). Activation mechanisms of the NMDA receptor.
  • Bundesen, L. Q., Scheel, T. A., Bregman, B. S., & Kromer, L. F. (2003). Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. The Journal of Neuroscience, 23(21), 7789–7800. https://doi.org/10.1523/JNEUROSCI.23-21-07789.2003
  • Campbell, J. N., & Meyer, R. A. (2006). Mechanisms of neuropathic pain. Neuron, 52(1), 77–92. https://doi.org/10.1016/j.neuron.2006.09.021
  • Cao, J. L., Ruan, J. P., Ling, D. Y., Guan, X. H., Bao, Q., Yuan, Y., Zhang, L. C., Song, X. J., & Zeng, Y. M. (2008). Activation of peripheral ephrinBs/EphBs signaling induces hyperalgesia through a MAPKs-mediated mechanism in mice. Pain, 139(3), 617–631. https://doi.org/10.1016/j.pain.2008.06.023
  • Cervero, F. (2009). Visceral versus somatic pain: similarities and differences. Digestive Diseases, 27(Suppl 1), 3–10. https://doi.org/10.1159/000268115
  • Chen, S., Yang, G., Zhu, Y., Liu, Z., Wang, W., Wei, J., Li, K., Wu, J., Chen, Z., Li, Y., Mu, S., OuYang, L., & Lei, W. (2016). A comparative study of three interneuron types in the rat spinal cord. PLOS One, 11(9), e162969.
  • Cisse, M., & Checler, F. (2015). Eph receptors: New players in Alzheimer's disease pathogenesis. Neurobiology of Disease, 73, 137–149. https://doi.org/10.1016/j.nbd.2014.08.028
  • Coggeshall, R. E. (2005). Fos, nociception and the dorsal horn. Progress in Neurobiology, 77(5), 299–352. https://doi.org/10.1016/j.pneurobio.2005.11.002
  • Creekmore, A. L., Hong, S., Zhu, S., Xue, J., & Wiley, J. W. (2018). Chronic stress-associated visceral hyperalgesia correlates with severity of intestinal barrier dysfunction. Pain, 159(9), 1777–1789. https://doi.org/10.1097/j.pain.0000000000001271
  • Davy, A., Aubin, J., & Soriano, P. (2004). Ephrin-B1 forward and reverse signaling are required during mouse development. Genes & Development, 18(5), 572–583. https://doi.org/10.1101/gad.1171704
  • Gosselin, R. D., O'Connor, R. M., Tramullas, M., Julio-Pieper, M., Dinan, T. G., & Cryan, J. F. (2010). Riluzole normalizes early-life stress-induced visceral hypersensitivity in rats: Role of spinal glutamate reuptake mechanisms. Gastroenterology, 138(7), 2418–2425. https://doi.org/10.1053/j.gastro.2010.03.003
  • Hanamura, K., Washburn, H. R., Sheffler-Collins, S. I., Xia, N. L., Henderson, N., Tillu, D. V., Hassler, S., Spellman, D. S., Zhang, G., Neubert, T. A., Price, T. J., & Dalva, M. B. (2017). Extracellular phosphorylation of a receptor tyrosine kinase controls synaptic localization of NMDA receptors and regulates pathological pain. PLOS Biology, 15(7), e2002457. https://doi.org/10.1371/journal.pbio.2002457
  • Harding, K., Simpson, T., & Kearney, D. J. (2018). Reduced symptoms of post-traumatic stress disorder and irritable bowel syndrome following mindfulness-based stress reduction among veterans. Journal of Alternative and Complementary Medicine, 24(12), 1159–1165. https://doi.org/10.1089/acm.2018.0135
  • Harton, L. R., Richardson, J. R., Armendariz, A., & Nazarian, A. (2017). Dissociation of morphine analgesic effects in the sensory and affective components of formalin-induced spontaneous pain in male and female rats. Brain Research, 1658, 36–41. https://doi.org/10.1016/j.brainres.2017.01.011
  • He, Y. Q., Chen, Q., Ji, L., Wang, Z. G., Bai, Z. H., Stephens, R. J., & Yang, M. (2013). PKCgamma receptor mediates visceral nociception and hyperalgesia following exposure to PTSD-like stress in the spinal cord of rats. Molecular Pain, 9, 35.
  • He, Y. Q., Lang, X. Q., Lin, L., Ji, L., Yuan, X. Y., Chen, Q., Ran, Y. M., Chen, H. S., Li, L., Wang, J. M., Wang, Z. G., Gregersen, H., Zou, D. W., Liang, H. P., & Yang, M. (2017). P2X3 receptor-mediated visceral hyperalgesia and neuronal sensitization following exposure to PTSD-like stress in the dorsal root ganglia of rats. Neurogastroenterology & Motility, 29(3), e12976. https://doi.org/10.1111/nmo.12976
  • Iorio, N., Makipour, K., Palit, A., & Friedenberg, F. K. (2014). Post-traumatic stress disorder is associated with irritable bowel syndrome in African Americans. Journal of Neurogastroenterology and Motility, 20(4), 523–530. https://doi.org/10.5056/jnm14040
  • Johnson, A. C., Farmer, A. D., Ness, T. J., & Greenwood-Van Meerveld, B. (2019). Critical evaluation of animal models of visceral pain for therapeutics development: A focus on irritable bowel syndrome. Neurogastroenterology and Motility, 32(4), e13776. https://doi.org/10.1111/nmo.13776
  • Joo, I. L., Lai, A. Y., Bazzigaluppi, P., Koletar, M. M., Dorr, A., Brown, M. E., Thomason, L. A., Sled, J. G., McLaurin, J., & Stefanovic, B. (2017). Early neurovascular dysfunction in a transgenic rat model of Alzheimer's disease. Scientific Reports, 7(1), 46427. https://doi.org/10.1038/srep46427
  • Keszthelyi, D., Troost, F. J., & Masclee, A. A. (2012). Irritable bowel syndrome: Methods, mechanisms, and pathophysiology. Methods to assess visceral hypersensitivity in irritable bowel syndrome. American Journal of Physiology-Gastrointestinal and Liver Physiology, 303(2), G141–G154. https://doi.org/10.1152/ajpgi.00060.2012
  • Kuner, R. (2010). Central mechanisms of pathological pain. Nature Medicine, 16(11), 1258–1266. https://doi.org/10.1038/nm.2231
  • Larauche, M., Mulak, A., Kim, Y. S., Labus, J., Million, M., & Tache, Y. (2012). Visceral analgesia induced by acute and repeated water avoidance stress in rats: sex difference in opioid involvement. Neurogastroenterology and Motility, 24(11), 1031–1547. https://doi.org/10.1111/j.1365-2982.2012.01980.x
  • Larauche, M., Mulak, A., & Taché, Y. (2011). Stress-related alterations of visceral sensation: animal models for irritable bowel syndrome study. Journal of Neurogastroenterology and Motility, 17(3), 213–234. https://doi.org/10.5056/jnm.2011.17.3.213
  • Lee, S. H., Ok, S.-H., Subbarao, R. B., Kim, J.-Y., Bae, S. I., Hwang, Y., Tak, S., & Sohn, J.-T. (2020). Otoprotective effects of zingerone on cisplatin-induced ototoxicity. International Journal of Molecular Sciences, 17(1), 21–32. https://doi.org/10.3390/ijms21103503
  • Liu, S., Liu, W. T., Liu, Y. P., Dong, H. L., Henkemeyer, M., Xiong, L. Z., & Song, X. J. (2011). Blocking EphB1 receptor forward signaling in spinal cord relieves bone cancer pain and rescues analgesic effect of morphine treatment in rodents. Cancer Research, 71(13), 4392–4402. https://doi.org/10.1158/0008-5472.CAN-10-3870
  • Liu, X. G., & Zhou, L. J. (2014). Long-term potentiation at spinal C-fiber synapses: a target for pathological pain. Current Pharmaceutical Design, 21(7), 895–905. https://doi.org/10.2174/1381612820666141027115949
  • Liu, Y., Xu, H., Geng, Y., Xu, D., Zhang, L., Yang, Y., Wei, Z., Zhang, B., Li, S., Gao, X., Wang, R., Zhang, X., Brann, D., & Yang, F. (2017). Dibutyryl-cAMP attenuates pulmonary fibrosis by blocking myofibroblast differentiation via PKA/CREB/CBP signaling in rats with silicosis. Respiratory Research, 18(1), 38. https://doi.org/10.1186/s12931-017-0523-z
  • Louwies, T., Ligon, C. O., Johnson, A. C., & Greenwood Van Meerveld, B. (2019). Targeting epigenetic mechanisms for chronic visceral pain: A valid approach for the development of novel therapeutics. Neurogastroenterology and Motility, 31(3), e13500. https://doi.org/10.1111/nmo.13500
  • Miampamba, M., Million, M., Yuan, P. Q., Larauche, M., & Tache, Y. (2007). Water avoidance stress activates colonic myenteric neurons in female rats. Neuroreport, 18(7), 679–682. https://doi.org/10.1097/WNR.0b013e3280bef7f8
  • O'Brien, J. A., & Austin, P. J. (2019). Effect of photobiomodulation in rescuing lipopolysaccharide-induced dopaminergic cell loss in the male Sprague-Dawley rat. Biomolecules, 9(8), 381. https://doi.org/10.3390/biom9080381
  • Rong, R., Xia, X., Peng, H., Li, H., You, M., Liang, Z., Yao, F., Yao, X., Xiong, K., Huang, J., Zhou, R., & Ji, D. (2020). Cdk5-mediated Drp1 phosphorylation drives mitochondrial defects and neuronal apoptosis in radiation-induced optic neuropathy. Cell Death & Disease, 11(9), 720. https://doi.org/10.1038/s41419-020-02922-y
  • Rosztoczy, A., Fioramonti, J., Jarmay, K., Barreau, F., Wittmann, T., & Bueno, L. (2003). Influence of sex and experimental protocol on the effect of maternal deprivation on rectal sensitivity to distension in the adult rat. Neurogastroenterology and Motility, 15(6), 679–686. https://doi.org/10.1046/j.1350-1925.2003.00451.x
  • Ruan, J., Zhang, H., Lu, X., Liu, Y., & Cao, J. (2010). EphrinBs/EphBs signaling is involved in modulation of spinal nociceptive processing through a mitogen-activated protein kinases-dependent mechanism. Anesthesiology, 112(5), 1234–1249. https://doi.org/10.1097/ALN.0b013e3181d3e0df
  • Simren, M., Tornblom, H., Palsson, O. S., Van Oudenhove, L., Whitehead, W. E., & Tack, J. (2019). Cumulative effects of psychologic distress, visceral hypersensitivity, and abnormal transit on patient-reported outcomes in irritable bowel syndrome. Gastroenterology, 157(2), 391–402. https://doi.org/10.1053/j.gastro.2019.04.019
  • Smith, T., Al, O. M., Sathish, J., & Djouhri, L. (2015). Increased expression of HCN2 channel protein in L4 dorsal root ganglion neurons following axotomy of L5- and inflammation of L4-spinal nerves in rats. Neuroscience, 295, 90–102. https://doi.org/10.1016/j.neuroscience.2015.03.041
  • Song, X., Cao, J., Li, H., Zheng, J., Song, X., & Xiong, L. (2008). Upregulation and redistribution of ephrinB and EphB receptor in dorsal root ganglion and spinal dorsal horn neurons after peripheral nerve injury and dorsal rhizotomy. European Journal of Pain, 12(8), 1031–1039. https://doi.org/10.1016/j.ejpain.2008.01.011
  • Song, X., Zheng, J., Cao, J., Liu, W., Song, X., & Huang, Z. (2008). EphrinB-EphB receptor signaling contributes to neuropathic pain by regulating neural excitability and spinal synaptic plasticity in rats. Pain, 139(1), 168–180. https://doi.org/10.1016/j.pain.2008.03.019
  • Sripada, R. K., Rauch, S. A., & Liberzon, I. (2016). Psychological mechanisms of PTSD and its treatment. Current Psychiatry Reports, 18(11), 99. https://doi.org/10.1007/s11920-016-0735-9
  • Sun, R., Zhang, W., Bo, J., Zhang, Z., Lei, Y., Huo, W., Liu, Y., Ma, Z., & Gu, X. (2017). Spinal activation of alpha7-nicotinic acetylcholine receptor attenuates posttraumatic stress disorder-related chronic pain via suppression of glial activation. Neuroscience, 344, 243–254. https://doi.org/10.1016/j.neuroscience.2016.12.029
  • Sun, Y., Liu, F. L., Song, G. Q., Qian, W., & Hou, X. H. (2006). Effects of acute and chronic restraint stress on visceral sensitivity and neuroendocrine hormones in rats. Chinese Journal of Digestive Diseases, 7(3), 149–155. https://doi.org/10.1111/j.1443-9573.2006.00260.x
  • Tabata, M., Terayama, R., Maruhama, K., Iida, S., & Sugimoto, T. (2018). Differential induction of c-Fos and phosphorylated ERK by a noxious stimulus after peripheral nerve injury. International Journal of Neuroscience, 128(3), 208–218. https://doi.org/10.1080/00207454.2017.1381697
  • Takasu, M. A., Dalva, M. B., Zigmond, R. E., & Greenberg, M. E. (2002). Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science, 295(5554), 491–495. https://doi.org/10.1126/science.1065983
  • Theofanous, S. A., Florens, M. V., Appeltans, I., Denadai Souza, A., Wood, J. N., Wouters, M. M., & Boeckxstaens, G. E. (2020). Ephrin‐B2 signaling in the spinal cord as a player in post‐inflammatory and stress‐induced visceral hypersensitivity. Neurogastroenterology & Motility, 32(4), e13782. https://doi.org/10.1111/nmo.13782
  • Vasileiou, I., Adamakis, I., Patsouris, E., & Theocharis, S. (2013). Ephrins and pain. Expert Opinion on Therapeutic Targets, 17(8), 879–887. https://doi.org/10.1517/14728222.2013.801456
  • Wang, Y., Ying, G. X., Liu, X., Wang, W. Y., Dong, J. H., Ni, Z. M., & Zhou, C. F. (2005). Induction of ephrin-B1 and EphB receptors during denervation-induced plasticity in the adult mouse hippocampus. European Journal of Neuroscience, 21(9), 2336–2346. https://doi.org/10.1111/j.1460-9568.2005.04093.x
  • Xia, W. S., Peng, Y. N., Tang, L. H., Jiang, L. S., Yu, L. N., Zhou, X. L., Zhang, F. J., & Yan, M. (2014). Spinal ephrinB/EphB signalling contributed to remifentanil-induced hyperalgesia via NMDA receptor. European Journal of Pain, 18(9), 1231–1239. https://doi.org/10.1002/j.1532-2149.2014.00478.x
  • Yang, M., Chen, W., Zhang, Y., Yang, R., Wang, Y., & Yuan, H. (2018). EphrinB/EphB signaling contributes to spinal nociceptive processing via calpain-1 and caspase-3. Molecular Medicine Reports, 18(1), 268–278. https://doi.org/10.3892/mmr.2018.8996
  • Yu, L., Zhou, X., Yu, J., Huang, H., Jiang, L., Zhang, F., Cao, J., & Yan, M. (2012). PI3K contributed to modulation of spinal nociceptive information related to ephrinBs/EphBs. PLOS One, 7(8), e40930. https://doi.org/10.1371/journal.pone.0040930
  • Yu, L. N., Sun, L. H., Wang, M., Wang, L. J., Wu, Y., Yu, J., Wang, W. N., Zhang, F. J., Li, X., & Yan, M. (2017). EphrinB-EphB signaling induces hyperalgesia through ERK5/CREB pathway in rats. Pain Physician, 20(4), E563–E574.
  • Zhang, F., Liu, Q., Wang, Z., Xie, W., Sheng, X., Zhang, H., Yuan, Z., Han, Y., & Weng, Q. (2017). Seasonal expression of oxytocin and oxytocin receptor in the scented gland of male muskrat (Ondatra zibethicus). Scientific Reports, 7(1), 16627. https://doi.org/10.1038/s41598-017-16973-3
  • Zhang, R., Zou, N., Li, J., Lv, H., Wei, J., Fang, X., & Qian, J. (2011). Elevated expression of C-Fos in central nervous system correlates with visceral hypersensitivity in irritable bowel syndrome (IBS): a new target for IBS treatment. International Journal of Colorectal Disease, 26(8), 1035–1044. https://doi.org/10.1007/s00384-011-1153-4
  • Zhang, Y., Simpson-Durand, C. D., & Standifer, K. M. (2015). Nociceptin/orphanin FQ peptide receptor antagonist JTC-801 reverses pain and anxiety symptoms in a rat model of post-traumatic stress disorder. British Journal of Pharmacology, 172(2), 571–582. https://doi.org/10.1111/bph.12701
  • Zhao, J., Yuan, G., Cendan, C. M., Nassar, M. A., Lagerstrom, M. C., Kullander, K., Gavazzi, I., & Wood, J. N. (2010). Nociceptor-expressed ephrin-B2 regulates inflammatory and neuropathic pain. Molecular Pain, 6, 77.
  • Zhou, X. L., Wang, Y., Zhang, C. J., Yu, L. N., Cao, J. L., & Yan, M. (2015a). PKA is required for the modulation of spinal nociceptive information related to ephrinB-EphB signaling in mice. Neuroscience, 284, 546–554. https://doi.org/10.1016/j.neuroscience.2014.10.025
  • Zhou, X. L., Wang, Y., Zhang, C. J., Yu, L. N., Cao, J. L., & Yan, M. (2015b). COX-2 is required for the modulation of spinal nociceptive information related to ephrinB/EphB signalling. European Journal of Pain, 19(9), 1277–1287. https://doi.org/10.1002/ejp.657
  • Zhou, X. L., Zhang, C. J., Wang, Y., Wang, M., Sun, L. H., Yu, L. N., Cao, J. L., & Yan, M. (2015). EphrinB-EphB signaling regulates spinal pain processing via PKCγ. Neuroscience, 307, 64–72. https://doi.org/10.1016/j.neuroscience.2015.08.048
  • Zhu, Y., Liu, B., Zheng, X., Wu, J., Chen, S., Chen, Z., Chen, T., Huang, Z., & Lei, W. (2019). Partial decortication ameliorates dopamine depletion-induced striatal neuron lesions in rats. International Journal of Molecular Medicine, 44(4), 1414–1424. https://doi.org/10.3892/ijmm.2019.4288
  • Zhu, Y. F., Wang, W. P., Zheng, X. F., Chen, Z., Chen, T., Huang, Z. Y., Jia, L. J., & Lei, W. L. (2020). Characteristic response of striatal astrocytes to dopamine depletion. Neural Regeneration Research, 15(4), 724–730.