Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 25, 2022 - Issue 1
789
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Protective effects of nanocurcumin against stress-induced deterioration in the intestine

, , , , &
Pages 337-346 | Received 17 Feb 2022, Accepted 28 Sep 2022, Published online: 11 Nov 2022

References

  • Ahmad, R., Sorrell, M., Batra, S., Dhawan, P., & Singh, A. (2017). Gut permeability and mucosal inflammation: Bad, good or context dependent. Mucosal Immunology, 10(2), 307–317. https://doi.org/10.1038/mi.2016.128
  • Ait-Belgnaoui, A., Durand, H., Cartier, C., Chaumaz, G., Eutamene, H., Ferrier, L., Houdeau, E., Fioramonti, J., Bueno, L., & Theodorou, V. (2012). Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology, 37(11), 1885–1895. https://doi.org/10.1016/j.psyneuen.2012.03.024
  • Alinaghipour, A., Ashabi, G., Riahi, E., Soheili, M., Salami, M., & Nabavizadeh, F. (2022). Effects of nano-curcumin on noise stress-induced hippocampus-dependent memory impairment: Behavioral and electrophysiological aspects. Pharmacological Reports, 74(3), 461–469. https://doi.org/10.1007/s43440-022-00354-3
  • Alinaghipour, A., Salami, M., & Nabavizadeh, F. (2022). Nanocurcumin substantially alleviates noise stress-induced anxiety-like behavior: The roles of tight junctions and NMDA receptors in the hippocampus. Behavioural Brain Research, 432, 113975. https://doi.org/10.1016/j.bbr.2022.113975
  • Bijlsma, P. B., Van Raaij, M. T. M., Dobbe, C. J. G., Timmerman, A., Kiliaan, A. J., Taminiau, J. A. J. M., & Groot, J. A. (2001). Subchronic mild noise stress increases HRP permeability in rat small intestine in vitro. Physiology & Behavior, 73(1–2), 43–49. https://doi.org/10.1016/S0031-9384(01)00424-3
  • Bischoff, S. C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J.-D., Serino, M., Tilg, H., Watson, A., & Wells, J. M. (2014). Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterology, 14(1), 1–25. https://doi.org/10.1186/s12876-014-0189-7
  • Bo, C., Wu, M. Q., Zhu, L. X., She, X. J., Qiang, M., & Liu, H. T. (2013). Effect of chronic noise exposure on expression of N-methyl-D-aspartic acid receptor 2B and Tau phosphorylation in hippocampus of rats. Biomedical and Environmental Sciences, 26(3), 163–168.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Buret, A. G., & Bhargava, A. (2014). Modulatory mechanisms of enterocyte apoptosis by viral, bacterial and parasitic pathogens. Critical Reviews in Microbiology, 40(1), 1–17. https://doi.org/10.3109/1040841X.2012.746952
  • Burge, K., Gunasekaran, A., Eckert, J., & Chaaban, H. (2019). Curcumin and intestinal inflammatory diseases: Molecular mechanisms of protection. International Journal of Molecular Sciences, 20(8), 1912. https://doi.org/10.3390/ijms20081912
  • Chi, H., Cao, W., Zhang, M., Su, D., Yang, H., Li, Z., Li, C., She, X., Wang, K., Gao, X., Ma, K., Zheng, P., Li, X., & Cui, B. (2021). Environmental noise stress disturbs commensal microbiota homeostasis and induces oxi-inflammmation and AD-like neuropathology through epithelial barrier disruption in the EOAD mouse model. Journal of Neuroinflammation, 18(1), 9. https://doi.org/10.1186/s12974-020-02053-3
  • Dodiya, H. B., Forsyth, C. B., Voigt, R. M., Engen, P. A., Patel, J., Shaikh, M., Green, S. J., Naqib, A., Roy, A., Kordower, J. H., Pahan, K., Shannon, K. M., & Keshavarzian, A. (2020). Chronic stress-induced gut dysfunction exacerbates Parkinson’s disease phenotype and pathology in a rotenone-induced mouse model of Parkinson’s disease. Neurobiology of Disease, 135, 104352. https://doi.org/10.1016/j.nbd.2018.12.012
  • Dos Santos Filho, E. X., Ávila, P. H. M., Bastos, C. C. C., Batista, A. C., Naves, L. N., Marreto, R. N., Lima, E. M., Mendonca, E. F., & Valadares, M. C. (2016). Curcuminoids from Curcuma longaL. reduced intestinal mucositis induced by 5-fluorouracil in mice: Bioadhesive, proliferative, anti-inflammatory and antioxidant effects. Toxicology Reports, 3, 55–62. https://doi.org/10.1016/j.toxrep.2015.10.010
  • Ficek, J., Wyskida, K., Ficek, R., Wajda, J., Klein, D., Witkowicz, J., Rotkegel, S., Spiechowicz-Zatoń, U., Kocemba-Dyczek, J., Ciepał, J., Więcek, A., Olszanecka-Glinianowicz, M., & Chudek, J. (2017). Relationship between plasma levels of zonulin, bacterial lipopolysaccharides, D-lactate and markers of inflammation in haemodialysis patients. International Urology and Nephrology, 49(4), 717–725. https://doi.org/10.1007/s11255-016-1495-5
  • Flora, G., Gupta, D., & Tiwari, A. (2013). Nanocurcumin: A promising therapeutic advancement over native curcumin. Critical Reviews™ in Therapeutic Drug Carrier Systems, 30(4), 331–368. https://doi.org/10.1615/critrevtherdrugcarriersyst.2013007236
  • Fukudome, I., Kobayashi, M., Dabanaka, K., Maeda, H., Okamoto, K., Okabayashi, T., Baba, R., Kumagai, N., Oba, K., Fujita, M., & Hanazaki, K. (2014). Diamine oxidase as a marker of intestinal mucosal injury and the effect of soluble dietary fiber on gastrointestinal tract toxicity after intravenous 5-fluorouracil treatment in rats. Medical Molecular Morphology, 47(2), 100–107. https://doi.org/10.1007/s00795-013-0055-7
  • Grootjans, J., Thuijls, G., Verdam, F., Derikx, J. P., Lenaerts, K., & Buurman, W. A. (2010). Non-invasive assessment of barrier integrity and function of the human gut. World Journal of Gastrointestinal Surgery, 2(3), 61–69. https://doi.org/10.4240/wjgs.v2.i3.61
  • Guo, Y., Li, H., Liu, Z., Li, C., Chen, Y., Jiang, C., Yu, Y., & Tian, Z. (2019). Impaired intestinal barrier function in a mouse model of hyperuricemia. Molecular Medicine Reports. 20, 3292–3300.
  • Hassanzadeh, K., Buccarello, L., Dragotto, J., Mohammadi, A., Corbo, M., & Feligioni, M. (2020). Obstacles against the marketing of curcumin as a drug. International Journal of Molecular Sciences, 21(18), 6619. https://doi.org/10.3390/ijms21186619
  • Hatamipour, M., Sahebkar, A., Alavizadeh, S. H., Dorri, M., & Jaafari, M. R. (2019). Novel nanomicelle formulation to enhance bioavailability and stability of curcuminoids. Iranian Journal of Basic Medical Sciences, 22(3), 282–289.
  • Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A review of its effects on human health. Foods, 6(10), 92. https://doi.org/10.3390/foods6100092
  • Jones, M. (1983). JM Ramsay, basic pathophysiology—Modern stress and the disease process, Addison-Wesley, London (1982), p. 555, illus,£13.25. Churchill Livingstone.
  • Kapczuk, P., Kosik-Bogacka, D., Kupnicka, P., Metryka, E., Simińska, D., Rogulska, K., Skórka-Majewicz, M., Gutowska, I., Chlubek, D., & Baranowska-Bosiacka, I. (2020). The influence of selected gastrointestinal parasites on apoptosis in intestinal epithelial cells. Biomolecules, 10(5), 674. https://doi.org/10.3390/biom10050674
  • Kowalczyk, E., Kopff, A., Kopff, M., Fijałkowski, P., & Błaszczyk, J. (2005). Nitric oxide–oxidant or antioxidant? Wiadomosci Lekarskie, 58, 540–542.
  • Lalier, L., Vallette, F., & Manon, S. (2022). Bcl-2 family members and the mitochondrial import machineries: The roads to death. Biomolecules, 12(2), 162. https://doi.org/10.3390/biom12020162
  • Lee, Y.-S., Kalimuthu, K., Park, Y. S., Luo, X., Choudry, M. H. A., Bartlett, D. L., & Lee, Y. J. (2020). BAX-dependent mitochondrial pathway mediates the crosstalk between ferroptosis and apoptosis. Apoptosis, 25(9–10), 625–631. https://doi.org/10.1007/s10495-020-01627-z
  • Li, Y., Han, F., & Shi, Y. (2013). Increased neuronal apoptosis in medial prefrontal cortex is accompanied with changes of Bcl-2 and Bax in a rat model of post-traumatic stress disorder. Journal of Molecular Neuroscience, 51(1), 127–137. https://doi.org/10.1007/s12031-013-9965-z
  • Lin, R., Wang, Z., Cao, J., Gao, T., Dong, Y., & Chen, Y. (2020). Role of melatonin in intestinal mucosal injury induced by restraint stress in mice. Pharmaceutical Biology, 58(1), 342–351. https://doi.org/10.1080/13880209.2020.1750659
  • Lopresti, A. L. (2018). The problem of curcumin and its bioavailability: Could its gastrointestinal influence contribute to its overall health-enhancing effects? Advances in Nutrition, 9(1), 41–50. https://doi.org/10.1093/advances/nmx011
  • Marcos, M., Vila, J., Gratacos, J., Brancos, M., & Jimenez De Anta, M. (1991). Determination of D-lactate concentration for rapid diagnosis of bacterial infections of body fluids. European Journal of Clinical Microbiology & Infectious Diseases, 10(11), 966–969. https://doi.org/10.1007/BF02005455
  • Odenwald, M. A., & Turner, J. R. (2017). The intestinal epithelial barrier: A therapeutic target? Nature Reviews. Gastroenterology & Hepatology, 14(1), 9–21. https://doi.org/10.1038/nrgastro.2016.169
  • Ohno, M., Nishida, A., Sugitani, Y., Nishino, K., Inatomi, O., Sugimoto, M., Kawahara, M., & Andoh, A. (2017). Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS One, 12(10), e0185999. https://doi.org/10.1371/journal.pone.0185999
  • Qi, L., Jiang, J., Zhang, J., Zhang, L., & Wang, T. (2020). Curcumin protects human trophoblast HTR8/SVneo cells from H2O2-induced oxidative stress by activating Nrf2 signaling pathway. Antioxidants, 9(2), 121. https://doi.org/10.3390/antiox9020121
  • Rodiño-Janeiro, B. K., Alonso-Cotoner, C., Pigrau, M., Lobo, B., Vicario, M., & Santos, J. (2015). Role of Corticotropin-releasing factor in gastrointestinal permeability. Journal of Neurogastroenterology and Motility, 21(1), 33–50. https://doi.org/10.5056/jnm14084
  • Ruh, J., Vogel, F., Schmidt, E., Werner, M., Klar, E., Secchi, A., Gebhard, M. M., Glaser, F., & Herfarth, C. (2000). Effects of hydrogen peroxide scavenger Catalase on villous microcirculation in the rat small intestine in a model of inflammatory bowel disease. Microvascular Research, 59(3), 329–337. https://doi.org/10.1006/mvre.1999.2201
  • Song, K., Li, Y., Zhang, H., An, N., Wei, Y., Wang, L., Tian, C., Yuan, M., Sun, Y., Xing, Y., & Gao, Y. (2020). Oxidative stress-mediated blood-brain barrier (BBB) disruption in neurological diseases. Oxidative Medicine and Cellular Longevity, 2020, 1–27. https://doi.org/10.1155/2020/4356386
  • Tian, S., Guo, R., Wei, S., Kong, Y., Wei, X., Wang, W., Shi, X., & Jiang, H. (2016). Curcumin protects against the intestinal ischemia-reperfusion injury: Involvement of the tight junction protein ZO-1 and TNF-α related mechanism. The Korean Journal of Physiology & Pharmacology, 20(2), 147–152. https://doi.org/10.4196/kjpp.2016.20.2.147
  • Vancamelbeke, M., & Vermeire, S. (2017). The intestinal barrier: A fundamental role in health and disease. Expert Review of Gastroenterology & Hepatology, 11(9), 821–834. https://doi.org/10.1080/17474124.2017.1343143
  • Vanuytsel, T., Van Wanrooy, S., Vanheel, H., Vanormelingen, C., Verschueren, S., Houben, E., Salim Rasoel, S., Tόth, J., Holvoet, L., Farré, R., Van Oudenhove, L., Boeckxstaens, G., Verbeke, K., & Tack, J. (2014). Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut, 63(8), 1293–1299. https://doi.org/10.1136/gutjnl-2013-305690
  • Wang, N., Wang, G., Hao, J., Ma, J., Wang, Y., Jiang, X., & Jiang, H. (2012). Curcumin ameliorates hydrogen peroxide-induced epithelial barrier disruption by upregulating heme oxygenase-1 expression in human intestinal epithelial cells. Digestive Diseases and Sciences, 57(7), 1792–1801. https://doi.org/10.1007/s10620-012-2094-7
  • Williams, J., Duckworth, C., Burkitt, M., Watson, A., Campbell, B., & Pritchard, D. (2015). Epithelial cell shedding and barrier function: A matter of life and death at the small intestinal villus tip. Veterinary Pathology, 52(3), 445–455. https://doi.org/10.1177/0300985814559404
  • Xiang, B., Li, D., Chen, Y., Li, M., Zhang, Y., Sun, T., & Tang, S. (2021). Curcumin ameliorates copper-induced neurotoxicity through inhibiting oxidative stress and mitochondrial apoptosis in SH-SY5Y cells. Neurochemical Research, 46(2), 367–378. https://doi.org/10.1007/s11064-020-03173-1
  • Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., & Cai, Y. (2019). The roles of environmental factors in regulation of oxidative stress in plant. BioMed Research International, 2019, 1–11. https://doi.org/10.1155/2019/9732325
  • Xun, W., Fu, Q., Shi, L., Cao, T., Jiang, H., & Ma, Z. (2021). Resveratrol protects intestinal integrity, alleviates intestinal inflammation and oxidative stress by modulating AhR/Nrf2 pathways in weaned piglets challenged with diquat. International Immunopharmacology, 99, 107989. https://doi.org/10.1016/j.intimp.2021.107989
  • Xun, W., Shi, L., Zhou, H., Hou, G., Cao, T., & Zhao, C. (2015). Effects of curcumin on growth performance, jejunal mucosal membrane integrity, morphology and immune status in weaned piglets challenged with enterotoxigenic Escherichia coli. International Immunopharmacology, 27(1), 46–52. https://doi.org/10.1016/j.intimp.2015.04.038
  • Yan, E., Zhang, J., Han, H., Wu, J., Gan, Z., Wei, C., Zhang, L., Wang, C., & Wang, T. (2019). Curcumin alleviates IUGR jejunum damage by increasing antioxidant capacity through Nrf2/Keap1 pathway in growing pigs. Animals, 10(1), 41. https://doi.org/10.3390/ani10010041
  • Yang, F., Pei, R., Zhang, Z., Liao, J., Yu, W., Qiao, N., Han, Q., Li, Y., Hu, L., Guo, J., Pan, J., & Tang, Z. (2019). Copper induces oxidative stress and apoptosis through mitochondria-mediated pathway in chicken hepatocytes. Toxicology In Vitro, 54, 310–316. https://doi.org/10.1016/j.tiv.2018.10.017
  • Yu, L. C.-H., Wang, J.-T., Wei, S.-C., & Ni, Y.-H. (2012). Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World Journal of Gastrointestinal Pathophysiology, 3(1), 27–43. https://doi.org/10.4291/wjgp.v3.i1.27
  • Yucel, A. F., Kanter, M., Pergel, A., Erboga, M., & Guzel, A. (2011). The role of curcumin on intestinal oxidative stress, cell proliferation and apoptosis after ischemia/reperfusion injury in rats. Journal of Molecular Histology, 42(6), 579–587. https://doi.org/10.1007/s10735-011-9364-0
  • Zeng, N., Mignet, N., Dumortier, G., Olivier, E., Seguin, J., Maury, M., Scherman, D., Rat, P., & Boudy, V. (2015). Poloxamer bioadhesive hydrogel for buccal drug delivery: Cytotoxicity and trans-epithelial permeability evaluations using TR146 human buccal epithelial cell line. International Journal of Pharmaceutics, 495(2), 1028–1037. https://doi.org/10.1016/j.ijpharm.2015.09.045
  • Zhao, L., Li, H., Huang, X., Liu, T., Xin, Y., Xiao, Z., Zhao, W., Miao, S., Chen, J., Li, Z., & Mi, Y. (2021). The endocytic pathway of Pt nanoclusters and their induced apoptosis of A549 and A549/Cis cells through c-Myc/p53 and Bcl-2/caspase-3 signaling pathways. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 144, 112360. https://doi.org/10.1016/j.biopha.2021.112360
  • Zhao, Y. Q., Chen, R. R., Kong, Q. Q., An, J. S., Zhao, X. Y., Gong, S., Yuan, H. J., & Tan, J. H. (2021). Corticosterone induced apoptosis of mouse oviduct epithelial cells independent of the TNF-α system. The Journal of Reproduction and Development, 67(1), 43–51. https://doi.org/10.1262/jrd.2020-122
  • Zhou, J., Wang, Y. X., Xiong, Y. F., Wang, H. X., Feng, Y. M., & Chen, J. A. (2010). Delivery of Tfpi-2 Using Ultrasound with a Microbubble Agent (Sonovue) Inhibits Intimal Hyperplasia after Balloon Injury in a Rabbit Carotid Artery Model. Ultrasound in Medicine & Biology, 36(11), 1876–1883. https://doi.org/10.1016/j.ultrasmedbio.2010.08.013