Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 26, 2023 - Issue 1
657
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Examination of the role of adrenergic receptor stimulation in the sensitization of neuroinflammatory-based depressive-like behavior in isolated Guinea pig pups

, , , , , & show all
Article: 2239366 | Received 29 Apr 2023, Accepted 17 Jul 2023, Published online: 06 Aug 2023

References

  • Ando, T., Rivier, J., Yanaihara, H., & Arimura, A. (1998). Peripheral corticotropin-releasing factor mediates the elevation of plasma IL-6 by immobilization stress in rats. The American Journal of Physiology, 275(5), 1–10. https://doi.org/10.1152/ajpregu.1998.275.5.R1461
  • Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C. M., & Mondelli, V. (2016). Childhood trauma and adulthood inflammation: A meta-analysis of peripheral C-reactive protein, interleukin-6 and tumor necrosis factor-α. Molecular Psychiatry, 21(5), 642–649. https://doi.org/10.1038/mp.2015.67
  • Blandino, P., Jr, Barnum, C. J., & Deak, T. (2006). The involvement of norepinephrine and microglia in hypothalamic and splenic IL-1beta responses to stress. Journal of Neuroimmunology, 173(1–2), 87–95. https://doi.org/10.1016/j.jneuroim.2005.11.021
  • Booze, R. M., Crisostomo, E., & Davis, J. N. (1989). Species differences in the localization and number of CNS beta adrenergic receptors: rat versus guinea pig. The Journal of Pharmacology and Experimental Therapeutics, 249(3), 911–920.
  • Borsini, F., Podhorna, J., & Marazziti, D. (2002). Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology, 163(2), 121–141. https://doi.org/10.1007/s00213-002-1155-6
  • Brenhouse, H., & Andersen, S. L. (2011). Nonsteroidal anti-inflammatory treatment prevents delayed effects of early life stress. Biological Psychiatry, 70(5), 434–440. https://doi.org/10.1016/j.biopsych.2011.05.006
  • Brenhouse, H. C., & Schwarz, J. M. (2016). Immunoadolescence: Neuroimmune development and adolescent behavior. Neuroscience and Biobehavioral Reviews, 70, 288–299. https://doi.org/10.1016/j.neubiorev.2016.05.035
  • Brosnan, C. F., Goldmuntz, E. A., Cammer, W., Factor, S. M., Bloom, B. R., & Norton, W. T. (1985). Prazosin, an alpha 1-adrenergic receptor antagonist, suppresses experimental autoimmune encephalomyelitis in the Lewis rat. Proceedings of the National Academy of Sciences of the United States of America, 82(17), 5915–5919. https://doi.org/10.1073/pnas.82.17.5915
  • Brown, M., Worrell, C., & Pariante, C. M. (2021). Inflammation and early life stress: An updated review of childhood trauma and inflammatory markers in adulthood. Pharmacology, Biochemistry, and Behavior, 211Article, 173291. https://doi.org/10.1016/j.pbb.2021.173291
  • Carlisle, H. J., & Stock, M. J. (1996). Temperature-dependent effects of ephedrine in the cold. Physiology & Behavior, 60, 1147–1150. https://doi.org/10.1016/0031-9384(96)00217-X
  • Carlisle, H. J., Frost, T. S., & Stock, M. J. (1999). Thermal preference behavior following clonidine, norepinephrine, isoproterenol, and ephedrine. Physiology & Behavior, 66, 585–589. https://doi.org/10.1016/S0031-9384(98)00328-X
  • Coplan, J. D., George, R., Syed, S. A., Rozenboym, A. V., Tang, J. E., Fulton, S. L., & Perera, T. D. (2021). Early Life Stress and the Fate of Kynurenine Pathway Metabolites. Frontiers in Human Neuroscience, 15, 636144. Article 636144. https://doi.org/10.3389/fnhum.2021.636144
  • Cryan, J. F., Valentino, R. J., & Lucki, I. (2005). Assessing substrates underlying the behavioral effects of antidepressants using the modified forced swim test. Neuroscience and Biobehavioral Reviews, 29(4-5), 547–569. https://doi.org/10.1016/j.neubiorev.2005.03.008
  • Czéh, B., Fuchs, E., Wiborg, O., & Simon, M. (2016). Animal models of major depression and their clinical implications. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 64, 293–310. https://doi.org/10.1016/j.neubiorev.2005.03.008
  • Danese, A., & Lewis, S. J. (2017). Psychoneuroimmunology of Early-Life Stress: The Hidden Wounds of Childhood Trauma? Neuropsychopharmacology: official Publication of the American College of Neuropsychopharmacology, 42(1), 99–114. https://doi.org/10.1038/npp.2016.198
  • Danese, A., Moffitt, T. E., Pariante, C. M., Ambler, A., Poulton, R., & Caspi, A. (2008). Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Archives of General Psychiatry, 65(4), 409–415. https://doi.org/10.1001/archpsyc.65.4.409
  • Daviu, N., Bruchas, M. R., Moghaddam, B., Sandi, C., & Beyeler, A. (2019). Neurobiological links between stress and anxiety. Neurobiology of Stress, 11, 100191. Article 100191. https://doi.org/10.1016/j.ynstr.2019.100191
  • de Pablos, R. M., Herrera, A. J., Espinosa-Oliva, A. M., Sarmiento, M., Muñoz, M. F., Machado, A., & Venero, J. L. (2014). Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation. Journal of Neuroinflammation, 11(1), 34. Article 34. https://doi.org/10.1186/1742-2094-11-34
  • Dennison, U., McKernan, D., Cryan, J., & Dinan, T. (2012). Schizophrenia patients with a history of childhood trauma have a pro-inflammatory phenotype. Psychological Medicine, 42(9), 1865–1871. https://doi.org/10.1017/S0033291712000074
  • Doremus-Fitzwater, T. L., Gano, A., Paniccia, J. E., & Deak, T. (2015). Male adolescent rats display blunted cytokine responses in the CNS after acute ethanol or lipopolysaccharide exposure. Physiology & Behavior, 148, 131–144. https://doi.org/10.1016/j.physbeh.2015.02.032
  • Dunsmoor, J. E., & Paz, R. (2015). Fear Generalization and Anxiety: Behavioral and Neural Mechanisms. Biological Psychiatry, 78(5), 336–343. https://doi.org/10.1016/j.biopsych.2015.04.010
  • Dutcher, E. G., Pama, E. A. C., Lynall, M.-E., Khan, S., Clatworthy, M. R., Robbins, T. W., Bullmore, E. T., & Dalley, J. W. (2020). Early-life stress and inflammation: A systematic review of a key experimental approach in rodents. Brain and Neuroscience Advances, 4, 2398212820978049. https://doi.org/10.1177/2398212820978049
  • Ehrlich, K. B., Ross, K. M., Chen, E., & Miller, G. E. (2016). Testing the biological embedding hypothesis: Is early life adversity associated with a later proinflammatory phenotype? Development and Psychopathology, 28(4pt2), 1273–1283. https://doi.org/10.1017/S0954579416000845
  • Feigenson, K. A., Kusnecov, A. W., & Silverstein, S. M. (2014). Inflammation and the two-hit hypothesis of schizophrenia. Neuroscience and Biobehavioral Reviews, 38, 72–93. https://doi.org/10.1016/j.neubiorev.2013.11.006
  • Fonken, L. K., Frank, M. G., Gaudet, A. D., D’Angelo, H. M., Daut, R. A., Hampson, E. C., Ayala, M. T., Watkins, L. R., & Maier, S. F. (2018). Neuroinflammatorypriming to stress is deferentially regulated in male and female rats. Brain, Behavior, and Immunity, 70, 257–267. https://doi.org/10.1016/j.bbi.2018.03.005
  • Frank, M. G., Miguel, Z. D., Watkins, L. R., & Maier, S. F. (2010). Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain, Behavior, and Immunity, 24(1), 19–30. https://doi.org/10.1016/j.bbi.2009.07.008
  • Frank, M. G., Thompson, B. M., Watkins, L. R., & Maier, S. F. (2012). Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses. Brain, Behavior, and Immunity, 26(2), 337–345. https://doi.org/10.1016/j.bbi.2011.10.005
  • Ganguly, P., Honeycutt, J. A., Rowe, J. R., Demaestri, C., & Brenhouse, H. C. (2019). Effects of early life stress on cocaine conditioning and AMPA receptor composition are sex-specific and driven by TNF. Brain, Behavior, and Immunity, 78, 41–51. https://doi.org/10.1016/j.bbi.2019.01.006
  • Groenink, L., Verdouw, P. M., Bakker, B., & Wever, K. E. (2015). Pharmacological and methodological aspects of the separation-induced vocalization test in guinea pig pups; a systematic review and meta-analysis. European Journal of Pharmacology, 753, 191–208. https://doi.org/10.1016/j.ejphar.2014.10.062
  • Guilarte, M., Vicario, M., Martínez, C., de Torres, I., Lobo, B., Pigrau, M., González-Castro, A., Rodiño-Janeiro, B. K., Salvo-Romero, E., Fortea, M., Pardo-Camacho, C., Antolín, M., Saperas, E., Azpiroz, F., Santos, J., & Alonso-Cotoner, C. (2020). Peripheral corticotropin-releasing factor triggers jejunal mast cell activation and abdominal pain in patients with diarrhea-predominant irritable bowel syndrome. The American Journal of Gastroenterology, 115(12), 2047–2059. https://doi.org/10.14309/ajg.0000000000000789
  • Hammersley, P., Dias, A., Todd, G., Bowen-Jones, K., Reilly, B., & Bentall, R. P. (2003). Childhood trauma and hallucinations in bipolar affective disorder: Preliminary investigation. The British Journal of Psychiatry: The Journal of Mental Science, 182(6), 543–547. https://doi.org/10.1192/bjp.182.6.543
  • Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biological Psychiatry, 49(12), 1023–1039. https://doi.org/10.1016/s0006-3223(01)01157-x
  • Hennessy, M. B., Deak, T., Schiml-Webb, P. A., & Barnum, C. J. (2007a). Immune influences on behavior and endocrine activity in early-experience and maternal separation paradigms. In M.T. Czerbska (Ed.), Psychoneuroendocrinology Research Trends., (pp. 293–319). Nova Science Publishers.
  • Hennessy, M. B., Deak, T., Schiml-Webb, P. A., Carlisle, C. W., & O’Brien, E. (2010). Maternal separation produces, and a second separation enhances, core temperature and passive behavioral responses in guinea pig pups. Physiology & Behavior, 100(4), 305–310. https://doi.org/10.1016/j.physbeh.2010.02.024
  • Hennessy, M. B., Fitch, C., Jacobs, S., Deak, T., & Schiml, P. A. (2011b). Behavioral effects of peripheral corticotropin-releasing factor during maternal separation maybe mediated by proinflammatory activity. Psychoneuroendocrinology, 36(7), 996–1004. https://doi.org/10.1016/j.psyneuen.2010.12.011
  • Hennessy, M. B., Long, S. J., Nigh, C. K., Williams, M. T., & Nolan, D. J. (1995). Effects of peripherally administered corticotropin-releasing factor (CRF) and a CRF antagonist: does peripheral CRE activity mediate behavior of guinea pig pups during isolation? Behavioral Neuroscience, 109(6), 1137–1145. https://doi.org/10.1037//07357044.109.6.1137
  • Hennessy, M. B., Mazzei, S. J., & McInturf, S. M. (1996). The fate of filial attachment in juvenile guinea pigs housed apart from the mother. Developmental Psychobiology, 29(8), 641–651. https://doi.org/10.1002/(SICI)1098-2302(199612)29:8<641::AID-DEV1>3.0.CO;2-T
  • Hennessy, M. B., Miller, J. A., Carter, K. A., Molina, A. L., Schiml, P. A., & Deak, T. (2022). Sensitization of depressive-like behavior is attenuated by disruption of prostaglandin synthesis days following brief early attachment-figure isolation. Developmental Psychobiology, 64(2)Article, e22237. https://doi.org/10.1002/dev.22237
  • Hennessy, M. B., & Moorman, L. (1989). Factors influencing cortisol and behavioral responses to maternal separation in guinea pigs. Behavioral Neuroscience, 103(2), 378–385. https://doi.org/10.1037//0735-7044.103.2.378
  • Hennessy, M. B., & Morris, A. (2005). Passive responses of young guinea pigs during exposure to a novel environment: influences of social partners and age. Developmental Psychobiology, 46(2), 86–96. https://doi.org/10.1002/dev.20045
  • Hennessy, M. B., Paik, K. D., Caraway, J. D., Schiml, P. A., & Deak, T. (2011a). Proinflammatory activity and the sensitization of depressive-like behavior during maternal separation. Behavioral Neuroscience, 125(3), 426–433. https://doi.org/10.1037/a0023559
  • Hennessy, M. B., & Ritchey, R. L. (1987). Hormonal and behavioral attachment responses in infant guinea pigs. Developmental Psychobiology, 20(6), 613–625. https://doi.org/10.1002/dev.420200607
  • Hennessy, M. B., Schiml, P. A., Berberich, K., Beasley, N. L., & Deak, T. (2019). Early attachment disruption, inflammation, and vulnerability for depression in rodent and primate models. Frontiers in Behavioral Neuroscience, 12Article, 314. https://doi.org/10.3389/fnbeh.2018.00314
  • Hennessy, M. B., Schiml-Webb, P. A., Miller, E. E., Maken, D. S., Bullinger, K. L., & Deak, T. (2007b). Anti-inflammatory agents attenuate the passive responses of guinea pig pups: evidence for stress-induced sickness behavior during maternal separation. Psychoneuroendocrinology, 32(5), 508–515. https://doi.org/10.1016/j.psyneuen.2007.03.004
  • Hennessy, M. B., Schreibeis, A. D., Schiml, P. A., & Deak, T. (2017). Maternal separation increases later immobility during forced swim in guinea pig pups: evidence for sensitization of a depressive-like state. Developmental Psychobiology, 59(1), 128–132. https://doi.org/10.1002/dev.21444
  • Hennessy, M. B., Stafford, N. P., Yusko-Osborne, B., Schiml, P. A., Xanthos, E. D., & Deak, T. (2015). Naproxen attenuates sensitization of depressive-like behavior and fever during maternal separation. Physiology & Behavior, 139, 34–40. https://doi.org/10.1016/j.physbeh.2014.11.030
  • Hennessy, M. B., Tamborski, N. P., Schiml, P., & Lucot, J. (1989). The influence of maternal separation on plasma concentrations of ACTh, epinephrine, and norephinephrine in guinea pig pups. Physiology & Behavior, 45(6), 1147–1152. https://doi.org/10.1016/0031-9384(89)90101-7
  • Hennessy, M. B., Young, T. L., O’Leary, S. K., & Maken, D. S. (2003). Social preferences of developing guinea pigs (Cavia porcellus) from the preweaning to the periadolescent period. Journal of Comparative Psychology (Washington, D.C.: 1983), 117(4), 406–413. https://doi.org/10.1037/0735-7036.117.4.406
  • Holwerda, S. W., Luehrs, R. E., Gremaud, A. L., Wooldridge, N. A., Stroud, A. K., Fiedorowicz, J. G., Abboud, F. M., & Pierce, G. L. (2018). Relative burst amplitude of muscle sympathetic nerve activity is an indicator of altered sympathetic outflow in chronic anxiety. Journal of Neurophysiology, 120(1), 11–22. https://doi.org/10.1152/jn.00064.2018
  • Jaaro-Peled, H., & Sawa, A. (2020). Neurodevelopmental Factors in Schizophrenia. The Psychiatric Clinics of North America, 43(2), 263–274. https://doi.org/10.1016/j.psc.2020.02.010
  • Johnson, J. D., Zimomra, Z. R., & Stewart, L. T. (2013). Beta-adrenergic receptor activation primes microglia cytokine production. Journal of Neuroimmunology, 254(1-2), 161–164. https://doi.org/10.1016/j.jneuroim.2012.08.007
  • Kaufman, I. C., & Rosenblum, L. A. (1967). The reaction to separation in infant monkeys: Anaclitic depression and conservation withdrawal. Psychosomatic Medicine, 29(6), 648–675. https://doi.org/10.1097/00006842-196711000-00010
  • LeMoult, J., Humphreys, K. L., Tracy, A., Hoffmeister, J. A., Ip, E., & Gotlib, I. H. (2020). Meta-analysis: Exposure to early life stress and risk for depression in childhood and adolescence. Journal of the American Academy of Child and Adolescent Psychiatry, 59(7), 842–855. https://doi.org/10.1016/j.jaac.2019.10.011
  • Lovelock, D. F., & Deak, T. (2019). Acute stress imposed during adolescence yields heightened anxiety in Sprague-Dawley rats that persists into adulthood: Sex differences and potential involvement of the medial amygdala. Brain Research, 1723, 146392. https://doi.org/10.1016/j.brainres.2019.146392
  • Marsland, P., Parrella, A., Orlofsky, M., Lovelock, D. F., Vore, A. S., Varlinskaya, E. I., & Deak, T. (2022). Neuroendocrine and neuroimmune responses in male and female rats: evidence for functional immaturity of the neuroimmune system during early adolescence. The European Journal of Neuroscience, 55(9-10), 2311–2325. https://doi.org/10.1111/ejn.15118
  • Michopoulos, V., Powers, A., Gillespie, C. F., Ressler, K. J., & Jovanovic, T. (2017). Inflammation in fear-and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology: official Publication of the American College of Neuropsychopharmacology, 42(1), 254–270. https://doi.org/10.1038/npp.2016.146
  • Miller, D. K., & Segert, I. L. (2005). Mecamylamine attenuates ephedrine-induced hyperactivity in rats. Pharmacology, Biochemistry, and Behavior, 81(1), 165–169. https://doi.org/10.1016/j.pbb.2005.03.008
  • Miller, G. E., & Cole, S. W. (2012). Clustering of depression and inflammation in adolescents previously exposed to childhood adversity. Biological Psychiatry, 72(1), 34–40. https://doi.org/10.1016/j.biopsych.2012.02.034
  • Mondelli, V., & Vernon, A. C. (2019). From early adversities to immune activation in psychiatric disorders: The role of the sympathetic nervous system. Clinical and Experimental Immunology, 197(3), 319–328. https://doi.org/10.1111/cei.13351
  • Opendak, M., Gould, E., & Sullivan, R. (2017). Early life adversity during the infant sensitive period for attachment: Programming of behavioral neurobiology of threat processing and social behavior. Developmental Cognitive Neuroscience, 25, 145–159. https://doi.org/10.1016/j.dcn.2017.02.002
  • Peirce, J. M., & Alviña, K. (2019). The role of inflammation and the gut microbiome in depression and anxiety. Journal of Neuroscience Research, 97(10), 1223–1241. https://doi.org/10.1002/jnr.24476
  • Perkeybile, A. M., Schiml-Webb, P. A., O’Brien, E., Deak, T., & Hennessy, M. B. (2009). Anti-inflammatory influences on behavioral, but not cortisol, responses during maternal separation. Psychoneuroendocrinology, 34(7), 1101–1108. https://doi.org/10.1016/j.psyneuen.2009.02.014
  • Roth, W. T., Doberenz, S., Dietel, A., Conrad, A., Mueller, A., Wollburg, E., Meuret, A. E., Taylor, C. B., & Kim, S. (2008). Sympathetic activation in broadly defined generalized anxiety disorder. Journal of Psychiatric Research, 42(3), 205–212. https://doi.org/10.1016/j.jpsychires.2006.12.003
  • Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21(1), 55–89. https://doi.org/10.1210/edrv.21.1.0389
  • Schiml-Webb, P. A., Deak, T., Greenlee, T., Maken, D. S., & Hennessy, M. B. (2006). Alpha melanocyte stimulating hormone reduces putative stress-induced sickness behaviors in isolated guinea pig pups. Behavioural Brain Research, 168(2), 326–330. https://doi.org/10.1016/j.bbr.2005.08.022
  • Schneider, R. L., Schiml, P. A., Deak, T., & Hennessy, M. B. (2012). Persistent sensitization of depressive-like behavior and thermogenic response during maternal separation in pre- and post-weaning guinea pigs. Developmental Psychobiology, 54(5), 514–522. https://doi.org/10.1002/dev.20609
  • Schwarz, J. M., Sholar, P. W., & Bilbo, S. D. (2012). Sex differences in microglial colonization of the developing rat brain. Journal of Neurochemistry, 120(6), 948–963. https://doi.org/10.1111/j.1471-4159.2011.07630.x
  • Slavich, G. M., & Irwin, M. R. (2014). From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychological Bulletin, 140(3), 774–815. https://doi.org/10.1037/a0035302
  • Wellman, P. J., Miller, D. K., Livermore, C. L., Green, T. A., McMahon, L. R., & Nation, J. R. (1998). Effects of (-) ephedrine on locomotion, feeding, and nucleus accumbens dopamine in rats. Psychopharmacology, 135(2), 133–140. https://doi.org/10.1007/s002130050494
  • Wheeler, N. D., Ensminger, D. C., Rowe, M. M., Wriedt, Z. S., & Ashley, N. T. (2021). Alpha- and beta- adrenergic receptors regulate inflammatory responses to acute and chronic sleep fragmentation in mice. PeerJ. 9Article, e11616. https://doi.org/10.7717/peerj.11616
  • Wieck, A., Andersen, S. L., & Brenhouse, H. C. (2013). Evidence for a neuroinflammatory mechanism in delayed effects of early life adversity in rats: Relationship to cortical NMDA receptor expression. Brain, Behavior, and Immunity, 28, 218–226. https://doi.org/10.1016/j.bbi.2012.11.012
  • Wohleb, E. S., Hanke, M. L., Corona, A. W., Powell, N. D., Stiner, L. M., Bailey, M. T., Nelson, R. J., Godbout, J. P., & Sheridan, J. F. (2011). β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(17), 6277–6288. https://doi.org/10.1523/JNEUROSCI.0450-11.2011
  • Yusko, B., Hawk, K., Schiml, P. A., Deak, T., & Hennessy, M. B. (2012). Sensitization of depressive-like behavior during repeated maternal separation is associated with more-rapid increase in core body temperature and reduced plasma cortisol levels. Physiology & Behavior, 105(3), 861–867. https://doi.org/10.1016/j.physbeh.2011.10.026