Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 26, 2023 - Issue 1
845
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Early life adversity ablates sex differences in active versus passive threat responding in mice

, &
Article: 2244598 | Received 18 Mar 2023, Accepted 28 Jul 2023, Published online: 13 Sep 2023

References

  • Altemus, M., Sarvaiya, N., & Neill Epperson, C. (2014). Sex differences in anxiety and depression clinical perspectives. Frontiers in Neuroendocrinology, 35(3), 1–15. https://doi.org/10.1016/j.yfrne.2014.05.004
  • Bandler, R., Keay, K. A., Floyd, N., & Price, J. (2000). Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Research Bulletin, 53(1), 95–104. https://doi.org/10.1016/s0361-9230(00)00313-0
  • Bath, K., Manzano-Nieves, G., & Goodwill, H. (2016). Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice. Hormones and Behavior, 82, 64–71. https://doi.org/10.1016/j.yhbeh.2016.04.010
  • Bolton, J. L., Molet, J., Regev, L., Chen, Y., Rismanchi, N., Haddad, E., Yang, D. Z., Obenaus, A., & Baram, T. Z. (2018). Anhedonia following early-life adversity involves aberrant interaction of reward and anxiety circuits and is reversed by partial silencing of amygdala corticotropin-releasing hormone gene. Biological Psychiatry, 83(2), 137–147. https://doi.org/10.1016/j.biopsych.2017.08.023
  • Breslau, N., Davis, G. C., Andreski, P., Peterson, E. L., & Schultz, L. R. (1997). Sex differences in posttraumatic stress disorder. Archives of General Psychiatry, 54(11), 1044–1048. https://doi.org/10.1001/archpsyc.1997.01830230082012
  • Choi, J.-S., & Kim, J. J. (2010). Amygdala regulates risk of predation in rats foraging in a dynamic fear environment. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21773–21777. https://doi.org/10.1073/pnas.1010079108
  • Colom-Lapetina, J., Li, A. J., Pelegrina-Perez, T. C., & Shansky, R. M. (2019). Behavioral diversity across classic rodent models is sex-dependent. Frontiers in Behavioral Neuroscience, 13, 45. https://doi.org/10.3389/fnbeh.2019.00045
  • Corrêa, M. d S., dos Santos Corrêa, M., dos Santos Vaz, B., Grisanti, G. D. V., de Paiva, J. P. Q., Tiba, P. A., & Fornari, R. V. (2019). Relationship between footshock intensity, post-training corticosterone release and contextual fear memory specificity over time. Psychoneuroendocrinology, 110, 104447. https://doi.org/10.1016/j.psyneuen.2019.104447
  • de Boer, S. F., Buwalda, B., & Koolhaas, J. M. (2017). Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility. Neuroscience and Biobehavioral Reviews, 74(Pt B), 401–422. https://doi.org/10.1016/j.neubiorev.2016.07.008
  • De Boer, S. F., Slangen, J. L., & Van der Gugten, J. (1990). Plasma catecholamine and corticosterone levels during active and passive shock-prod avoidance behavior in rats: effects of chlordiazepoxide. Physiology & Behavior, 47(6), 1089–1098. https://doi.org/10.1016/0031-9384(90)90357-a
  • Demaestri, C., Pan, T., Critz, M., Ofray, D., Gallo, M., & Bath, K. G. (2020). Type of early life adversity confers differential, sex-dependent effects on early maturational milestones in mice. Hormones and Behavior, 124, 104763. https://doi.org/10.1016/j.yhbeh.2020.104763
  • Fadok, J. P., Krabbe, S., Markovic, M., Courtin, J., Xu, C., Massi, L., Botta, P., Bylund, K., Müller, C., Kovacevic, A., Tovote, P., & Lüthi, A. (2017). A competitive inhibitory circuit for selection of active and passive fear responses. Nature, 542(7639), 96–100. https://doi.org/10.1038/nature21047
  • Fanselow, M. S., & Bolles, R. C. (1979). Naloxone and shock-elicited freezing in the rat. Journal of Comparative and Physiological Psychology, 93(4), 736–744. https://doi.org/10.1037/h0077609
  • Gallo, M., Shleifer, D. G., Godoy, L. D., Ofray, D., Olaniyan, A., Campbell, T., & Bath, K. G. (2019). Limited bedding and nesting induces maternal behavior resembling both hypervigilance and abuse. Frontiers in Behavioral Neuroscience, 13, 167. https://doi.org/10.3389/fnbeh.2019.00167
  • Gater, R., Tansella, M., Korten, A., Tiemens, B. G., Mavreas, V. G., & Olatawura, M. O. (1998). Sex differences in the prevalence and detection of depressive and anxiety disorders in general health care settings: report from the World Health Organization Collaborative Study on Psychological Problems in General Health Care. Archives of General Psychiatry, 55(5), 405–413. https://doi.org/10.1001/archpsyc.55.5.405
  • Gobinath, A. R., Mahmoud, R., & Galea, L. A. M. (2014). Influence of sex and stress exposure across the lifespan on endophenotypes of depression: focus on behavior, glucocorticoids, and hippocampus. Frontiers in Neuroscience, 8, 420. https://doi.org/10.3389/fnins.2014.00420
  • Goodwill, H. L., Manzano-Nieves, G., Gallo, M., Lee, H.-I., Oyerinde, E., Serre, T., & Bath, K. G. (2019). Early life stress leads to sex differences in development of depressive-like outcomes in a mouse model. Neuropsychopharmacology, 44(4), 711–720. https://doi.org/10.1038/s41386-018-0195-5
  • Goodwill, H. L., Manzano-Nieves, G., LaChance, P., Teramoto, S., Lin, S., Lopez, C., Stevenson, R. J., Theyel, B. B., Moore, C. I., Connors, B. W., & Bath, K. G. (2018). Early life stress drives sex-selective impairment in reversal learning by affecting parvalbumin interneurons in orbitofrontal cortex of mice. Cell Reports, 25(9), 2299–2307.e4. https://doi.org/10.1016/j.celrep.2018.11.010
  • Gozzi, A., Jain, A., Giovannelli, A., Bertollini, C., Crestan, V., Schwarz, A. J., Tsetsenis, T., Ragozzino, D., Gross, C. T., & Bifone, A. (2010). A neural switch for active and passive fear. Neuron, 67(4), 656–666. https://doi.org/10.1016/j.neuron.2010.07.008
  • Grassi-Oliveira, R., Honeycutt, J. A., Holland, F. H., Ganguly, P., & Brenhouse, H. C. (2016). Cognitive impairment effects of early life stress in adolescents can be predicted with early biomarkers: Impacts of sex, experience, and cytokines. Psychoneuroendocrinology, 71, 19–30. https://doi.org/10.1016/j.psyneuen.2016.04.016
  • Greiner, E. M., Müller, I., Norris, M. R., Ng, K. H., & Sangha, S. (2019). Sex differences in fear regulation and reward-seeking behaviors in a fear-safety-reward discrimination task. Behavioural Brain Research, 368, 111903. https://doi.org/10.1016/j.bbr.2019.111903
  • Gruene, T. M., Flick, K., Stefano, A., Shea, S. D., & Shansky, R. M. (2015). Sexually divergent expression of active and passive conditioned fear responses in rats. eLife, 4. https://doi.org/10.7554/eLife.11352
  • Hankin, B. L. (2009). Development of sex differences in depressive and co-occurring anxious symptoms during adolescence: descriptive trajectories and potential explanations in a multiwave prospective study. Journal of Clinical Child and Adolescent , 38(4), 460–472. https://doi.org/10.1080/15374410902976288
  • Honeycutt, J. A., Demaestri, C., Peterzell, S., Silveri, M. M., Cai, X., Kulkarni, P., Cunningham, M. G., Ferris, C. F., & Brenhouse, H. C. (2020). Altered corticolimbic connectivity reveals sex-specific adolescent outcomes in a rat model of early life adversity. eLife, 9. https://doi.org/10.7554/eLife.52651
  • Keay, K. A., & Bandler, R. (2001). Parallel circuits mediating distinct emotional coping reactions to different types of stress. Neuroscience and Biobehavioral Reviews, 25(7-8), 669–678. https://doi.org/10.1016/s0149-7634(01)00049-5
  • Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62(6), 593–602. https://doi.org/10.1001/archpsyc.62.6.593
  • Kessler, R. C., McGonagle, K. A., Nelson, C. B., Hughes, M., Swartz, M., & Blazer, D. G. (1994). Sex and depression in the National Comorbidity Survey. II: Cohort effects. Journal of Affective Disorders, 30(1), 15–26. https://doi.org/10.1016/0165-0327(94)90147-3
  • Laine, M. A., Mitchell, J. R., Rhyner, J., Clark, R., Kannan, A., Keith, J., Pikus, M., Bergeron, E., Ravaglia, I., Ulgenturk, E., Shinde, A., & Shansky, R. M. (2022). Sounding the alarm: Sex differences in rat ultrasonic vocalizations during Pavlovian fear conditioning and extinction. ENeuro, 9(6), ENEURO.0382-22.2022. https://doi.org/10.1523/ENEURO.0382-22.2022.
  • Laxmi, T. R., Stork, O., & Pape, H. C. (2003). Generalisation of conditioned fear and its behavioural expression in mice. Behavioural Brain Research, 145(1-2), 89–98. https://doi.org/10.1016/S0166-4328(03)00101-3
  • LeDoux, J. E. (1994). Emotion, memory and the brain. Scientific American, 270(6), 50–57. https://doi.org/10.1038/scientificamerican0694-50
  • Lesuis, S. L., Lucassen, P. J., & Krugers, H. J. (2019). Early life stress impairs fear memory and synaptic plasticity; a potential role for GluN2B. Neuropharmacology, 149, 195–203. https://doi.org/10.1016/j.neuropharm.2019.01.010
  • Maeng, L. Y., & Milad, M. R. (2015). Sex differences in anxiety disorders: Interactions between fear, stress, and gonadal hormones. Hormones and Behavior, 76, 106–117. https://doi.org/10.1016/j.yhbeh.2015.04.002
  • Manzano Nieves, G., Bravo, M., Baskoylu, S., & Bath, K. G. (2020). Early life adversity decreases pre-adolescent fear expression by accelerating amygdala PV cell development. eLife, 9. https://doi.org/10.7554/eLife.55263
  • Manzano-Nieves, G., Gaillard, M., Gallo, M., & Bath, K. G. (2018). Early life stress impairs contextual threat expression in female, but not male, mice. Behavioral Neuroscience, 132(4), 247–257. https://doi.org/10.1037/bne0000248
  • Marschner, A., Kalisch, R., Vervliet, B., Vansteenwegen, D., & Büchel, C. (2008). Dissociable roles for the hippocampus and the amygdala in human cued versus context fear conditioning. The Journal of Neuroscience, 28(36), 9030–9036. https://doi.org/10.1523/JNEUROSCI.1651-08.2008
  • Mitchell, J. R., Trettel, S. G., Li, A. J., Wasielewski, S., Huckleberry, K. A., Fanikos, M., Golden, E., Laine, M. A., & Shansky, R. M. (2022). Darting across space and time: parametric modulators of sex-biased conditioned fear responses. Learning & Memory, 29(7), 171–180. https://doi.org/10.1101/lm.053587.122
  • Naninck, E. F. G., Hoeijmakers, L., Kakava-Georgiadou, N., Meesters, A., Lazic, S. E., Lucassen, P. J., & Korosi, A. (2015). Chronic early-life stress alters developmental and adult neurogenesis and impairs cognitive function in mice. Hippocampus, 25(3), 309–328. https://doi.org/10.1002/hipo.22374
  • Nolen-Hoeksema, S., Larson, J., & Grayson, C. (1999). Explaining the gender difference in depressive symptoms. Journal of Personality and Social Psychology, 77(5), 1061–1072. https://doi.org/10.1037//0022-3514.77.5.1061
  • Paré, D., Quirk, G. J., & Ledoux, J. E. (2004). New vistas on amygdala networks in conditioned fear. Journal of Neurophysiology, 92(1), 1–9. https://doi.org/10.1152/jn.00153.2004
  • Peña, C. J., Smith, M., Ramakrishnan, A., Cates, H. M., Bagot, R. C., Kronman, H. G., Patel, B., Chang, A. B., Purushothaman, I., Dudley, J., Morishita, H., Shen, L., & Nestler, E. J. (2019). Early life stress alters transcriptomic patterning across reward circuitry in male and female mice. Nature Communications, 10(1), 5098. https://doi.org/10.1038/s41467-019-13085-6
  • Ponder, C. A., Kliethermes, C. L., Drew, M. R., Muller, J., Das, K., Risbrough, V. B., Crabbe, J. C., Gilliam, T. C., & Palmer, A. A. (2007). Selection for contextual fear conditioning affects anxiety-like behaviors and gene expression. Genes, Brain, and Behavior, 6(8), 736–749. https://doi.org/10.1111/j.1601-183X.2007.00306.x
  • Quirk, G. J., Armony, J. L., Repa, J. C., Li, X. F., & LeDoux, J. E. (1996). Emotional memory: a search for sites of plasticity. Cold Spring Harbor Symposia on Quantitative Biology, 61, 247–257.
  • Rescorla, R. A. (1988). Behavioral studies of Pavlovian conditioning. Annual Review of Neuroscience, 11(1), 329–352. https://doi.org/10.1146/annurev.ne.11.030188.001553
  • Rice, C. J., Sandman, C. A., Lenjavi, M. R., & Baram, T. Z. (2008). A novel mouse model for acute and long-lasting consequences of early life stress. Endocrinology, 149(10), 4892–4900. https://doi.org/10.1210/en.2008-0633
  • Sigmundi, R. A., Bouton, M. E., & Bolles, R. C. (1980). Conditioned freezing in the rat as a function of shock intensity and CS modality. Bulletin of the Psychonomic Society, 15(4), 254–256. https://doi.org/10.3758/BF03334524
  • Steimer, T. (2002). The biology of fear- and anxiety-related behaviors. Dialogues in Clinical Neuroscience, 4(3), 231–249. https://doi.org/10.31887/DCNS.2002.4.3/tsteimer
  • Trott, J. M., Hoffman, A. N., Zhuravka, I., & Fanselow, M. S. (2022). Conditional and unconditional components of aversively motivated freezing, flight and darting in mice. eLife, 11. https://doi.org/10.7554/eLife.75663
  • Tye, K. M., Prakash, R., Kim, S.-Y., Fenno, L. E., Grosenick, L., Zarabi, H., Thompson, K. R., Gradinaru, V., Ramakrishnan, C., & Deisseroth, K. (2011). Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature, 471(7338), 358–362. https://doi.org/10.1038/nature09820
  • Tzanoulinou, S., Riccio, O., de Boer, M. W., & Sandi, C. (2014). Peripubertal stress-induced behavioral changes are associated with altered expression of genes involved in excitation and inhibition in the amygdala. Translational Psychiatry, 4(7), e410–e410. https://doi.org/10.1038/tp.2014.54
  • Weissman, M. M., Bland, R. C., Canino, G. J., Greenwald, S., Hwu, H. G., Lee, C. K., Newman, S. C., Oakley-Browne, M. A., Rubio-Stipec, M., & Wickramaratne, P. J. (1994). The cross-national epidemiology of obsessive compulsive disorder. The Cross National Collaborative Group. J. Clin. Psychiatry, 55(Suppl), 5–10.