Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 26, 2023 - Issue 1
1,440
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Glucocorticoid feedback paradox: a homage to Mary Dallman

ORCID Icon
Article: 2247090 | Received 12 Jun 2023, Accepted 07 Aug 2023, Published online: 23 Aug 2023

References

  • Agorastos, A., & Chrousos, G. P. (2022). The neuroendocrinology of stress: the stress-related continuum of chronic disease development. Molecular Psychiatry, 27(1), 1–19. https://doi.org/10.1038/s41380-021-01224-9
  • Akana, S. F., Dallman, M. F., Bradbury, M. J., Scribner, K. A., Strack, A. M., & Walker, C. D. (1992). Feedback and facilitation in the adrenocortical system: unmasking facilitation by partial inhibition of the glucocorticoid response to prior stress. Endocrinology, 131(1), 57–68. https://doi.org/10.1210/en.131.1.57
  • Akana, S. F., Strack, A. M., Hanson, E. S., & Dallman, M. F. (1994). Regulation of activity in the hypothalamo-pituitary-adrenal axis is integral to a larger hypothalamic system that determines caloric flow. Endocrinology, 135(3), 1125–1134. https://doi.org/10.1210/ENDO.135.3.8070356
  • Bachmann, C. G., Linthorst, A. C. E., Holsboer, F., & Reul, J. M. H. M. (2003). Effect of chronic administration of selective glucocorticoid receptor antagonists on the rat hypothalamic-pituitary-adrenocortical axis. Neuropsychopharmacology, 28(6), 1056–1067. https://doi.org/10.1038/sj.npp.1300158
  • Baker, M. E., & Katsu, Y. (2019). Evolution of the mineralocorticoid receptor. Vitamins and Hormones, 109, 17–36. https://doi.org/10.1016/bs.vh.2018.10.009
  • Behar-Cohen, F., & Zhao, M. (2022). Mineralocorticoid pathway in retinal health and diseases. British Journal of Pharmacology, 179(13), 3190–3204. https://doi.org/10.1111/BPH.15770
  • Belanoff, J. K., Rothschild, A. J., Cassidy, F., DeBattista, C., Baulieu, E.-E., Schold, C., & Schatzberg, A. F. (2002). An open label trial of C-1073 (mifepristone) for psychotic major depression. Biological Psychiatry, 52(5), 386–392. https://doi.org/10.1016/S0006-3223(02)01432-4
  • Bertagna, X. (1994). Administration of RU 486 for 8 days in normal volunteers: antiglucocorticoid effect with no evidence of peripheral cortisol deprivation. Journal of Clinical Endocrinology & Metabolism, 78(2), 375–380. https://doi.org/10.1210/jc.78.2.375
  • Blasey, C. M., Debattista, C., Roe, R., Block, T., & Belanoff, J. K. (2009). A multisite trial of mifepristone for the treatment of psychotic depression: a site-by-treatment interaction. Contemporary Clinical Trials, 30(4), 284–288. https://doi.org/10.1016/j.cct.2009.03.001
  • Block, T., Petrides, G., Kushner, H., Kalin, N., Belanoff, J., & Schatzberg, A. (2017). Mifepristone plasma level and glucocorticoid receptor antagonism associated with response in patients with psychotic depression. Journal of Clinical Psychopharmacology, 37(5), 505–511. https://doi.org/10.1097/JCP.0000000000000744
  • Block, T. S., Kushner, H., Kalin, N., Nelson, C., Belanoff, J., & Schatzberg, A. (2018). Combined analysis of mifepristone for psychotic depression: plasma levels associated with clinical response. Biological Psychiatry, 84(1), 46–54. https://doi.org/10.1016/j.biopsych.2018.01.008
  • Bradbury, M. J., Akana, S. F., Cascio, C. S., Levin, N., Jacobson, L., & Dallman, M. F. (1991). Regulation of basal ACTH secretion by corticosterone is mediated by both type I (MR) and type II (GR) receptors in rat brain. The Journal of Steroid Biochemistry and Molecular Biology, 40(1–3), 133–142. https://doi.org/10.1016/0960-0760(91)90176-6
  • Bradbury, M. J., Akana, S. F., & Dallman, M. F. (1994). Roles of type I and II corticosteroid receptors in regulation of basal activity in the hypothalamo-pituitary-adrenal axis during the diurnal trough and the peak: evidence for a nonadditive effect of combined receptor occupation. Endocrinology, 134(3), 1286–1296. https://doi.org/10.1210/ENDO.134.3.8119168
  • Canet, G., Chevallier, N., Zussy, C., Desrumaux, C., & Givalois, L. (2018). Central role of glucocorticoid receptors in Alzheimer’s disease and depression. Frontiers in Neuroscience, 12, 739. https://doi.org/10.3389/fnins.2018.00739
  • Carroll, B. J., Feinberg, M., Greden, J. F., Tarika, J., Albala, A. A., Haskett, R. F., James, N. M., Kronfol, Z., Lohr, N., Steiner, M., de Vigne, J. P., & Young, E. (1981). A specific laboratory test for the diagnosis of melancholia: Standardization, validation, and clinical utility. Archives of General Psychiatry, 38(1), 15–22. https://doi.org/10.1001/archpsyc.1981.01780260017001
  • Chapman, K., Holmes, M., & Seckl, J. (2013). 11 -Hydroxysteroid dehydrogenases: Intracellular gate-keepers of tissue glucocorticoid action. Physiological Reviews, 93(3), 1139–1206. https://doi.org/10.1152/physrev.00020.2012
  • Chatzinakos, C., Georgiadis, F., & Daskalakis, N. P. (2021). GWAS meets transcriptomics: From genetic letters to transcriptomic words of neuropsychiatric risk. Neuropsychopharmacology, 46(1), 255–256. https://doi.org/10.1038/s41386-020-00835-0
  • Chen, C., Nakagawa, S., An, Y., Ito, K., Kitaichi, Y., & Kusumi, I. (2017). The exercise-glucocorticoid paradox: How exercise is beneficial to cognition, mood, and the brain while increasing glucocorticoid levels. Frontiers in Neuroendocrinology, 44, 83–102. https://doi.org/10.1016/j.yfrne.2016.12.001
  • Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA, 267(9), 1244–1252. https://doi.org/10.1001/jama.1992.03480090092034
  • Cirulli, F., van Oers, H., De Kloet, E. R., & Levine, S. (1994). Differential influence of corticosterone and dexamethasone on schedule-induced polydipsia in adrenalectomized rats. Behavioural Brain Research, 65(1), 33–39. https://doi.org/10.1016/0166-4328(94)90070-1
  • Cohen, S., Kozlovsky, N., Matar, M. A., Kaplan, Z., Zohar, J., & Cohen, H. (2012). Post-exposure sleep deprivation facilitates correctly timed interactions between glucocorticoid and adrenergic systems, which attenuate traumatic stress responses. Neuropsychopharmacology, 37(11), 2388–2404. https://doi.org/10.1038/NPP.2012.94
  • Cole, A. B., Montgomery, K., Bale, T. L., & Thompson, S. M. (2022). What the hippocampus tells the HPA axis: Hippocampal output attenuates acute stress responses via disynaptic inhibition of CRF + PVN neurons. Neurobiology of Stress, 20, 100473. https://doi.org/10.1016/J.YNSTR.2022.100473
  • Cole, M. A., Kalman, B. A., Pace, T. W., Topczewski, F., Lowrey, M. J., & Spencer, R. L. (2000). Selective blockade of the mineralocorticoid receptor impairs hypothalamic-pituitary-adrenal axis expression of habituation. Journal of Neuroendocrinology, 12(10), 1034–1042. https://doi.org/10.1046/j.1365-2826.2000.00555.x
  • Colelli, V., Campus, P., Conversi, D., Orsini, C., & Cabib, S. (2014). Either the dorsal hippocampus or the dorsolateral striatum is selectively involved in consolidation of forced swim-induced immobility depending on genetic background. Neurobiology of Learning and Memory, 111, 49–55. https://doi.org/10.1016/j.nlm.2014.03.004
  • Collins, A., Hill, L. E., Chandramohan, Y., Whitcomb, D., Droste, S. K., & Reul, J. M. H. M. (2009). Exercise improves cognitive responses to psychological stress through enhancement of epigenetic mechanisms and gene expression in the dentate gyrus. PLOS One, 4(1), e4330. https://doi.org/10.1371/JOURNAL.PONE.0004330
  • Conway-Campbell, B. L., Sarabdjitsingh, R. A., McKenna, M. A., Pooley, J. R., Kershaw, Y. M., Meijer, O. C., de Kloet, E. R., & Lightman, S. L. (2010). Glucocorticoid ultradian rhythmicity directs cyclical gene pulsing of the clock gene period 1 in rat hippocampus. Journal of Neuroendocrinology, 22(10), 1093–1100. https://doi.org/10.1111/j.1365-2826.2010.02051.x
  • Dallman, M. F., Akana, S. F., Bhatnagar, S., Bell, M. E., Choi, S., Chu, A., Horsley, C., Levin, N., Meijer, O., Soriano, L. R., Strack, A. M., & Viau, V. (1999). Starvation: Early signals, sensors, and sequelae. Endocrinology, 140(9), 4015–4023. https://doi.org/10.1210/en.140.9.4015
  • Dallman, M. F. (2003). Fast glucocorticoid feedback favors ‘the munchies. Trends in Endocrinology and Metabolism, 14(9), 394–396. https://doi.org/10.1016/J.TEM.2003.09.005
  • Dallman, M. F. (2005). Adrenocortical function, feedback, and alphabet soup. American Journal of Physiology, Endocrinology and Metabolism, 289(3), E361–E362. https://doi.org/10.1152/classicessays.00033.2005
  • Dallman, M. F. (2010). Stress-induced obesity and the emotional nervous system. Trends in Endocrinology and Metabolism, 21(3), 159–165. https://doi.org/10.1016/J.TEM.2009.10.004
  • Dallman, M. F. (2011). Retrospective and perspective on the occasion of receiving the SSIBs distinguished research award. Physiology & Behavior, 104(4), 530–534. https://doi.org/10.1016/j.physbeh.2011.04.047
  • Dallman, M. F., Akana, S. F., Cascio, C. S., Darlington, D. N., Jacobson, L., & Levin, N. (1987). Regulation of ACTH secretion: Variations on a theme of B. Recent Progress in Hormone Research, 43, 113–173. https://doi.org/10.1016/B978-0-12-571143-2.50010-1
  • Dallman, M. F., Akana, S. F., Levin, N., Walker, C. D., Bradbury, M. J., Suemaru, S., & Scribner, K. S. (1994). Corticosteroids and the control of function in the hypothalamo-pituitary-adrenal (HPA) axis. Annals of the New York Academy of Sciences, 746, 22–31. https://doi.org/10.1111/J.1749-6632.1994.TB39206.X
  • Dallman, M. F., & Jones, M. T. (1973). Corticosteroid feedback control of ACTH secretion: Effect of stress-induced corticosterone secretion on subsequent stress responses in the rat. Endocrinology, 92(5), 1367–1375. https://doi.org/10.1210/ENDO-92-5-1367
  • Dallman, M. F., Jones, M. T., Vernikos-Danellis, J., & Ganong, W. F. (1972). Corticosteroid feedback control of ACTH secretion: Rapid effects of bilateral adrenalectomy on plasma ACTH in the rat. Endocrinology, 91(4), 961–968. https://doi.org/10.1210/ENDO-91-4-961
  • Dallman, M. F., Levin, N., Cascio, C. S., Akana, S. F., Jacobson, L., & Kuhn, R. W. (1989). Pharmacological evidence that the inhibition of diurnal adrenocorticotropin secretion by corticosteroids is mediated via type i corticosterone-preferring receptors. Endocrinology, 124(6), 2844–2850. https://doi.org/10.1210/endo-124-6-2844
  • Dallman, M. F., Pecoraro, N., Akana, S. F., La Fleur, S. E., Gomez, F., Houshyar, H., Bell, M. E., Bhatnagar, S., Laugero, K. D., & Manalo, S. (2003). Chronic stress and obesity: A new view of “comfort food”. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11696–11701. https://doi.org/10.1073/PNAS.1934666100
  • Dallman, M. F., & Yates, F. E. (1969). Dynamic asymmetries in the corticosteroid feedback path and distribution metabolism-binding elements of the adrenocortical system. Annals of the New York Academy of Sciences, 156(2), 696–721. https://doi.org/10.1111/J.1749-6632.1969.TB14008.X
  • Dalm, S., Karssen, A. M., Meijer, O. C., Belanoff, J. K., & de Kloet, E. R. (2019). Resetting the stress system with a mifepristone challenge. Cellular and Molecular Neurobiology, 39(4), 503–522. https://doi.org/10.1007/S10571-018-0614-5
  • Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: When the immune system subjugates the brain. Nature Reviews Neuroscience, 9(1), 46–56. https://doi.org/10.1038/nrn2297
  • Daskalakis, N. P., Bagot, R. C., Parker, K. J., Vinkers, C. H., & de Kloet, E. R. (2013). The three-hit concept of vulnerability and resilience: Toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology, 38(9), 1858–1873. https://doi.org/10.1016/j.psyneuen.2013.06.008
  • Daskalakis, N. P., Meijer, O. C., & de Kloet, E. R. (2022). Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy. Neurobiology of Stress, 18, 100455. https://doi.org/10.1016/j.ynstr.2022.100455
  • Datson, N. A., Speksnijder, N., Mayer, J. L., Steenbergen, P. J., Korobko, O., Goeman, J., de Kloet, E. R., Joëls, M., & Lucassen, P. J. (2012). The transcriptional response to chronic stress and glucocorticoid receptor blockade in the hippocampal dentate gyrus. Hippocampus, 22(2), 359–371. https://doi.org/10.1002/hipo.20905
  • Datson, N. A., Van Den Oever, J. M. E., Korobko, O. B., Magarinos, A. M., De Kloet, E. R., & McEwen, B. S. (2013). Previous history of chronic stress changes the transcriptional response to glucocorticoid challenge in the dentate gyrus region of the male rat hippocampus. Endocrinology, 154(9), 3261–3272. https://doi.org/10.1210/en.2012-2233
  • de Boer, S. F., Buwalda, B., & Koolhaas, J. M. (2017). Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility. Neuroscience and Biobehavioral Reviews, 74(Pt B), 401–422. https://doi.org/10.1016/j.neubiorev.2016.07.008
  • de Kloet, A. D., & Herman, J. P. (2018). Fat-brain connections: Adipocyte glucocorticoid control of stress and metabolism. Frontiers in Neuroendocrinology, 48, 50–57. https://doi.org/10.1016/J.YFRNE.2017.10.005
  • de Kloet, E. R., de Kloet, S. F., de Kloet, C. S., & de Kloet, A. D. (2019). Top-down and bottom-up control of stress-coping. Journal of Neuroendocrinology, 31(3), e12675. https://doi.org/10.1111/jne.12675
  • de Kloet, E. R., & Joëls, M. (2023). The cortisol switch between vulnerability and resilience. Molecular Psychiatry. Advance online publication. https://doi.org/10.1038/s41380-022-01934-8
  • de Kloet, E. R., Joëls, M., & Holsboer, F. (2005). Stress and the brain: from adaptation to disease. Nature Reviews Neuroscience, 6(6), 463–475. https://doi.org/10.1038/nrn1683
  • de Kloet, E. R., Meijer, O. C., de Nicola, A. F., de Rijk, R. H., & Joëls, M. (2018). Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Frontiers in Neuroendocrinology, 49, 124–145. https://doi.org/10.1016/j.yfrne.2018.02.003
  • de Kloet, E. R., Oitzl, M. S., & Joëls, M. (1999). Stress and cognition: are corticosteroids good or bad guys? Trends in Neurosciences, 22(10), 422–426. https://doi.org/10.1016/S0166-2236(99)01438-1
  • de Kloet, E. R., & Reul, J. M. H. M. (1987). Feedback action and tonic influence of corticosteroids on brain function: A concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology, 12(2), 83–105. https://doi.org/10.1016/0306-4530(87)90040-0
  • de Kloet, E. R., van der Vies, J., & de Wied, D. (1974). The site of the suppressive action of dexamethasone on pituitary-adrenal activity. Endocrinology, 94(1), 61–73. https://doi.org/10.1210/endo-94-1-61
  • de Kloet, E. R., Vreugdenhil, E., Oitzl, M. S., & Joëls, M. (1998). Brain corticosteroid receptor balance in health and disease. Endocrine Reviews, 19(3), 269–301. (Issue https://doi.org/10.1210/edrv.19.3.0331
  • de Kloet, R., Wallach, G., & McEwen, B. S. (1975). Differences in corticosterone and dexamethasone binding to rat brain and pituitary. Endocrinology, 96(3), 598–609. https://doi.org/10.1210/endo-96-3-598
  • De Nicola, A. F., Meyer, M., Guennoun, R., Schumacher, M., Hunt, H., Belanoff, J., de Kloet, E. R., & Gonzalez Deniselle, M. C. (2020). Insights into the therapeutic potential of glucocorticoid receptor modulators for neurodegenerative diseases. International Journal of Molecular Sciences, 21(6), 2137. https://doi.org/10.3390/ijms21062137
  • den Boon, F. S., & Sarabdjitsingh, R. A. (2017). Circadian and ultradian patterns of HPA-axis activity in rodents: Significance for brain functionality. Best Practice & Research Clinical Endocrinology & Metabolism, 31(5), 445–457. https://doi.org/10.1016/J.BEEM.2017.09.001
  • Devine, K., Villalobos, E., Kyle, C. J., Andrew, R., Reynolds, R. M., Stimson, R. H., Nixon, M., & Walker, B. R. (2023). The ATP-binding cassette proteins ABCB1 and ABCC1 as modulators of glucocorticoid action. Nature Reviews Endocrinology, 19(2), 112–124. https://doi.org/10.1038/S41574-022-00745-9
  • Di, S., Malcher-Lopes, R., Halmos, K. C., & Tasker, J. G. (2003). Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. The Journal of Neuroscience, 23(12), 4850–4857. 10.1523/JNEUROSCI.23-12-04850.2003
  • Diamond, D. M., Bennett, M. C., Fleshner, M., & Rose, G. M. (1992). Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus, 2(4), 421–430. https://doi.org/10.1002/HIPO.450020409
  • Dias-Ferreira, E., Sousa, J. C., Melo, I., Morgado, P., Mesquita, A. R., Cerqueira, J. J., Costa, R. M., & Sousa, N. (2009). Chronic stress causes frontostriatal reorganization and affects decision-making. Science, 325(5940), 621–625. https://doi.org/10.1126/SCIENCE.1171203
  • Ding, J., da Silva, M. S., Lingeman, J., Chen, X., Shi, Y., Han, F., & Meijer, O. C. (2019). Late glucocorticoid receptor antagonism changes the outcome of adult life stress. Psychoneuroendocrinology, 107, 169–178. https://doi.org/10.1016/j.psyneuen.2019.05.014
  • Douma, E. H., & de Kloet, E. R. (2020). Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neuroscience and Biobehavioral Reviews, 108, 48–77. https://doi.org/10.1016/j.neubiorev.2019.10.015
  • Duma, D., Collins, J. B., Chou, J. W., & Cidlowski, J. A. (2010). Sexually dimorphic actions of glucocorticoids provide a link to inflammatory diseases with gender differences in prevalence. Science Signaling, 3(143), ra74. https://doi.org/10.1126/scisignal.2001077
  • Edwards, C. R., Stewart, P. M., Burt, D., Brett, L., McIntyre, M. A., Sutanto, W. S., de Kloet, E. R., & Monder, C. (1988). Localisation of 11 beta-hydroxysteroid dehydrogenase–tissue specific protector of the mineralocorticoid receptor. Lancet, 2(8618), 986–989. https://doi.org/10.1016/S0140-6736(88)90742-8
  • Evans, R. M., & Arriza, J. L. (1989). A molecular framework for the actions of glucocorticoid hormones in the nervous system. Neuron, 2(2), 1105–1112. https://doi.org/10.1016/0896-6273(89)90177-3
  • Fleseriu, M., Biller, B. M. K., Findling, J. W., Molitch, M. E., Schteingart, D. E., & Gross, C. (2012). Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. The Journal of Clinical Endocrinology and Metabolism, 97(6), 2039–2049. https://doi.org/10.1210/JC.2011-3350
  • Fuller, P. J., Yao, Y. Z., Jin, R., He, S., Martín-Fernández, B., Young, M. J., & Smith, B. J. (2019). Molecular evolution of the switch for progesterone and spironolactone from mineralocorticoid receptor agonist to antagonist. Proceedings of the National Academy of Sciences of the United States of America, 116(37), 18578–18583. https://doi.org/10.1073/PNAS.1903172116
  • Funder, J. W., Pearce, P. T., Smith, R., & Smith, A. I. (1988). Mineralocorticoid action: Target tissue specificity is enzyme, not receptor, mediated. Science, 242(4878), 583–585. https://doi.org/10.1126/science.2845584
  • Galbally, M., Watson, S. J., Lappas, M., de Kloet, E. R., Wyrwoll, C. S., Mark, P. J., & Lewis, A. J. (2022). Exploring sex differences in fetal programming for childhood emotional disorders. Psychoneuroendocrinology, 141, 105764. https://doi.org/10.1016/j.psyneuen.2022.105764
  • Galbally, M., Watson, S. J., van Ijzendoorn, M., Saffery, R., Ryan, J., de Kloet, E. R., Oberlander, T. F., Lappas, M., & Lewis, A. J. (2020). The role of glucocorticoid and mineralocorticoid receptor DNA methylation in antenatal depression and infant stress regulation. Psychoneuroendocrinology, 115, 104611. https://doi.org/10.1016/J.PSYNEUEN.2020.104611
  • Gasparini, S., Resch, J. M., Narayan, S. V., Peltekian, L., Iverson, G. N., Karthik, S., & Geerling, J. C. (2019). Aldosterone-sensitive HSD2 neurons in mice. Brain Structure & Function, 224(1), 387–417. https://doi.org/10.1007/S00429-018-1778-Y
  • Golier, J. A., Li, X., Bizien, M., Hurley, R. A., Bechard, B. W., Kimbrell, T., Flory, J. D., Baker, D. G., Yehuda, R., & Reda, D. J. (2023). Efficacy and safety of mifepristone in the treatment of male US veterans with posttraumatic stress disorder: A phase 2a randomized clinical trial. JAMA Network Open, 6(5), e2310223. https://doi.org/10.1001/JAMANETWORKOPEN.2023.10223
  • Gonzalez-Bono, E., Rohleder, N., Hellhammer, D. H., Salvador, A., & Kirschbaum, C. (2002). Glucose but not protein or fat load amplifies the cortisol response to psychosocial stress. Hormones and Behavior, 41(3), 328–333. https://doi.org/10.1006/hbeh.2002.1766
  • Gourley, S. L., Kedves, A. T., Olausson, P., & Taylor, J. R. (2009). A history of corticosterone exposure regulates fear extinction and cortical NR2B, GluR2/3, and BDNF. Neuropsychopharmacology, 34(3), 707–716. https://doi.org/10.1038/NPP.2008.123
  • Gray, J. D., Rubin, T. G., Hunter, R. G., & McEwen, B. S. (2014). Hippocampal gene expression changes underlying stress sensitization and recovery. Molecular Psychiatry, 19(11), 1171–1178. https://doi.org/10.1038/mp.2013.175
  • Groch, S., Wilhelm, I., Lange, T., & Born, J. (2013). Differential contribution of mineralocorticoid and glucocorticoid receptors to memory formation during sleep. Psychoneuroendocrinology, 38(12), 2962–2972. https://doi.org/10.1016/j.psyneuen.2013.08.006
  • Groeneweg, F. L., Karst, H., de Kloet, E. R., & Joëls, M. (2012). Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Molecular and Cellular Endocrinology, 350(2), 299–309. https://doi.org/10.1016/j.mce.2011.06.020
  • Hanson, E. S., Bradbury, M. J., Akana, S. F., Scribner, K. S., Strack, A. M., & Dallman, M. F. (1994). The diurnal rhythm in adrenocorticotropin responses to restraint in adrenalectomized rats is determined by caloric intake. Endocrinology, 134(5), 2214–2220. https://doi.org/10.1210/ENDO.134.5.8156924
  • Harris, A. P., Holmes, M. C., de Kloet, E. R., Chapman, K. E., & Seckl, J. R. (2013). Mineralocorticoid and glucocorticoid receptor balance in control of HPA axis and behaviour. Psychoneuroendocrinology, 38(5), 648–658. https://doi.org/10.1016/j.psyneuen.2012.08.007
  • Harris, C., Weiss, G. L., Di, S., & Tasker, J. G. (2019). Cell signaling dependence of rapid glucocorticoid-induced endocannabinoid synthesis in hypothalamic neuroendocrine cells. Neurobiology of Stress, 10, 100158. https://doi.org/10.1016/j.ynstr.2019.100158
  • Hartmann, J., Bajaj, T., Klengel, C., Chatzinakos, C., Ebert, T., Dedic, N., McCullough, K. M., Lardenoije, R., Joëls, M., Meijer, O. C., McCann, K. E., Dudek, S. M., Sarabdjitsingh, R. A., Daskalakis, N. P., Klengel, T., Gassen, N. C., Schmidt, M. V., & Ressler, K. J. (2021). Mineralocorticoid receptors dampen glucocorticoid receptor sensitivity to stress via regulation of FKBP5. Cell Reports, 35(9), 109185. https://doi.org/10.1016/j.celrep.2021.109185
  • Havel, P. J., Busch, B. L., Curry, D. L., Johnson, P. R., Dallman, M. F., & Stern, J. S. (1996). Predominately glucocorticoid agonist actions of RU-486 in young specific-pathogen-free Zucker rats. The American Journal of Physiology, 271(3 Pt 2), R710–R717. https://doi.org/10.1152/ajpregu.1996.271.3.R710
  • Heikinheimo, O., Kontula, K., Croxatto, H., Spitz, I., Luukkainen, T., & Lähteenmäki, P. (1987). Plasma concentrations and receptor binding of RU 486 and its metabolites in humans. Journal of Steroid Biochemistry, 26(2), 279–284. https://doi.org/10.1016/0022-4731(87)90083-5
  • Henkin, R. I., & Daly, R. L. (1968). Auditory detection and perception in normal man and in patients with adrenal cortical insufficiency: effect of adrenal cortical steroids. The Journal of Clinical Investigation, 47(6), 1269–1280. https://doi.org/10.1172/JCI105819
  • Herman, J. P., Figueiredo, H., Mueller, N. K., Ulrich-Lai, Y., Ostrander, M. M., Choi, D. C., & Cullinan, W. E. (2003). Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Frontiers in Neuroendocrinology, 24(3), 151–180. https://doi.org/10.1016/j.yfrne.2003.07.001
  • Herman, J. P., Nawreen, N., Smail, M. A., & Cotella, E. M. (2020). Brain mechanisms of HPA axis regulation: neurocircuitry and feedback in context Richard Kvetnansky lecture. Stress, 23(6), 617–632. https://doi.org/10.1080/10253890.2020.1859475
  • Hermans, E. J., Henckens, M. J., Joels, M., & Fernandez, G. (2014). Dynamic adaptation of large-scale brain networks in response to acute stressors. Trends in Neurosciences. 37(6), 304–314. https://doi.org/10.1016/j.tins.2014.03.006
  • Heuser, I., Yassouridis, A., & Holsboer, F. (1994). The combined dexamethasone/CRH test: A refined laboratory test for psychiatric disorders. Journal of Psychiatric Research, 28(4), 341–356. https://doi.org/10.1016/0022-3956(94)90017-5
  • Hu, P., Oomen, C., van Dam, A.-M., Wester, J., Zhou, J.-N., Joëls, M., & Lucassen, P. J. (2012). A single-day treatment with mifepristone is sufficient to normalize chronic glucocorticoid induced suppression of hippocampal cell proliferation. PLOS One, 7(9), e46224. https://doi.org/10.1371/journal.pone.0046224
  • Hucklebridge, F. H., Clow, A., Abeyguneratne, T., Huezo-Diaz, P., & Evans, P. (1999). The awakening cortisol response and blood glucose levels. Life Sciences, 64(11), 931–937. https://doi.org/10.1016/S0024-3205(99)00019-3
  • Hunter, R. G., Seligsohn, M., Rubin, T. G., Griffiths, B. B., Ozdemir, Y., Pfaff, D. W., Datson, N. A., & McEwen, B. S. (2016). Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America, 113(32), 9099–9104. https://doi.org/10.1073/PNAS.1602185113
  • Jaisser, F., & Farman, N. (2016). Emerging roles of the mineralocorticoid receptor in pathology: Toward new paradigms in clinical pharmacology. Pharmacological Reviews, 68(1), 49–75. https://doi.org/10.1124/PR.115.011106
  • Ji, E., Weickert, C. S., Purves-Tyson, T., White, C., Handelsman, D. J., Desai, R., O’Donnell, M., Liu, D., Galletly, C., Lenroot, R., & Weickert, T. W. (2021). Cortisol-dehydroepiandrosterone ratios are inversely associated with hippocampal and prefrontal brain volume in schizophrenia. Psychoneuroendocrinology, 123, 104916. https://doi.org/10.1016/J.PSYNEUEN.2020.104916
  • Jiang, C. L., Liu, L., & Tasker, J. G. (2014). Why do we need nongenomic glucocorticoid mechanismsα. Frontiers in Neuroendocrinology, 35(1), 72–75. (Issue https://doi.org/10.1016/j.yfrne.2013.09.005
  • Joëls, M. (2006). Corticosteroid effects in the brain: U-shape it. Trends in Pharmacological Sciences, 27(5), 244–250. https://doi.org/10.1016/j.tips.2006.03.007
  • Joëls, M. (2018). Corticosteroids and the brain. Journal of Endocrinology, 238(3), R121–R130. https://doi.org/10.1530/JOE-18-0226
  • Joëls, M., & de Kloet, E. R. (1992). Control of neuronal excitability by corticosteroid hormones. Trends in Neurosciences, 15(1), 25–30. https://doi.org/10.1016/0166-2236(92)90345-9
  • Joëls, M., Karst, H., DeRijk, R., & de Kloet, E. R. (2008). The coming out of the brain mineralocorticoid receptor. Trends in Neurosciences, 31(1), 1–7. https://doi.org/10.1016/j.tins.2007.10.005
  • Joels, M., Sarabdjitsingh, R. A., & Karst, H. (2012). Unraveling the time domains of corticosteroid hormone influences on brain activity: Rapid, slow, and chronic modes. Pharmacological Reviews, 64(4), 901–938. https://doi.org/10.1124/pr.112.005892
  • Johnson, S. B., Emmons, E. B., Lingg, R. T., Anderson, R. M., Romig-Martin, S. A., Lalumiere, R. T., Narayanan, N. S., Viau, V., & Radley, J. J. (2019). Prefrontal-bed nucleus circuit modulation of a passive coping response set. The Journal of Neuroscience, 39(8), 1405–1419. https://doi.org/10.1523/JNEUROSCI.1421-18.2018
  • Johnson, S. B., Lingg, R. T., Skog, T. D., Hinz, D. C., Romig-Martin, S. A., Viau, V., Narayanan, N. S., & Radley, J. J. (2022). Activity in a prefrontal-periaqueductal gray circuit overcomes behavioral and endocrine features of the passive coping stress response. Proceedings of the National Academy of Sciences of the United States of America, 119(44), e2210783119. https://doi.org/10.1073/PNAS.2210783119
  • Juruena, M. F., Bocharova, M., Agustini, B., & Young, A. H. (2018). Atypical depression and non-atypical depression: Is HPA axis function a biomarker? A systematic review. Journal of Affective Disorders, 233, 45–67. https://doi.org/10.1016/J.JAD.2017.09.052
  • Kalafatakis, K., Russell, G. M., Ferguson, S. G., Grabski, M., Harmer, C. J., Munafò, M. R., Marchant, N., Wilson, A., Brooks, J. C., Thakrar, J., Murphy, P., Thai, N. J., & Lightman, S. L. (2021). Glucocorticoid ultradian rhythmicity differentially regulates mood and resting state networks in the human brain: A randomised controlled clinical trial. Psychoneuroendocrinology, 124, 105096. https://doi.org/10.1016/J.PSYNEUEN.2020.105096
  • Kalafatakis, K., Russell, G. M., Harmer, C. J., Munafo, M. R., Marchant, N., Wilson, A., Brooks, J. C., Durant, C., Thakrar, J., Murphy, P., Thai, N. J., & Lightman, S. L. (2018). Ultradian rhythmicity of plasma cortisol is necessary for normal emotional and cognitive responses in man. Proceedings of the National Academy of Sciences of the United States of America, 115(17), E4091–E4100. https://doi.org/10.1073/PNAS.1714239115/SUPPL_FILE/PNAS.1714239115.SAPP.PDF
  • Karssen, A. M., Meijer, O. C., Berry, A., Sanjuan Piñol, R., & De Kloet, E. R. (2005). Low doses of dexamethasone can produce a hypocorticosteroid state in the brain. Endocrinology, 146(12), 5587–5595. https://doi.org/10.1210/en.2005-0501
  • Karssen, A. M., Meijer, O. C., van der Sandt, I. C., Lucassen, P. J., de Lange, E. C., de Boer, A. G., & de Kloet, E. R. (2001). Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology, 142(6), 2686–2694. https://doi.org/10.1210/endo.142.6.8213
  • Karst, H., Berger, S., Erdmann, G., Schütz, G., & Joëls, M. (2010). Metaplasticity of amygdalar responses to the stress hormone corticosterone. Proceedings of the National Academy of Sciences of the United States of America, 107(32), 14449–14454. https://doi.org/10.1073/pnas.0914381107
  • Karst, H., Berger, S., Turiault, M., Tronche, F., Schutz, G., & Joels, M. (2005). Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proceedings of the National Academy of Sciences of the United States of America, 102(52), 19204–19207. https://doi.org/10.1073/pnas.0507572102
  • Karst, H., den Boon, F. S., Vervoort, N., Adrian, M., Kapitein, L. C., & Joëls, M. (2022). Non-genomic steroid signaling through the mineralocorticoid receptor: Involvement of a membrane-associated receptor? Molecular and Cellular Endocrinology, 541, 111501. https://doi.org/10.1016/J.MCE.2021.111501
  • Karst, H., & Joëls, M. (2016). Severe stress hormone conditions cause an extended window of excitability in the mouse basolateral amygdala. Neuropharmacology, 110(Pt A), 175–180. https://doi.org/10.1016/j.neuropharm.2016.07.027
  • Karst, H., & Joëls, M. (2023). Corticosterone rapidly reduces glutamatergic but not GABAergic transmission in the infralimbic prefrontal cortex of male mice. Steroids, 198, 109283. https://doi.org/10.1016/J.STEROIDS.2023.109283
  • Kelemen, E., Bahrendt, M., Born, J., & Inostroza, M. (2014). Hippocampal corticosterone impairs memory consolidation during sleep but improves consolidation in the wake state. Hippocampus, 24(5), 510–515. https://doi.org/10.1002/hipo.22266
  • Keller-Wood, M. E., & Dallman, M. F. (1984). Corticosteroid inhibition of ACTH secretion. Endocrine Reviews, 5(1), 1–24. https://doi.org/10.1210/EDRV-5-1-1
  • Kim, J. S., Han, S. Y., & Iremonger, K. J. (2019). Stress experience and hormone feedback tune distinct components of hypothalamic CRH neuron activity. Nature Communications, 10(1), 5696. https://doi.org/10.1038/s41467-019-13639-8
  • Kirschbaum, C., Bono, E. G., Rohleder, N., Gessner, C., Pirke, K. M., Salvador, A., & Hellhammer, D. H. (1997). Effects of fasting and glucose load on free cortisol responses to stress and nicotine. The Journal of Clinical Endocrinology and Metabolism, 82(4), 1101–1105. https://doi.org/10.1210/JCEM.82.4.3882
  • Klinzing, J. G., Niethard, N., & Born, J. (2019). Mechanisms of systems memory consolidation during sleep. Nature Neuroscience, 22(10), 1743–1744. https://doi.org/10.1038/s41593-019-0467-3
  • Klok, M. D., Giltay, E. J., Van der Does, A. J. W., Geleijnse, J. M., Antypa, N., Penninx, B. W. J. H., de Geus, E. J. C., Willemsen, G., Boomsma, D. I., van Leeuwen, N., Zitman, F. G., de Kloet, E. R., & DeRijk, R. H. (2011). A common and functional mineralocorticoid receptor haplotype enhances optimism and protects against depression in females. Translational Psychiatry, 1(12), e62. https://doi.org/10.1038/tp.2011.59
  • Koorneef, L. L., Bogaards, M., Reinders, M. J. T., Meijer, O. C., & Mahfouz, A. (2018). How metabolic state may regulate fear: Presence of metabolic receptors in the fear circuitry. Frontiers in Neuroscience, 12, 594. https://doi.org/10.3389/fnins.2018.00594
  • Kroon, J., Pereira, A. M., & Meijer, O. C. (2020). Glucocorticoid sexual dimorphism in metabolism: Dissecting the role of sex hormones. Trends in Endocrinology and Metabolism, 31(5), 357–367. https://doi.org/10.1016/j.tem.2020.01.010
  • Laugero, K. D. (2001). A new perspective on glucocorticoid feedback: relation to stress, carbohydrate feeding and feeling better. Journal of Neuroendocrinology, 13(9), 827–835. https://doi.org/10.1046/J.1365-2826.2001.00706.X
  • Lesuis, S. L., Brosens, N., Immerzeel, N., van der Loo, R. J., Mitrić, M., Bielefeld, P., Fitzsimons, C. P., Lucassen, P. J., Kushner, S. A., van den Oever, M. C., & Krugers, H. J. (2021). Glucocorticoids promote fear generalization by increasing the size of a dentate gyrus engram cell population. Biological Psychiatry, 90(7), 494–504. https://doi.org/10.1016/J.BIOPSYCH.2021.04.010
  • Lightman, S. L., Birnie, M. T., & Conway-Campbell, B. L. (2020). Dynamics of ACTH and cortisol secretion and implications for disease. Endocrine Reviews, 41(3), 470–490. https://doi.org/10.1210/ENDREV/BNAA002
  • Lightman, S. L., & Conway-Campbell, B. L. (2010). The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nature Reviews. Neuroscience, 11(10), 710–718. https://doi.org/10.1038/nrn2914
  • Lingg, R. T., Johnson, S. B., Emmons, E. B., Anderson, R. M., Romig-Martin, S. A., Narayanan, N. S., McGaugh, J. L., LaLumiere, R. T., & Radley, J. J. (2020). Bed nuclei of the stria terminalis modulate memory consolidation via glucocorticoid-dependent and -independent circuits. Proceedings of the National Academy of Sciences of the United States of America, 117(14), 8104–8114. https://doi.org/10.1073/pnas.1915501117
  • Liston, C., Cichon, J. M., Jeanneteau, F., Jia, Z., Chao, M. V., & Gan, W.-B. (2013). Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nature Neuroscience, 16(6), 698–705. https://doi.org/10.1038/nn.3387
  • Loi, M., Sarabdjitsingh, R. A., Tsouli, A., Trinh, S., Arp, M., Krugers, H. J., Karst, H., Van Den Bos, R., & Joëls, M. (2017). Transient prepubertal mifepristone treatment normalizes deficits in contextual memory and neuronal activity of adult male rats exposed to maternal deprivation. eNeuro, 4(5), ENEURO.0253-17.2017. https://doi.org/10.1523/ENEURO.0253-17.2017
  • Lombardo, G., Enache, D., Gianotti, L., Schatzberg, A. F., Young, A. H., Pariante, C. M., & Mondelli, V. (2019). Baseline cortisol and the efficacy of antiglucocorticoid treatment in mood disorders: A meta-analysis. Psychoneuroendocrinology, 110, 104420. https://doi.org/10.1016/J.PSYNEUEN.2019.104420
  • Lucassen, P. J., Fitzsimons, C. P., Vreugdenhil, E., Hu, P., Oomen, C., Revsin, Y., Joëls, M., & de Kloet, E. R. (2011). Regulation of structural plasticity and neurogenesis during stress and diabetes; protective effects of glucocorticoid receptor antagonists. In Hormones in Neurodegeneration, Neuroprotection, and Neurogenesis (pp. 103–120). Wiley-VCH Verlag GmbH & Co. KgaA. https://doi.org/10.1002/9783527633968.ch6
  • Maggio, N., & Segal, M. (2009). Differential corticosteroid modulation of inhibitory synaptic currents in the dorsal and ventral hippocampus. The Journal of Neuroscience, 29(9), 2857–2866. https://doi.org/10.1523/JNEUROSCI.4399-08.2009
  • Matosin, N., Halldorsdottir, T., & Binder, E. B. (2018). Understanding the molecular mechanisms underpinning gene by environment interactions in psychiatric disorders: The FKBP5 model. Biological Psychiatry, 83(10), 821–830. https://doi.org/10.1016/j.biopsych.2018.01.021
  • Mayer, J. L., Klumpers, L., Maslam, S., de Kloet, E. R., Joëls, M., & Lucassen, P. J. (2006). Brief treatment with the glucocorticoid receptor antagonist mifepristone normalises the corticosterone-induced reduction of adult hippocampal neurogenesis. Journal of Neuroendocrinology, 18(8), 629–631. https://doi.org/10.1111/j.1365-2826.2006.01455.x
  • McCann, K. E., Lustberg, D. J., Shaughnessy, E. K., Carstens, K. E., Farris, S., Alexander, G. M., Radzicki, D., Zhao, M., & Dudek, S. M. (2021). Novel role for mineralocorticoid receptors in control of a neuronal phenotype. Molecular Psychiatry, 26(1), 350–364. https://doi.org/10.1038/s41380-019-0598-7
  • McCarthy, M. M. (2020). A new view of sexual differentiation of mammalian brain. Journal of Comparative Physiology A, 206(3), 369–378. https://doi.org/10.1007/S00359-019-01376-8
  • McEwen, B. S. (2017). Neurobiological and systemic effects of chronic stress. Chronic Stress, 1, 247054701769232. https://doi.org/10.1177/2470547017692328
  • McEwen, B. S., & Akil, H. (2020). Revisiting the stress concept: Implications for affective disorders. The Journal of Neuroscience, 40(1), 12–21. https://doi.org/10.1523/JNEUROSCI.0733-19.2019
  • McEwen, B. S., Bowles, N. P., Gray, J. D., Hill, M. N., Hunter, R. G., Karatsoreos, I. N., & Nasca, C. (2015). Mechanisms of stress in the brain. Nature Neuroscience, 18(10), 1353–1363. https://doi.org/10.1038/nn.4086
  • McEwen, B. S., Weiss, J. M., & Schwartz, L. S. (1968). Selective retention of corticosterone by limbic structures in rat brain. Nature, 220(5170), 911–912. https://doi.org/10.1038/220911a0
  • McGinn, M. A., Tunstall, B. J., Schlosburg, J. E., Gregory-Flores, A., George, O., de Guglielmo, G., Mason, B. J., Hunt, H. J., Koob, G. F., & Vendruscolo, L. F. (2021). Glucocorticoid receptor modulators decrease alcohol self-administration in male rats. Neuropharmacology, 188, 108510. https://doi.org/10.1016/j.neuropharm.2021.108510
  • McKlveen, J. M., Moloney, R. D., Scheimann, J. R., Myers, B., & Herman, J. P. (2019). “Braking” the prefrontal cortex: The role of glucocorticoids and interneurons in stress adaptation and pathology. Biological Psychiatry, 86(9), 669–681. https://doi.org/10.1016/J.BIOPSYCH.2019.04.032
  • McKlveen, J. M., Myers, B., & Herman, J. P. (2015). The medial prefrontal cortex: coordinator of autonomic, neuroendocrine and behavioural responses to stress. Journal of Neuroendocrinology, 27(6), 446–456. https://doi.org/10.1111/jne.12272
  • Meijer, O. C., De Lange, E. C. M., Breimer, D. D., De Boer, A. G., Workel, J. O., & De Kloet, E. R. (1998). Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P-glycoprotein knockout mice. Endocrinology, 139(4), 1789–1793. https://doi.org/http://www.scopus.com/inward/record.url?eid=2-s2.0-0031732606&partnerID=MN8TOARS https://doi.org/10.1210/endo.139.4.5917
  • Meijer, O. C., Koorneef, L. L., & Kroon, J. (2018). Glucocorticoid receptor modulators. Annales D’endocrinologie, 79(3), 107–111. https://doi.org/10.1016/j.ando.2018.03.004
  • Meyer, M., Meijer, O., Hunt, H., Belanoff, J., Lima, A., De Kloet, E. R., Gonzalez Deniselle, M. C., & De Nicola, A. F. (2023). Stress-induced Neuroinflammation of the spinal cord is restrained by Cort113176 (Dazucorilant), a specific glucocorticoid receptor modulator. Molecular Neurobiology. Advance online publication. https://doi.org/10.1007/s12035-023-03554-x 37566177
  • Meyer, M., Kruse, M. S., Garay, L., Lima, A., Roig, P., Hunt, H., Belanoff, J., de Kloet, E. R., Deniselle, M. C. G., & De Nicola, A. F. (2020). Long-term effects of the glucocorticoid receptor modulator CORT113176 in murine motoneuron degeneration. Brain Research, 1727, 146551. https://doi.org/10.1016/j.brainres.2019.146551
  • Mifsud, K. R., Kennedy, C. L. M., Salatino, S., Sharma, E., Price, E. M., Haque, S. N., Gialeli, A., Goss, H. M., Panchenko, P. E., Broxholme, J., Engledow, S., Lockstone, H., Cordero Llana, O., & Reul, J. M. H. M. (2021). Distinct regulation of hippocampal neuroplasticity and ciliary genes by corticosteroid receptors. Nature Communications, 12(1), 4737. https://doi.org/10.1038/s41467-021-24967-z
  • Mifsud, K. R., & Reul, J. M. H. M. (2016). Acute stress enhances heterodimerization and binding of corticosteroid receptors at glucocorticoid target genes in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 113(40), 11336–11341. https://doi.org/10.1073/pnas.1605246113
  • Murck, H., Lehr, L., & Jezova, D. (2023). A viewpoint on aldosterone and BMI related brain morphology in relation to treatment outcome in patients with major depression. Journal of Neuroendocrinology, 35(2), e13219. https://doi.org/10.1111/JNE.13219
  • Nguyen, E. T., Streicher, J., Berman, S., Caldwell, J. L., Ghisays, V., Estrada, C. M., Wulsin, A. C., & Solomon, M. B. (2017). A mixed glucocorticoid/mineralocorticoid receptor modulator dampens endocrine and hippocampal stress responsivity in male rats. Physiology & Behavior, 178, 82–92. https://doi.org/10.1016/j.physbeh.2017.01.020
  • Oakley, R. H., Whirledge, S. D., Petrillo, M. G., Riddick, N. V., Xu, X., Moy, S. S., & Cidlowski, J. A. (2021). Combinatorial actions of glucocorticoid and mineralocorticoid stress hormone receptors are required for preventing neurodegeneration of the mouse hippocampus. Neurobiology of Stress, 15, 100369. https://doi.org/10.1016/j.ynstr.2021.100369
  • Obleser, J., Kreitewolf, J., Vielhauer, R., Lindner, F., David, C., Oster, H., & Tune, S. (2021). Circadian fluctuations in glucocorticoid level predict perceptual discrimination sensitivity. iScience, 24(4), 102345. https://doi.org/10.1016/j.isci.2021.102345
  • Oitzl, M. S., & de Kloet, E. R. (1992). Selective corticosteroid antagonists modulate specific aspects of spatial orientation learning. Behavioral Neuroscience, 106(1), 62–71. https://doi.org/10.1037/0735-7044.106.1.62
  • Oomen, C. A., Mayer, J. L., De Kloet, E. R., Joëls, M., & Lucassen, P. J. (2007). Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress. The European Journal of Neuroscience, 26(12), 3395–3401. https://doi.org/10.1111/j.1460-9568.2007.05972.x
  • Papilloud, A., Veenit, V., Tzanoulinou, S., Riccio, O., Zanoletti, O., Guillot de Suduiraut, I., Grosse, J., & Sandi, C. (2019). Peripubertal stress-induced heightened aggression: modulation of the glucocorticoid receptor in the central amygdala and normalization by mifepristone treatment. Neuropsychopharmacology, 44(4), 674–682. https://doi.org/10.1038/s41386-018-0110-0
  • Picard, M., McEwen, B. S., Epel, E. S., & Sandi, C. (2018). An energetic view of stress: Focus on mitochondria. Frontiers in Neuroendocrinology, 49, 72–85. https://doi.org/10.1016/j.yfrne.2018.01.001
  • Pitman, R. K., Milad, M. R., Igoe, S. A., Vangel, M. G., Orr, S. P., Tsareva, A., Gamache, K., & Nader, K. (2011). Systemic mifepristone blocks reconsolidation of cue-conditioned fear; propranolol prevents this effect. Behavioral Neuroscience, 125(4), 632–638. https://doi.org/10.1037/A0024364
  • Pivonello, R., Bancos, I., Feelders, R. A., Kargi, A. Y., Kerr, J. M., Gordon, M. B., Mariash, C. N., Terzolo, M., Ellison, N., & Moraitis, A. G. (2021). Relacorilant, a selective glucocorticoid receptor modulator, induces clinical improvements in patients with cushing syndrome: Results from a prospective, open-label phase 2 study. Frontiers in Endocrinology, 12, 662865. https://doi.org/10.3389/FENDO.2021.662865
  • Polman, J. A. E., De Kloet, E. R., & Datson, N. A. (2013). Two populations of glucocorticoid receptor-binding sites in the male rat hippocampal genome. Endocrinology, 154(5), 1832–1844. https://doi.org/10.1210/en.2012-2187 23525215
  • Polman, J. A. E., Hunter, R. G., Speksnijder, N., Van Den Oever, J. M. E., Korobko, O. B., McEwen, B. S., De Kloet, E. R., & Datson, N. A. (2012). Glucocorticoids modulate the mtor pathway in the hippocampus: Differential effects depending on stress history. Endocrinology, 153(9), 4317–4327. https://doi.org/10.1210/en.2012-1255
  • Provençal, N., Arloth, J., Cattaneo, A., Anacker, C., Cattane, N., Wiechmann, T., Röh, S., Ködel, M., Klengel, T., Czamara, D., Müller, N. S., Lahti, J., Räikkönen, K., Pariante, C. M., & Binder, E. B. (2020). Glucocorticoid exposure during hippocampal neurogenesis primes future stress response by inducing changes in DNA methylation. Proceedings of the National Academy of Sciences of the United States of America, 117(38), 23280–23285. https://doi.org/10.1073/pnas.1820842116
  • Qian, X., Droste, S. K., Lightman, S. L., Reul, J. M. H. M., & Linthorst, A. C. E. (2012). Circadian and ultradian rhythms of free glucocorticoid hormone are highly synchronized between the blood, the subcutaneous tissue, and the brain. Endocrinology, 153(9), 4346–4353. https://doi.org/10.1210/en.2012-1484
  • Radley, J. J., & Johnson, S. B. (2018). Anteroventral bed nuclei of the stria terminalis neurocircuitry: Towards an integration of HPA axis modulation with coping behaviors – Curt Richter Award Paper 2017. Psychoneuroendocrinology, 89, 239–249. https://doi.org/10.1016/j.psyneuen.2017.12.005
  • Rainville, J. R., Weiss, G. L., Evanson, N., Herman, J. P., Vasudevan, N., & Tasker, J. G. (2019). Membrane-initiated nuclear trafficking of the glucocorticoid receptor in hypothalamic neurons. Steroids, 142, 55–64. https://doi.org/10.1016/J.STEROIDS.2017.12.005
  • Ratka, A., Sutanto, W., Bloemers, M., & de Kloet, E. R. (1989). On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation. Neuroendocrinology, 50(2), 117–123. https://doi.org/10.1159/000125210
  • Ratka, A., Sutanto, W., & De Kloet, R. (1988). Long-lasting glucocorticoid suppression of opioid-induced antinociception. Neuroendocrinology, 48(4), 439–444. https://doi.org/10.1159/000125046
  • Reul, J. M., & de Kloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology, 117(6), 2505–2511. https://doi.org/10.1210/endo-117-6-2505
  • Reul, J. M. H. M., Collins, A., Saliba, R. S., Mifsud, K. R., Carter, S. D., Gutierrez-Mecinas, M., Qian, X., & Linthorst, A. C. E. (2015). Glucocorticoids, epigenetic control and stress resilience. Neurobiology of Stress, 1(1), 44–59. https://doi.org/10.1016/j.ynstr.2014.10.001
  • Reul, J. M. H. M., Stec, I., Soder, M., & Holsboer, F. (1993). Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic-pituitary-adrenocortical system. Endocrinology, 133(1), 312–320. https://doi.org/10.1210/ENDO.133.1.8391426
  • Revsin, Y., Rekers, N. V., Louwe, M. C., Saravia, F. E., De Nicola, A. F., De Kloet, E. R., & Oitzl, M. S. (2009). Glucocorticoid receptor blockade normalizes hippocampal alterations and cognitive impairment in streptozotocin-induced type 1 diabetes mice. Neuropsychopharmacology, 34(3), 747–758. https://doi.org/10.1038/NPP.2008.136
  • Revsin, Y., Saravia, F., Roig, P., Lima, A., De Kloet, E. R., Homo-Delarche, F., & De Nicola, A. F. (2005). Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes. Brain Research, 1038(1), 22–31. https://doi.org/10.1016/j.brainres.2004.12.032
  • Rivers, C. A., Rogers, M. F., Stubbs, F. E., Conway-Campbell, B. L., Lightman, S. L., & Pooley, J. R. (2019). Glucocorticoid receptor-tethered mineralocorticoid receptors increase glucocorticoid-induced transcriptional responses. Endocrinology, 160(5), 1044–1056. https://doi.org/10.1210/EN.2018-00819
  • Roat-Shumway, S., Wroolie, T. E., Watson, K., Schatzberg, A. F., & Rasgon, N. L. (2018). Cognitive effects of mifepristone in overweight, euthymic adults with depressive disorders. Journal of Affective Disorders, 239, 242–246. https://doi.org/10.1016/J.JAD.2018.07.014
  • Roozendaal, B., Hahn, E. L., Nathan, S. V., de Quervain, D. J.-F., & McGaugh, J. L. (2004). Glucocorticoid effects on memory retrieval require concurrent noradrenergic activity in the hippocampus and basolateral amygdala. The Journal of Neuroscience, 24(37), 8161–8169. https://doi.org/10.1523/JNEUROSCI.2574-04.2004
  • Roozendaal, B., & McGaugh, J. L. (2011). Memory modulation. Behavioral Neuroscience, 125(6), 797–824. https://doi.org/10.1037/a0026187
  • Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21(1), 55–89. https://doi.org/10.1210/er.21.1.55
  • Sarabdjitsingh, R. A., Isenia, S., Polman, A., Mijalkovic, J., Lachize, S., Datson, N., de Kloet, E. R., & Meijer, O. C. (2010). Disrupted corticosterone pulsatile patterns attenuate responsiveness to glucocorticoid signaling in rat brain. Endocrinology, 151(3), 1177–1186. https://doi.org/10.1210/en.2009-1119
  • Scarpa, J. R., Fatma, M., Loh, Y. H. E., Traore, S. R., Stefan, T., Chen, T. H., Nestler, E. J., & Labonté, B. (2020). Shared transcriptional signatures in major depressive disorder and mouse chronic stress models. Biological Psychiatry, 88(2), 159–168. https://doi.org/10.1016/j.biopsych.2019.12.029
  • Schmidt, M. V., Levine, S., Alam, S., Harbich, D., Sterlemann, V., Ganea, K., de Kloet, E. R., Holsboer, F., & Müller, M. B. (2006). Metabolic signals modulate hypothalamic-pituitary-adrenal axis activation during maternal separation of the neonatal mouse. Journal of Neuroendocrinology, 18(11), 865–874. https://doi.org/10.1111/j.1365-2826.2006.01482.x
  • Schwabe, L., Hermans, E. J., Joëls, M., & Roozendaal, B. (2022). Mechanisms of memory under stress. Neuron, 110(9), 1450–1467. https://doi.org/10.1016/j.neuron.2022.02.020
  • Schwabe, L., & Wolf, O. T. (2013). Stress and multiple memory systems: from “thinking” to “doing”. Trends in Cognitive Sciences, 17(2), 60–68. https://doi.org/10.1016/j.tics.2012.12.001
  • Seckl, J. R., & Fink, G. (1992). Antidepressants increase glucocorticoid and mineralocorticoid receptor mRNA expression in rat hippocampus in vivo. Neuroendocrinology, 55(6), 621–626. https://doi.org/http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1321353 https://doi.org/10.1159/000126180
  • Selye, H. (1946). The general adaptation syndrome and the diseases of adaptation. The Journal of Clinical Endocrinology & Metabolism, 6(2), 117–230. https://doi.org/10.1016/j.ajog.2010.07.025
  • Selye, H. (1950). STRESS – The physiology and pathology of exposure to stress. In Acta Inc Montreal, 203, 1025. https://doi.org/10.1016/S0016-5085(51)80143-4
  • Shorter, E., & Fink, M. (2010). Endocrine psychiatry : solving the riddle of melancholia. (p. 193). Oxford University Press.
  • Ribeiro, S. (2021). The Oracle of Night: the history and science of dreams. Bantam Press.
  • Solomon, M. B., Wulsin, A. C., Rice, T., Wick, D., Myers, B., McKlveen, J., Flak, J. N., Ulrich-Lai, Y., & Herman, J. P. (2014). The selective glucocorticoid receptor antagonist CORT 108297 decreases neuroendocrine stress responses and immobility in the forced swim test. Hormones and Behavior, 65(4), 363–371. https://doi.org/10.1016/j.yhbeh.2014.02.002
  • Sousa, N. (2016). The dynamics of the stress neuromatrix. Molecular Psychiatry, 21(3), 302–312. https://doi.org/10.1038/mp.2015.196
  • Stranahan, A. M., Arumugam, T. V., Cutler, R. G., Lee, K., Egan, J. M., & Mattson, M. P. (2008). Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nature Neuroscience, 11(3), 309–317. https://doi.org/10.1038/NN2055
  • Taubenfeld, S. M., Riceberg, J. S., New, A. S., & Alberini, C. M. (2009). Preclinical assessment for selectively disrupting a traumatic memory via postretrieval inhibition of glucocorticoid receptors. Biological Psychiatry, 65(3), 249–257. https://doi.org/10.1016/J.BIOPSYCH.2008.07.005
  • Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A., & Updegraff, J. A. (2000). Biobehavioral responses to stress in females: Tend-and-befriend, not fight-or-flight. Psychological Review, 107(3), 411–429. https://doi.org/10.1037/0033-295X.107.3.411
  • Tempel, D. L., McEwen, B. S., & Leibowitz, S. F. (1993). Adrenal steroid receptors in the PVN: studies with steroid antagonists in relation to macronutrient intake. Neuroendocrinology, 57(6), 1106–1113. https://doi.org/10.1159/000126477
  • ter Horst, J. P., van der Mark, M., Kentrop, J., Arp, M., van der Veen, R., de Kloet, E. R., & Oitzl, M. S. (2014). Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice. Frontiers in Behavioral Neuroscience, 8, 26. https://doi.org/10.3389/fnbeh.2014.00026
  • Turecki, G., & Meaney, M. J. (2016). Effects of the social environment and stress on glucocorticoid receptor gene methylation: A systematic review. Biological Psychiatry, 79(2), 87–96. https://doi.org/10.1016/j.biopsych.2014.11.022
  • Tzanoulinou, S., Gantelet, E., Sandi, C., & Márquez, C. (2020). Programming effects of peripubertal stress on spatial learning. Neurobiology of Stress, 13, 100282. https://doi.org/10.1016/j.ynstr.2020.100282
  • Ulrich-Lai, Y. M., Christiansen, A. M., Ostrander, M. M., Jones, A. A., Jones, K. R., Choi, D. C., Krause, E. G., Evanson, N. K., Furay, A. R., Davis, J. F., Solomon, M. B., De Kloet, A. D., Tamashiro, K. L., Sakai, R. R., Seeley, R. J., Woods, S. C., & Herman, J. P. (2010). Pleasurable behaviors reduce stress via brain reward pathways. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 20529–20534. https://doi.org/10.1073/PNAS.1007740107
  • Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10(6), 397–409. https://doi.org/10.1038/NRN2647
  • van Haarst, A. D., Oitzl, M. S., & de Kloet, E. R. (1997). Facilitation of feedback inhibition through blockade of glucocorticoid receptors in the hippocampus. Neurochemical Research, 22(11), 1323–1328. https://doi.org/10.1023/A:1022010904600
  • Van Haarst, A. D., Oitzl, M. S., Workel, J. O., & De Kloet, E. R. (1996). Chronic brain glucocorticoid receptor blockade enhances the rise in circadian and stress-induced pituitary-adrenal activity. Endocrinology, 137(11), 4935–4943. https://doi.org/10.1210/ENDO.137.11.8895366
  • van Oers, H. J. J., de Kloet, E. R., Whelan, T., & Levine, S. (1998). Maternal deprivation effect on the infant’s neural stress markers is reversed by tactile stimulation and feeding but not by suppressing corticosterone. The Journal of Neuroscience, 18(23), 10171–10179. https://doi.org/10.1523/JNEUROSCI.18-23-10171.1998
  • van Weert, L. T. C. M., Buurstede, J. C., Sips, H. C. M., Mol, I. M., Puri, T., Damsteegt, R., Roozendaal, B., Sarabdjitsingh, R. A., & Meijer, O. C. (2019). Mechanistic insights in NeuroD potentiation of mineralocorticoid receptor signaling. International Journal of Molecular Sciences, 20(7), 1575. https://doi.org/10.3390/ijms20071575
  • Viho, E. M. G., Kroon, J., Feelders, R. A., Houtman, R., van den Dungen, E. S. R., Pereira, A. M., Hunt, H. J., Hofland, L. J., & Meijer, O. C. (2022). Peripheral glucocorticoid receptor antagonism by relacorilant with modest HPA axis disinhibition. Journal of Endocrinology, 256(2), e220263. https://doi.org/10.1530/JOE-22-0263
  • Warris, L. T., Van Den Heuvel-Eibrink, M. M., Aarsen, F. K., Pluijm, S. M. F., Bierings, M. B., Van Bos, C., Den, Zwaan, C. M., Thygesen, H. H., Tissing, W. J. E., Veening, M. A., Pieters, R., & Van Den Akker, E. L. T. (2016). Hydrocortisone as an intervention for dexamethasone-induced adverse effects in pediatric patients with acute lymphoblastic leukemia: Results of a double-blind, randomized controlled trial. Journal of Clinical Oncology, 34(19), 2287–2293. https://doi.org/10.1200/JCO.2015.66.0761
  • Watson, S., Gallagher, P., Porter, R. J., Smith, M. S., Herron, L. J., Bulmer, S., Young, A. H., & Ferrier, I. N. (2012). A randomized trial to examine the effect of mifepristone on neuropsychological performance and mood in patients with bipolar depression. Biological Psychiatry, 72(11), 943–949. https://doi.org/10.1016/J.BIOPSYCH.2012.05.029
  • Watts, A. G. (2005). Glucocorticoid regulation of peptide genes in neuroendocrine CRH neurons: A complexity beyond negative feedback. Frontiers in Neuroendocrinology, 26(3–4), 109–130. https://doi.org/10.1016/j.yfrne.2005.09.001
  • Weger, M., Alpern, D., Cherix, A., Ghosal, S., Grosse, J., Russeil, J., Gruetter, R., de Kloet, E. R., Deplancke, B., & Sandi, C. (2020). Mitochondrial gene signature in the prefrontal cortex for differential susceptibility to chronic stress. Scientific Reports, 10(1), 18308. https://doi.org/10.1038/s41598-020-75326-9
  • Wirz, L., Bogdanov, M., & Schwabe, L. (2018). Habits under stress: mechanistic insights across different types of learning. Current Opinion in Behavioral Sciences, 20, 9–16. https://doi.org/10.1016/j.cobeha.2017.08.009
  • Wood, M., Adil, O., Wallace, T., Fourman, S., Wilson, S. P., Herman, J. P., & Myers, B. (2019). Infralimbic prefrontal cortex structural and functional connectivity with the limbic forebrain: a combined viral genetic and optogenetic analysis. Brain Structure & Function, 224(1), 73–97. https://doi.org/10.1007/S00429-018-1762-6
  • Wood, N. E., Rosasco, M. L., Suris, A. M., Spring, J. D., Marin, M. F., Lasko, N. B., Goetz, J. M., Fischer, A. M., Orr, S. P., & Pitman, R. K. (2015). Pharmacological blockade of memory reconsolidation in posttraumatic stress disorder: Three negative psychophysiological studies. Psychiatry Research, 225(1-2), 31–39. https://doi.org/10.1016/J.PSYCHRES.2014.09.005
  • Wulsin, A. C., Herman, J. P., & Solomon, M. B. (2010). Mifepristone decreases depression-like behavior and modulates neuroendocrine and central hypothalamic-pituitary-adrenocortical axis responsiveness to stress. Psychoneuroendocrinology, 35(7), 1100–1112. https://doi.org/10.1016/j.psyneuen.2010.01.011
  • Yang-Yen, H. F., Chambard, J. C., Sun, Y. L., Smeal, T., Schmidt, T. J., Drouin, J., & Karin, M. (1990). Transcriptional interference between c-Jun and the glucocorticoid receptor: Mutual inhibition of DNA binding due to direct protein-protein interaction. Cell, 62(6), 1205–1215. https://doi.org/10.1016/0092-8674(90)90396-v
  • Yates, F. E., Leeman, S. E., Glenister, D. W., & Dallman, M. F. (1961). Interaction between plasma corticosterone concentration and adrenocorticotropinreleasing stimuli in the rat: Evidence for the reset of an endocrine feedback control. Endocrinology, 69(1), 67–80. https://doi.org/10.1210/ENDO-69-1-67
  • Yongue, B. G., & Roy, E. J. (1987). Endogenous aldosterone and corticosterone in brain cell nuclei of adrenal-intact rats: regional distribution and effects of physiological variations in serum steroids. Brain Research, 436(1), 49–61. https://doi.org/10.1016/0006-8993(87)91555-1
  • Zalachoras, I., Verhoeve, S. L., Toonen, L. J., van Weert, L. T. C. M., van Vlodrop, A. M., Mol, I. M., Meelis, W., de Kloet, E. R., & Meijer, O. C. (2016). Isoform switching of steroid receptor co-activator-1 attenuates glucocorticoid-induced anxiogenic amygdala CRH expression. Molecular Psychiatry, 21(12), 1733–1739. https://doi.org/10.1038/mp.2016.16