Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 26, 2023 - Issue 1
1,302
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Norepinephrine promotes neuronal apoptosis of hippocampal HT22 cells by up-regulating the expression of long non-coding RNA MALAT1

, , , , , , & show all
Article: 2252905 | Received 23 Jun 2023, Accepted 23 Aug 2023, Published online: 30 Aug 2023

References

  • Arun, G., Aggarwal, D., & Spector, D. L. (2020). MALAT1 long non-coding rna: functional implications. Non-Coding RNA, 6(2), 22. https://doi.org/10.3390/ncrna6020022
  • Assali, E. A., Jones, A. E., Veliova, M., Acín-Pérez, R., Taha, M., Miller, N., Shum, M., Oliveira, M. F., Las, G., Liesa, M., Sekler, I., & Shirihai, O. S. (2020). NCLX prevents cell death during adrenergic activation of the brown adipose tissue. Nature Communications, 11(1), 1. https://doi.org/10.1038/s41467-020-16572-3
  • Ayna, A., Ozbolat, S. N., & Darendelioglu, E. (2020). Quercetin, chrysin, caffeic acid and ferulic acid ameliorate cyclophosphamide-induced toxicities in SH-SY5Y cells. Molecular Biology Reports, 47(11), 8535–8. https://doi.org/10.1007/s11033-020-05896-4
  • Belujon, P., & Grace, A. A. (2011). Hippocampus, amygdala, and stress: interacting systems that affect susceptibility to addiction. Annals of the New York Academy of Sciences, 1216(1), 114–121. https://doi.org/10.1111/j.1749-6632.2010.05896.x
  • Brunson, K. L., Eghbal-Ahmadi, M., Bender, R., Chen, Y., & Baram, T. Z. (2001). Long-term, progressive hippocampal cell loss and dysfunction induced by early-life administration of corticotropin-releasing hormone reproduce the effects of early-life stress. Proceedings of the National Academy of Sciences of the United States of America, 98(15), 8856–8861. https://doi.org/10.1073/pnas.151224898
  • Caglayan, C., Kandemir, F. M., Ayna, A., Gür, C., Küçükler, S., & Darendelioğlu, E. (2022). Neuroprotective effects of 18beta-glycyrrhetinic acid against bisphenol A-induced neurotoxicity in rats: involvement of neuronal apoptosis, endoplasmic reticulum stress and JAK1/STAT1 signaling pathway. Metabolic Brain Disease, 37(6), 1931–1940. https://doi.org/10.1007/s11011-022-01027-z
  • Cai, L. J., Tu, L., Huang, X. M., Huang, J., Qiu, N., Xie, G. H., Liao, J. X., Du, W., Zhang, Y. Y., & Tian, J. Y. (2020). LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Molecular Brain, 13(1), 130. https://doi.org/10.1186/s13041-020-00656-8
  • Chen, Q., Huang, X., & Li, R. (2018). lncRNA MALAT1/miR-205-5p axis regulates MPP(+)-induced cell apoptosis in MN9D cells by directly targeting LRRK2. Am J Transl Res, 10, 563–572.
  • Communal, C., Singh, K., Pimentel, D. R., & Colucci, W. S. (1998). Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation, 98(13), 1329–1334. https://doi.org/10.1161/01.cir.98.13.1329
  • Czeh, B., Simon, M., van der Hart, M. G., Schmelting, B., Hesselink, M. B., & Fuchs, E. (2005). Chronic stress decreases the number of parvalbumin-immunoreactive interneurons in the hippocampus: prevention by treatment with a substance P receptor (NK1) antagonist. Neuropsychopharmacology, 30(1), 67–79. https://doi.org/10.1038/sj.npp.1300581
  • de Lima-Seolin, B. G., Nemec-Bakk, A., Forsyth, H., Kirk, S., da Rosa Araujo, A. S., Schenkel, P. C., Bello-Klein, A., & Khaper, N. (2019). Bucindolol modulates cardiac remodeling by attenuating oxidative stress in H9c2 cardiac cells exposed to norepinephrine. Oxidative Medicine and Cellular Longevity, 2019, 6325424. https://doi.org/10.1155/2019/6325424
  • Dincer, H. E., Gangopadhyay, N., Wang, R., & Uhal, B. D. (2001). Norepinephrine induces alveolar epithelial apoptosis mediated by alpha-, beta-, and angiotensin receptor activation. American Journal of Physiology. Lung Cellular and Molecular Physiology, 281(3), L624–630. https://doi.org/10.1152/ajplung.2001.281.3.L624
  • Fu, Y. C., Chi, C. S., Yin, S. C., Hwang, B., Chiu, Y. T., & Hsu, S. L. (2004). Norepinephrine induces apoptosis in neonatal rat endothelial cells via down-regulation of Bcl-2 and activation of beta-adrenergic and caspase-2 pathways. Cardiovascular Research, 61(1), 143–151. https://doi.org/10.1016/j.cardiores.2003.10.014
  • Goyal, B., Yadav, S., R. M., Awasthee, N., Gupta, S., Kunnumakkara, A. B., & Gupta, S. C. (2021). Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochimica et Biophysica Acta. Reviews on Cancer, 1875(2), 188502. https://doi.org/10.1016/j.bbcan.2021.188502
  • Griffiths, B. B., & Hunter, R. G. (2014). Neuroepigenetics of stress. Neuroscience, 275, 420–435. https://doi.org/10.1016/j.neuroscience.2014.06.041
  • Hao, S., Liu, X., Sui, X., Pei, Y., Liang, Z., & Zhou, N. (2018). Long non-coding RNA GAS5 reduces cardiomyocyte apoptosis induced by MI through sema3a. International Journal of Biological Macromolecules, 120(Pt A), 371–377. https://doi.org/10.1016/j.ijbiomac.2018.08.039
  • Ji, P., Diederichs, S., Wang, W., Böing, S., Metzger, R., Schneider, P. M., Tidow, N., Brandt, B., Buerger, H., Bulk, E., Thomas, M., Berdel, W. E., Serve, H., & Müller-Tidow, C. (2003). MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22(39), 8031–8041. https://doi.org/10.1038/sj.onc.1206928
  • Jindal, E., & Goswami, S. K. (2011). In cardiac myoblasts, cellular redox regulates FosB and Fra-1 through multiple cis-regulatory modules. Free Radical Biology & Medicine, 51(8), 1512–1521. https://doi.org/10.1016/j.freeradbiomed.2011.07.008
  • Kass, M. D., Rosenthal, M. C., Pottackal, J., & McGann, J. P. (2013). Fear learning enhances neural responses to threat-predictive sensory stimuli. Science), 342(6164), 1389–1392. https://doi.org/10.1126/science.1244916
  • Kızıl, H. E., Caglayan, C., Darendelioğlu, E., Ayna, A., Gür, C., Kandemir, F. M., & Küçükler, S. (2023). Morin ameliorates methotrexate-induced hepatotoxicity via targeting Nrf2/HO-1 and Bax/Bcl2/Caspase-3 signaling pathways. Molecular Biology Reports, 50(4), 3479–3488. https://doi.org/10.1007/s11033-023-08286-8
  • Krizanova, O., Babula, P., & Pacak, K. (2016). Stress, catecholaminergic system and cancer. Stress, 19(4), 419–428. https://doi.org/10.1080/10253890.2016.1203415
  • Li, L., Xu, Y., Zhao, M., & Gao, Z. (2020). Neuro-protective roles of long non-coding RNA MALAT1 in Alzheimer’s disease with the involvement of the microRNA-30b/CNR1 network and the following PI3K/AKT activation. Experimental and Molecular Pathology, 117, 104545. https://doi.org/10.1016/j.yexmp.2020.104545
  • Liu, S. J., Dang, H. X., Lim, D. A., Feng, F. Y., & Maher, C. A. (2021). Long noncoding RNAs in cancer metastasis. Nature Reviews. Cancer, 21(7), 446–460. https://doi.org/10.1038/s41568-021-00353-1
  • Liu, W., Han, J. L., Tomek, J., Bub, G., & Entcheva, E. (2023). Simultaneous widefield voltage and dye-free optical mapping quantifies electromechanical waves in human induced pluripotent stem cell-derived cardiomyocytes. ACS Photonics, 10(4), 1070–1083. https://doi.org/10.1021/acsphotonics.2c01644
  • Liu, Y. Z., Wang, Y. X., & Jiang, C. L. (2017). Inflammation: The common pathway of stress-related diseases. Frontiers in Human Neuroscience, 11, 316. https://doi.org/10.3389/fnhum.2017.00316
  • Lutz, M. W., Luo, S., Williamson, D. E., & Chiba-Falek, O. (2020). Shared genetic etiology underlying late-onset Alzheimer’s disease and posttraumatic stress syndrome. Alzheimer’s & Dementia, 16(9), 1280–1292. https://doi.org/10.1002/alz.12128
  • Ma, J., Wang, R., Chen, Y., Wang, Z., & Dong, Y. (2023). 5-HT attenuates chronic stress-induced cognitive impairment in mice through intestinal flora disruption. Journal of Neuroinflammation, 20(1), 23. https://doi.org/10.1186/s12974-023-02693-1
  • Mariotti, A. (2015). The effects of chronic stress on health: new insights into the molecular mechanisms of brain-body communication. Future Science OA, 1(3), FSO23. https://doi.org/10.4155/fso.15.21
  • McEwen, B. S., Bowles, N. P., Gray, J. D., Hill, M. N., Hunter, R. G., Karatsoreos, IN., & Nasca, C. (2015). Mechanisms of stress in the brain. Nature Neuroscience, 18(10), 1353–1363. https://doi.org/10.1038/nn.4086
  • Polis, B., Karasik, D., & Samson, A. O. (2021). Alzheimer’s disease as a chronic maladaptive polyamine stress response. Aging, 13(7), 10770–10795. https://doi.org/10.18632/aging.202928
  • Pravosudov, V. V., & Omanska, A. (2005). Prolonged moderate elevation of corticosterone does not affect hippocampal anatomy or cell proliferation rates in mountain chickadees (Poecile gambeli). Journal of Neurobiology, 62(1), 82–91. https://doi.org/10.1002/neu.20069
  • Sapolsky, R. M. (1985). A mechanism for glucocorticoid toxicity in the hippocampus: increased neuronal vulnerability to metabolic insults. The Journal of Neuroscience, 5(5), 1228–1232. https://doi.org/10.1523/JNEUROSCI.05-05-01228.1985
  • Suarez-Pereira, I., Llorca-Torralba, M., Bravo, L., Camarena-Delgado, C., Soriano-Mas, C., & Berrocoso, E. (2022). The role of the locus coeruleus in pain and associated stress-related disorders. Biological Psychiatry, 91(9), 786–797. https://doi.org/10.1016/j.biopsych.2021.11.023
  • Thakur, A., Alam, M. J., Ajayakumar, M. R., Ghaskadbi, S., Sharma, M., & Goswami, S. K. (2015). Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation. Redox Biology, 5, 243–252. https://doi.org/10.1016/j.redox.2015.05.005
  • Vollmann-Honsdorf, G. K., Flugge, G., & Fuchs, E. (1997). Chronic psychosocial stress does not affect the number of pyramidal neurons in tree shrew hippocampus. Neuroscience Letters, 233(2-3), 121–124. https://doi.org/10.1016/s0304-3940(97)00647-2
  • Wang, S. D., Wang, X., Zhao, Y., Xue, B. H., Wang, X. T., Chen, Y. X., Zhang, Z. Q., Tian, Y. R., Xie, F., & Qian, L. J. (2022a). Homocysteine-induced disturbances in DNA methylation contribute to development of stress-associated cognitive decline in rats. Neuroscience Bulletin, 38(8), 887–900. https://doi.org/10.1007/s12264-022-00852-7
  • Wang, X., Wang, X., Xie, F., Sun, Z., Guo, B., Li, F., Wang, S., Wang, Y., Tian, Y., Zhao, Y., & Qian, L. (2022b). Leucine mediates cognitive dysfunction in early life stress-induced mental disorders by activating autophagy. Frontiers in Cellular Neuroscience, 16, 1060712. https://doi.org/10.3389/fncel.2022.1060712
  • Wang, X., Wang, Y., Xie, F., Song, Z. T., Zhang, Z. Q., Zhao, Y., Wang, S. D., Hu, H., Zhang, Y. S., & Qian, L. J. (2022c). Norepinephrine promotes glioma cell migration through up-regulating the expression of Twist1. BMC Cancer, 22(1), 213. https://doi.org/10.1186/s12885-022-09330-9
  • Wu, Q., & Yi, X. (2018). Down-regulation of long noncoding RNA MALAT1 protects hippocampal neurons against excessive autophagy and apoptosis via the PI3K/Akt signaling pathway in rats with epilepsy. Journal of Molecular Neuroscience, 65(2), 234–245. https://doi.org/10.1007/s12031-018-1093-3
  • Xie, F., Zhao, Y., Ma, J., Gong, J. B., Wang, S. D., Zhang, L., Gao, X. J., & Qian, L. J. (2016). The involvement of homocysteine in stress-induced Abeta precursor protein misprocessing and related cognitive decline in rats. Cell Stress & Chaperones, 21(5), 915–926. https://doi.org/10.1007/s12192-016-0718-0
  • Zhang, L., & Wang, H. (2019). Long non-coding RNA in CNS Injuries: A new target for therapeutic intervention. Molecular Therapy. Nucleic Acids, 17, 754–766. https://doi.org/10.1016/j.omtn.2019.07.013
  • Zhang, Y., Xiao, Y., Li, G. C., Gong, F. Y., Zhang, X. N., & Hou, K. (2022). Long non-coding RNAs as epigenetic mediator and predictor of glioma progression, invasiveness, and prognosis. Seminars in Cancer Biology, 83, 536–542. https://doi.org/10.1016/j.semcancer.2020.08.016
  • Zhang, Z. Q., Wang, X., Xue, B. H., Zhao, Y., Xie, F., Wang, S. D., Xue, C., Wang, Y., Zhang, Y. S., & Qian, L. J. (2021). Chronic stress promotes glioma cell proliferation via the PI3K/Akt signaling pathway. Oncology Reports, 46(3), 202. https://doi.org/10.3892/or.2021.8153