Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 26, 2023 - Issue 1
846
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Diverse roles of glucocorticoids in the ruminant mammary gland: modulation of mammary growth, milk production, and mastitis

, , , , , , & show all
Article: 2252938 | Received 09 Dec 2022, Accepted 23 Aug 2023, Published online: 01 Sep 2023

References

  • Abdel Gadir Atif, E., Hildebrandt, G., Kleer, J. N., Molla, B., Kyule, M. N., & Baumann, M. P. (2006). Comparison of California Mastitis Test (CMT), Somatic Cell Counts (SCC) and bacteriological examinations for detection of camel (Camelus dromedarius) mastitis in Ethiopia. Berliner Und Munchener Tierarztliche Wochenschrift, 119(1–2), 1–9.
  • Akhtar, M., Guo, S., Guo, Y. F., Zahoor, A., Shaukat, A., Chen, Y., Umar, T., Deng, P. G., & Guo, M. (2020). Upregulated-gene expression of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) via TLRs following NF-κB and MAPKs in bovine mastitis. Acta Tropica, 207, 105458. https://doi.org/10.1016/j.actatropica.2020.105458
  • Arriza, J. L., Weinberger, C., Cerelli, G., Glaser, T. M., Handelin, B. L., Housman, D. E., & Evans, R. M. (1987). Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science (New York, N.Y.), 237(4812), 268–275. https://doi.org/10.1126/science.3037703
  • Athanasiou, V. N., & Phillips, R. W. (1978). Stability of plasma metabolites and hormones in parturient dairy cows. American Journal of Veterinary Research, 39(6), 953–956.
  • Barnes, P. J. (1998). Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clinical Science (London, England: 1979), 94(6), 557–572. https://doi.org/10.1042/cs0940557
  • Baxter, E. M., Hall, S. A., Farish, M., Donbavand, J., Brims, M., Jack, M., Lawrence, A. B., & Camerlink, I. (2023). Piglets’ behaviour and performance in relation to sow characteristics. Animal : An International Journal of Animal Bioscience, 17(2), 100699. https://doi.org/10.1016/j.animal.2022.100699
  • Beerda, B., Kornalijnslijper, J. E., van der Werf, J. T., Noordhuizen-Stassen, E. N., & Hopster, H. (2004). Effects of milk production capacity and metabolic status on HPA function in early postpartum dairy cows. Journal of Dairy Science, 87(7), 2094–2102. https://doi.org/10.3168/jds.S0022-0302(04)70027-2
  • Bomfim, G. F., Merighe, G. K. F., de Oliveira, S. A., & Negrao, J. A. (2018). Effect of acute stressors, adrenocorticotropic hormone administration, and cortisol release on milk yield, the expression of key genes, proliferation, and apoptosis in goat mammary epithelial cells. Journal of Dairy Science, 101(7), 6486–6496. https://doi.org/10.3168/jds.2017-14123
  • Bomfim, G. F., Merighe, G. K. F., de Oliveira, S. A., & Negrao, J. A. (2022). Acute and chronic effects of cortisol on milk yield, the expression of key receptors, and apoptosis of mammary epithelial cells in Saanen goats. Journal of Dairy Science, 105(1), 818–830. https://doi.org/10.3168/jds.2021-20364
  • Borellini, F., & Oka, T. (1989). Growth control and differentiation in mammary epithelial cells. Environmental Health Perspectives, 80, 85–99. https://doi.org/10.1289/ehp.898085
  • Caparros-Gonzalez, R. A., Romero-Gonzalez, B., Gonzalez-Perez, R., Lara-Cinisomo, S., Martin-Tortosa, P. L., Oliver-Roig, A., & Peralta-Ramirez, M. I. (2019). Maternal and neonatal hair cortisol levels and psychological stress are associated with onset of secretory activation of human milk production. Advances in Neonatal Care: Official Journal of the National Association of Neonatal Nurses, 19(6), E11–E20. https://doi.org/10.1097/ANC.0000000000000660
  • Cowie, A. T., Tindal, J. S., & Yokoyama, A. (1966). The induction of mammary growth in the hypophysectomized goat. The Journal of Endocrinology, 34(2), 185–195. https://doi.org/10.1677/joe.0.0340185
  • Dalanezi, F. M., Joaquim, S. F., Guimarães, F. F., Guerra, S. T., Lopes, B. C., Schmidt, E. M. S., Cerri, R. L. A., & Langoni, H. (2020). Influence of pathogens causing clinical mastitis on reproductive variables of dairy cows. Journal of Dairy Science, 103(4), 3648–3655. https://doi.org/10.3168/jds.2019-16841
  • de Kloet, E. R., Meijer, O. C., de Nicola, A. F., de Rijk, R. H., & Joëls, M. (2018). Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Frontiers in Neuroendocrinology, 49, 124–145. https://doi.org/10.1016/j.yfrne.2018.02.003
  • Díaz, J. R., Alejandro, M., Romero, G., Moya, F., & Peris, C. (2013). Variation in milk cortisol during lactation in Murciano-Granadina goats. Journal of Dairy Science, 96(2), 897–905. Research Support, Non-U S Gov’t) https://doi.org/10.3168/jds.2012-5614
  • Dobson, H., & Smith, R. F. (2000). What is stress, and how does it affect reproduction? Animal Reproduction Science, 60-61, 743–752. https://doi.org/10.1016/s0378-4320(00)00080-4
  • Ershun, Z., Yunhe, F., Zhengkai, W., Yongguo, C., Naisheng, Z., & Zhengtao, Y. (2014). Cepharanthine attenuates lipopolysaccharide-induced mice mastitis by suppressing the NF-κB signaling pathway. Inflammation, 37(2), 331–337. https://doi.org/10.1007/s10753-013-9744-6
  • Formica, F. A., Barreto, G., & Zenobi-Wong, M. (2019). Cartilage-targeting dexamethasone prodrugs increase the efficacy of dexamethasone. Journal of Controlled Release: Official Journal of the Controlled Release Society, 295, 118–129. https://doi.org/10.1016/j.jconrel.2018.12.025
  • Friend, T. H., Dellmeier, G. R., & Gbur, E. E. (1985). Comparison of four methods of calf confinement. I. Physiology. Journal of Animal Science, 60(5), 1095–1101. https://doi.org/10.2527/jas1985.6051095x
  • Gabli, Z., Djerrou, Z., Gabli, A. E., & Bensalem, M. (2019). Prevalence of mastitis in dairy goat farms in Eastern Algeria. Veterinary World, 12(10), 1563–1572. https://doi.org/10.14202/vetworld.2019.1563-1572
  • Gao, X., Fan, C., Zhang, Z., Li, S., Xu, C., Zhao, Y., Han, L., Zhang, D., & Liu, M. (2019). Enterococcal isolates from bovine subclinical and clinical mastitis: Antimicrobial resistance and integron-gene cassette distribution. Microbial Pathogenesis, 129, 82–87. https://doi.org/10.1016/j.micpath.2019.01.031
  • Good, T. C., Harris, K. K., & Ihunnah, C. A. (2005). Corticosteroids as potential mechanism regulating variability in reproductive success in monogamous oldfield mice (Peromyscus polionotus). Physiology & Behavior, 86(1-2), 96–102. https://doi.org/10.1016/j.physbeh.2005.06.030
  • Grelet, C., V. Vanden Dries, J. Leblois, J. Wavreille, L. Mirabito, H. Soyeurt, S. Franceschini, N. Gengler, Y. Brostaux, C. HappyMoo, and F. Dehareng. 2022. Identification of chronic stress biomarkers in dairy cows. Animal: An International Journal of Animal bioscience 16(5):100502. https://doi.org/10.1016/j.animal.2022.100502
  • Gross, J. J., Schwinn, A. C., & Bruckmaier, R. M. (2021). Free and bound cortisol, corticosterone, and metabolic adaptations during the early inflammatory response to an intramammary lipopolysaccharide challenge in dairy cows. Domestic Animal Endocrinology, 74, 106554. https://doi.org/10.1016/j.domaniend.2020.106554
  • Gross, J., van Dorland, H. A., Bruckmaier, R. M., & Schwarz, F. J. (2011). Performance and metabolic profile of dairy cows during a lactational and deliberately induced negative energy balance with subsequent realimentation. Journal of Dairy Science, 94(4), 1820–1830. https://doi.org/10.3168/jds.2010-3707
  • Gross, J. J., Wellnitz, O., & Bruckmaier, R. M. (2015). Cortisol secretion in response to metabolic and inflammatory challenges in dairy cows. Journal of Animal Science, 93(7), 3395–3401. https://doi.org/10.2527/jas.2015-8903
  • Hadef, L., Hamad, B., & Aggad, H. (2022). Risk factors associated with subclinical mastitis and its effect on physico-mineral features of camel milk. Tropical Animal Health and Production, 54(4), 224. https://doi.org/10.1007/s11250-022-03220-9
  • Hirvonen, J., Eklund, K., Teppo, A. M., Huszenicza, G., Kulcsar, M., Saloniemi, H., & Pyörälä, S. (1999). Acute phase response in dairy cows with experimentally induced Escherichia coli mastitis. Acta Veterinaria Scandinavica, 40(1), 35–46. Research Support, Non-U S Gov’t) https://doi.org/10.1186/BF03547039
  • Homer, H. C., Packan, D. R., & Sapolsky, R. M. (1990). Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia. Neuroendocrinology, 52(1), 57–64. https://doi.org/10.1159/000125539
  • Hong, H., Lee, E., Lee, I. H., & Lee, S. R. (2019). Effects of transport stress on physiological responses and milk production in lactating dairy cows. Asian-Australasian Journal of Animal Sciences, 32(3), 442–451. https://doi.org/10.5713/ajas.18.0108
  • Hooper, H. B., Dos Santos Silva, P., de Oliveira, S. A., Merighe, G. K. F., Titto, C. G., & Negrão, J. A. (2021). Long-term heat stress at final gestation: physiological and heat shock responses of Saanen goats. International Journal of Biometeorology, 65(12), 2123–2135. Randomized Controlled Trial, Veterinary) https://doi.org/10.1007/s00484-021-02175-0
  • Horby, P., Lim, W. S., Emberson, J. R., Mafham, M., Bell, J. L., Linsell, L., Staplin, N., Brightling, C., Ustianowski, A., Elmahi, E., Prudon, B., Green, C., Felton, T., Chadwick, D., Rege, K., Fegan, C., Chappell, L. C., Faust, S. N., Jaki, T., … Landray, M. J. (2021). Dexamethasone in hospitalized patients with Covid-19. The New England Journal of Medicine, 384(8), 693–704. https://doi.org/10.1056/NEJMoa2021436
  • Horváth, K. M., Bánky, Z., Tóth, B. E., Halász, B., & Nagy, G. M. (2001). Effect of adrenalectomy and dexamethasone treatment on prolactin secretion of lactating rats. Brain Research Bulletin.
  • Kendrick, S. F., Henderson, E., Palmer, J., Jones, D. E., & Day, C. P. (2010). Theophylline improves steroid sensitivity in acute alcoholic hepatitis. Hepatology (Baltimore, Md.), 52(1), 126–131. https://doi.org/10.1002/hep.23666
  • Kingsley-Kallesen, M., Mukhopadhyay, S. S., Wyszomierski, S. L., Schanler, S., Schutz, G., & Rosen, J. M. (2002). The mineralocorticoid receptor may compensate for the loss of the glucocorticoid receptor at specific stages of mammary gland development. Molecular Endocrinology (Baltimore, Md.), 16(9), 2008–2018. https://doi.org/10.1210/me.2002-0103
  • Kobayashi, K., Oyama, S., Kuki, C., Tsugami, Y., Matsunaga, K., Suzuki, T., & Nishimura, T. (2017a). Distinct roles of prolactin, epidermal growth factor, and glucocorticoids in beta-casein secretion pathway in lactating mammary epithelial cells. Molecular and Cellular Endocrinology, 440, 16–24. https://doi.org/10.1016/j.mce.2016.11.006
  • Kobayashi, K., Oyama, S., Kuki, C., Tsugami, Y., Matsunaga, K., Suzuki, T., & Nishimura, T. (2017b). Distinct roles of prolactin, epidermal growth factor, and glucocorticoids in β-casein secretion pathway in lactating mammary epithelial cells. Molecular and Cellular Endocrinology, 440, 16–24. https://doi.org/10.1016/j.mce.2016.11.006
  • Kobayashi, K., Tsugami, Y., Matsunaga, K., Oyama, S., Kuki, C., & Kumura, H. (2016). Prolactin and glucocorticoid signaling induces lactation-specific tight junctions concurrent with beta-casein expression in mammary epithelial cells. Biochimica et Biophysica Acta, 1863(8), 2006–2016. https://doi.org/10.1016/j.bbamcr.2016.04.023
  • Koster, M. J., Crowson, C. S., Giblon, R. E., Jaquith, J. M., Duarte-García, A., Matteson, E. L., Weyand, C. M., & Warrington, K. J. (2022). Baricitinib for relapsing giant cell arteritis: a prospective open-label 52-week pilot study. Annals of the Rheumatic Diseases, 81(6), 861–867. https://doi.org/10.1136/annrheumdis-2021-221961
  • Kung, M. H., Lee, Y. J., Hsu, J. T., Huang, M. C., & Ju, Y. T. (2015). A functional study of proximal goat β-casein promoter and intron 1 in immortalized goat mammary epithelial cells. Journal of Dairy Science, 98(6), 3859–3875. (Research Support, Non-U. S Gov’t) https://doi.org/10.3168/jds.2014-9054
  • Lewis, J. G., Bagley, C. J., Elder, P. A., Bachmann, A. W., & Torpy, D. J. (2005). Plasma free cortisol fraction reflects levels of functioning corticosteroid-binding globulin. Clinica Chimica Acta; International Journal of Clinical Chemistry, 359(1-2), 189–194. https://doi.org/10.1016/j.cccn.2005.03.044
  • Liu, X., Wang, Y., Tian, Y., Yu, Y., Gao, M., Hu, G., Su, F., Pan, S., Luo, Y., Guo, Z., Quan, F., & Zhang, Y. (2014). Generation of mastitis resistance in cows by targeting human lysozyme gene to β-casein locus using zinc-finger nucleases. Proc Biol Sci, 281(1780), 7.
  • Lohuis, J. A., Van Leeuwen, W., Verheijden, J. H., Van Miert, A. S., & Brand, A. (1988). Effect of dexamethasone on experimental Escherichia coli mastitis in the cow. Journal of Dairy Science, 71(10), 2782–2789. https://doi.org/10.3168/jds.S0022-0302(88)79872-0
  • Maeda, Y., Tanaka, R., Ohtsuka, H., Matsuda, K., Tanabe, T., & Oikawa, M. (2011). Comparison of the immunosuppressive effects of dexamethasone, flunixin meglumine and meloxicam on the in vitro response of calf peripheral blood mononuclear cells. The Journal of Veterinary Medical Science, 73(7), 957–960. https://doi.org/10.1292/jvms.10-0422
  • Manica, E., Silva, P. D. S., Merighe, G. K. F., de Oliveira, S. A., Bomfim, G. F., & Negrão, J. A. (2022). Effect of experimental stress and cortisol release induced by ACTH administration on expression of key genes related to milk synthesis and apoptosis during mammary involution of Saanen goats. The Journal of Dairy Research, 89(4), 404–409. https://doi.org/10.1017/s0022029922000735
  • McNew, J. A. (2008). Regulation of SNARE-mediated membrane fusion during exocytosis. Chemical Reviews, 108(5), 1669–1686. https://doi.org/10.1021/cr0782325
  • Mehdid, A., Martí-De Olives, A., Fernández, N., Rodríguez, M., & Peris, C. (2019). Effect of stress on somatic cell count and milk yield and composition in goats. Research in Veterinary Science, 125, 61–70. https://doi.org/10.1016/j.rvsc.2019.05.015
  • Menge, C., & Dean-Nystrom, E. A. (2008). Dexamethasone depletes gammadelta T cells and alters the activation state and responsiveness of bovine peripheral blood lymphocyte subpopulations. Journal of Dairy Science, 91(6), 2284–2298. https://doi.org/10.3168/jds.2007-0937
  • Merlot, E., Meunier-Salaun, M. C., Peuteman, B., Pere, M. C., Louveau, I., Perruchot, M. H., Prunier, A., Gardan-Salmon, D., Gondret, F., & Quesnel, H. (2022). Improving maternal welfare during gestation has positive outcomes on neonatal survival and modulates offspring immune response in pigs. Physiology & Behavior, 249, 113751. https://doi.org/10.1016/j.physbeh.2022.113751
  • Moiré, N., Roy, O., & Gardey, L. (2002). Effects of dexamethasone on distribution and function of peripheral mononuclear blood cells in pneumonic calves. Veterinary Immunology and Immunopathology, 87(3-4), 459–466. https://doi.org/10.1016/s0165-2427(02)00074-0
  • Mormède, P., Andanson, S., Aupérin, B., Beerda, B., Guémené, D., Malmkvist, J., Manteca, X., Manteuffel, G., Prunet, P., van Reenen, C. G., Richard, S., & Veissier, I. (2007). Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiology & Behavior, 92(3), 317–339. https://doi.org/10.1016/j.physbeh.2006.12.003
  • Mostyn, A., Pearce, S., Budge, H., Elmes, M., Forhead, A. J., Fowden, A. L., Stephenson, T., & Symonds, M. E. (2003). Influence of cortisol on adipose tissue development in the fetal sheep during late gestation. The Journal of Endocrinology, 176(1), 23–30. https://doi.org/10.1677/joe.0.1760023
  • Motil, K. J., Thotathuchery, M., Montandon, C. M., Hachey, D. L., Boutton, T. W., Klein, P. D., & Garza, C. (1994). Insulin, cortisol and thyroid hormones modulate maternal protein status and milk production and composition in humans. The Journal of Nutrition, 124(8), 1248–1257. https://doi.org/10.1093/jn/124.8.1248
  • Neville, M. C., McFadden, T. B., & Forsyth, I. (2002). Hormonal regulation of mammary differentiation and milk secretion. Journal of Mammary Gland Biology and Neoplasia, 7(1), 49–66. https://doi.org/10.1023/a:1015770423167
  • Nikolić, J. A., Kulcsár, M., Kátai, L., Nedić, O., Jánosi, S., & Huszenicza, G. (2003). Periparturient endocrine and metabolic changes in healthy cows and in cows affected by mastitis. Journal of Veterinary Medicine. A, Physiology, Pathology, Clinical Medicine, 50(1), 22–29. https://doi.org/10.1046/j.1439-0442.2003.00500.x
  • Olivry, T., DeBoer, D. J., Favrot, C., Jackson, H. A., Mueller, R. S., Nuttall, T., & Prélaud, P. (2015). Treatment of canine atopic dermatitis: 2015 updated guidelines from the International Committee on Allergic Diseases of Animals (ICADA). BMC Veterinary Research, 11(1), 210. https://doi.org/10.1186/s12917-015-0514-6
  • Ollier, S., Beaudoin, F., Vanacker, N., Blouin, R., & Lacasse, P. (2016). Effect of reducing milk production using a prolactin-release inhibitor or a glucocorticoid on metabolism and immune functions in cows subjected to acute nutritional stress. Journal of Dairy Science, 100(7), 5782–5791. https://doi.org/10.3168/jds.2016-11711
  • Ono, M., & Oka, T. (1980a). alpha-Lactalbumin-casein induction in virgin mouse mammary explants: dose-dependent differential action of cortisol. Science (New York, N.Y.), 207(4437), 1367–1369. https://doi.org/10.1126/science.6986657
  • Ono, M., & Oka, T. (1980b). The differential actions of cortisol on the accumulation of alpha-lactalbumin and casein in midpregnant mouse mammary gland in culture. Cell, 19(2), 473–480. https://doi.org/10.1016/0092-8674(80)90522-x
  • Peel, C. J., Fronk, T. J., Bauman, D. E., & Gorewit, R. C. (1983). Effect of exogenous growth hormone in early and late lactation on lactational performance of dairy cows. Journal of Dairy Science, 66(4), 776–782. https://doi.org/10.3168/jds.S0022-0302(83)81857-8
  • Plessers, E., Watteyn, A., Wyns, H., Pardon, B., De Backer, P., & Croubels, S. (2015). Study of the immunomodulatory properties of gamithromycin and dexamethasone in a lipopolysaccharide inflammation model in calves. Research in Veterinary Science, 103, 218–223. https://doi.org/10.1016/j.rvsc.2015.10.014
  • Ponchon, B., Zhao, X., Ollier, S., & Lacasse, P. (2017). Relationship between glucocorticoids and prolactin during mammary gland stimulation in dairy cows. Journal of Dairy Science, 100(2), 1521–1534. https://doi.org/10.3168/jds.2016-11490
  • Prodan, N., Breisch, J., Hoopmann, M., Abele, H., Wagner, P., & Kagan, K. O. (2019). Dosing interval between mifepristone and misoprostol in second and third trimester termination. Archives of Gynecology and Obstetrics, 299(3), 675–679. https://doi.org/10.1007/s00404-018-5017-9
  • Purba, F. Y., Nii, T., Yoshimura, Y., & Isobe, N. (2020). Translocation of intrauterine-infused bacterial lipopolysaccharides to the mammary gland in dexamethasone-treated goats. Reproduction in Domestic Animals = Zuchthygiene, 55(12), 1688–1697. https://doi.org/10.1111/rda.13820
  • Reichardt, H. M., Horsch, K., Gröne, H. J., Kolbus, A., Beug, H., Hynes, N., & Schütz, G. (2001). Mammary gland development and lactation are controlled by different glucocorticoid receptor activities. European Journal of Endocrinology, 145(4), 519–527. https://doi.org/10.1530/eje.0.1450519
  • Reiske, L., Schmucker, S., Pfaffinger, B., Weiler, U., Steuber, J., & Stefanski, V. (2020). Intravenous infusion of cortisol, adrenaline, or noradrenaline alters porcine immune cell numbers and promotes innate over adaptive immune functionality. Journal of Immunology (Baltimore, Md.: 1950), 204(12), 3205–3216. https://doi.org/10.4049/jimmunol.2000269
  • Reul, J. M., & de Kloet, E. R. (1985). Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology, 117(6), 2505–2511. https://doi.org/10.1210/endo-117-6-2505
  • Reul, J. M., Gesing, A., Droste, S., Stec, I. S., Weber, A., Bachmann, C., Bilang-Bleuel, A., Holsboer, F., & Linthorst, A. C. (2000). The brain mineralocorticoid receptor: greedy for ligand, mysterious in function. European Journal of Pharmacology, 405(1-3), 235–249. https://doi.org/10.1016/s0014-2999(00)00677-4
  • Romero, G., Restrepo, I., Muelas, R., Bueso-Ródenas, J., Roca, A., & Díaz, J. R. (2015). Within-day variation and effect of acute stress on plasma and milk cortisol in lactating goats. Journal of Dairy Science, 98(2), 832–839. (Research Support, Non-U. S Gov’t) https://doi.org/10.3168/jds.2014-8052
  • Rosen, J. M., Wyszomierski, S. L., & Hadsell, D. (1999). Regulation of milk protein gene expression. Annual Review of Nutrition, 19(1), 407–436. https://doi.org/10.1146/annurev.nutr.19.1.407
  • Rothman, J. E. (1994). Mechanisms of intracellular protein transport. Nature, 372(6501), 55–63. Review) https://doi.org/10.1038/372055a0
  • Runciman, D. J., Malmo, J., & Deighton, M. (2010). The use of an internal teat sealant in combination with cloxacillin dry cow therapy for the prevention of clinical and subclinical mastitis in seasonal calving dairy cows. Journal of Dairy Science, 93(10), 4582–4591. https://doi.org/10.3168/jds.2009-2956
  • Sangild, P. T., Diernaes, L., Christiansen, I. J., & Skadhauge, E. (1993). Intestinal transport of sodium, glucose and immunoglobulin in neonatal pigs. Effect of glucocorticoids. Experimental Physiology, 78(4), 485–497. https://doi.org/10.1113/expphysiol.1993.sp003700
  • Sasano, H., Fukushima, K., Sasaki, I., Matsuno, S., Nagura, H., & Krozowski, Z. S. (1992). Immunolocalization of mineralocorticoid receptor in human kidney, pancreas, salivary, mammary and sweat glands: a light and electron microscopic immunohistochemical study. The Journal of Endocrinology, 132(2), 305–310. https://doi.org/10.1677/joe.0.1320305
  • Shi, R., Dou, J., Liu, J., Sammad, A., Luo, H., Wang, Y., Guo, G., & Wang, Y. (2021). Genetic parameters of hair cortisol as an indicator of chronic stress under different environments in Holstein cows. Journal of Dairy Science, 104(6), 6985–6999. https://doi.org/10.3168/jds.2019-17856
  • Shimba, A., & Ikuta, K. (2020). Control of immunity by glucocorticoids in health and disease. Seminars in Immunopathology, 42(6), 669–680. https://doi.org/10.1007/s00281-020-00827-8
  • Sipka, A., Gurjar, A., Klaessig, S., Duhamel, G. E., Skidmore, A., Swinkels, J., Cox, P., & Schukken, Y. (2013). Prednisolone and cefapirin act synergistically in resolving experimental Escherichia coli mastitis. Journal of Dairy Science, 96(7), 4406–4418. https://doi.org/10.3168/jds.2012-6455
  • Spies, C. M., Gaber, T., Hahne, M., Naumann, L., Tripmacher, R., Schellmann, S., Stahn, C., Burmester, G. R., Radbruch, A., & Buttgereit, F. (2010). Rimexolone inhibits proliferation, cytokine expression and signal transduction of human CD4+ T-cells. Immunology Letters, 131(1), 24–32. Research Support, Non-U S Gov’t) https://doi.org/10.1016/j.imlet.2010.03.009
  • Stahn, C., Löwenberg, M., Hommes, D. W., & Buttgereit, F. (2007). Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Molecular and Cellular Endocrinology, 275(1-2), 71–78. https://doi.org/10.1016/j.mce.2007.05.019
  • Stein, T. J., Pellin, M., Steinberg, H., & Chun, R. (2010). Treatment of feline gastrointestinal small-cell lymphoma with chlorambucil and glucocorticoids. Journal of the American Animal Hospital Association, 46(6), 413–417. https://doi.org/10.5326/0460413
  • Stewart, H. J., & Thompson, G. E. (1984). Adrenocorticotrophic hormone stimulation of mammarysecretion in lactating goats independent of increased mammary uptake of glucose. J. Endocr.
  • Svennersten-Sjaunja, K., & Olsson, K. (2005). Endocrinology of milk production. Domestic Animal Endocrinology, 29(2), 241–258. https://doi.org/10.1016/j.domaniend.2005.03.006
  • Tachi, N., Tanaka, S., Ardiyanti, A., Katoh, K., & Sato, S. (2014). Bovine growth hormone gene polymorphism affects stress response in Japanese Black cattle. Animal Science Journal = Nihon Chikusan Gakkaiho, 85(6), 722–728. https://doi.org/10.1111/asj.12212
  • Thatcher, W. W., & Tucker, H. A. (1970). Lactational performance of rats injected with oxytocin, cortisol-21-acetate, prolactin and growth hormone during prolonged lactation. Endocrinology, 86(2), 237–240. https://doi.org/10.1210/endo-86-2-237
  • Thayer, Z. M., Agustin Bechayda, S., & Kuzawa, C. W. (2018). Circadian cortisol dynamics across reproductive stages and in relation to breastfeeding in the Philippines. American Journal of Human Biology : The Official Journal of the Human Biology Council, 30(4), e23115. https://doi.org/10.1002/ajhb.23115
  • Tomlinson, J. W., Finney, J., Hughes, B. A., Hughes, S. V., & Stewart, P. M. (2008). Reduced glucocorticoid production rate, decreased 5alpha-reductase activity, and adipose tissue insulin sensitization after weight loss. Diabetes, 57(6), 1536–1543. https://doi.org/10.2337/db08-0094
  • Topper, Y. J., & Freeman, C. S. (1980). Multiple hormone interactions in the developmental biology of the mammary gland. Physiological Reviews, 60(4), 1049–1106. https://doi.org/10.1152/physrev.1980.60.4.1049
  • Trevisi, E., Bertoni, G., Lombardelli, R., & Minuti, A. (2013). Relation of inflammation and liver function with the plasma cortisol response to adrenocorticotropin in early lactating dairy cows. Journal of Dairy Science, 96(9), 5712–5722. https://doi.org/10.3168/jds.2012-6375
  • Tuncel, U., Turan, A., Bayraktar, M. A., Erkorkmaz, U., & Kostakoglu, N. (2013). Efficacy of dexamethasone with controlled hypotension on intraoperative bleeding, postoperative oedema and ecchymosis in rhinoplasty. Journal of Cranio-Maxillo-Facial Surgery : official Publication of the European Association for Cranio-Maxillo-Facial Surgery, 41(2), 124–128. https://doi.org/10.1016/j.jcms.2012.06.003
  • van der Kolk, J. H. (1990). The bovine pituitary-adrenocortical axis and milk yield. The Veterinary Quarterly, 12(2), 114–120. https://doi.org/10.1080/01652176.1990.9694253
  • Vernay, M. C., Wellnitz, O., Kreipe, L., van Dorland, H. A., & Bruckmaier, R. M. (2012). Local and systemic response to intramammary lipopolysaccharide challenge during long-term manipulated plasma glucose and insulin concentrations in dairy cows. Journal of Dairy Science, 95(5), 2540–2549. Research Support, Non-U S Gov’t) https://doi.org/10.3168/jds.2011-5188
  • VirginJr, C. E., Ha, T. P. T., Packan, D. R., Tombaugh, G. C., Yang, S. H., Homer, H. C., & Sapolsky, R. M. (1991). Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity. Journal of Neurochemistry, 57(4), 1422–1428. https://doi.org/10.1111/j.1471-4159.1991.tb08309.x
  • Wagner, S. A., & Apley, M. D. (2004). Effects of two anti-inflammatory drugs on physiologic variables and milk production in cows with endotoxin-induced mastitis. American Journal of Veterinary Research, 65(1), 64–68. Comparative Study https://doi.org/10.2460/ajvr.2004.65.64Research Support, Non-U S Gov’t)
  • Wall, S. K., Hernandez-Castellano, L. E., Ahmadpour, A., Bruckmaier, R. M., & Wellnitz, O. (2016). Differential glucocorticoid-induced closure of the blood-milk barrier during lipopolysaccharide- and lipoteichoic acid-induced mastitis in dairy cows. Journal of Dairy Science, 99(9), 7544–7553. https://doi.org/10.3168/jds.2016-11093
  • Wellnitz, O., & Bruckmaier, R. M. (2021). Invited review: The role of the blood-milk barrier and its manipulation for the efficacy of the mammary immune response and milk production. Journal of Dairy Science, 104(6), 6376–6388. https://doi.org/10.3168/jds.2020-20029
  • Wolfgang Doppler, B. G. & Ball, R. K. (1989). Prolactin and glucocorticoid hormones synergistically induce expression of transfected rat 13-casein gene promoter constructs in a mammary epithelial cell line. Biochemistry, 86(1), 104–108. https://doi.org/10.1073/pnas.86.1.104
  • Yang, F., Ma, Q., Liu, Z., Li, W., Tan, Y., Jin, C., Ma, W., Hu, Y., Shen, J., Ohgi, K. A., Telese, F., Liu, W., & Rosenfeld, M. G. (2017). Glucocorticoid Receptor:MegaTrans Switching Mediates the Repression of an ERα-Regulated Transcriptional Program. Molecular Cell, 66(3), 321–331.e6. https://doi.org/10.1016/j.molcel.2017.03.019
  • Zhu, Z., Jiang, W., & Thompson, H. J. (1998). Effect of corticosterone administration on mammary gland development and p27 expression and their relationship to the effects of energy restriction on mammary carcinogenesis. Carcinogenesis, 19(12), 2101–2106. (Research Support, U S Gov’t, P H S. https://doi.org/10.1093/carcin/19.12.2101
  • Ziv, G., Shem-Tov, M., & Ascher, F. (1998). Combined effect of ampicillin, colistin and dexamethasone administered intramuscularly to dairy cows on the clinico-pathological course of E. coli-endotoxin mastitis. Veterinary Research, 29(1), 89–98.