Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 27, 2024 - Issue 1
900
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Maternal prenatal distress exposure negatively associates with the stability of neonatal frontoparietal network

, , , , &
Article: 2275207 | Received 20 Sep 2023, Accepted 28 Sep 2023, Published online: 09 Dec 2023

References

  • Cabral, J., Vidaurre, D., Marques, P., Magalhães, R., Silva Moreira, P., Miguel Soares, J., Deco, G., Sousa, N., & Kringelbach, M. L. (2017). Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest. Scientific Reports, 7(1), 1. https://doi.org/10.1038/s41598-017-05425-7
  • Cahart, M.-S., Dell’Acqua, F., Giampietro, V., Cabral, J., Timmers, M., Streffer, J., Einstein, S., Zelaya, F., Williams, S. C. R., & O’Daly, O. (2022). Test-retest reliability of time-varying patterns of brain activity across single band and multiband resting-state functional magnetic resonance imaging in healthy older adults. Frontiers in Human Neuroscience, 16, 980280. https://doi.org/10.3389/fnhum.2022.980280
  • Callaghan, B. L., & Tottenham, N. (2016). The Stress Acceleration Hypothesis: Effects of early-life adversity on emotion circuits and behavior. Current Opinion in Behavioral Sciences, 7, 76–8. https://doi.org/10.1016/j.cobeha.2015.11.018
  • Eyre, M., Fitzgibbon, S. P., Ciarrusta, J., Cordero-Grande, L., Price, A. N., Poppe, T., Schuh, A., Hughes, E., O’Keeffe, C., Brandon, J., Cromb, D., Vecchiato, K., Andersson, J., Duff, E. P., Counsell, S. J., Smith, S. M., Rueckert, D., Hajnal, J. V., Arichi, T., … Edwards, A. D. (2021). The Developing Human Connectome Project: Typical and disrupted perinatal functional connectivity. Brain: a Journal of Neurology, 144(7), 2199–2213. https://doi.org/10.1093/brain/awab118
  • Fasano, M. C., Cabral, J., Stevner, A., Vuust, P., Cantou, P., Brattico, E., & Kringelbach, M. L. (2023). The early adolescent brain on music: Analysis of functional dynamics reveals engagement of orbitofrontal cortex reward system. Human Brain Mapping, 44(2), 429–446. https://doi.org/10.1002/hbm.26060
  • França, L. G. S., Ciarrusta, J., Gale-Grant, O., Fenn-Moltu, S., Fitzgibbon, S., & Chew, A. (2022). Neonatal brain dynamic functional connectivity: Impact of preterm birth and association with early childhood neurodevelopment. bioRxiv, 22, 2022.11.16.516610. https://www.biorxiv.org/content/ https://doi.org/10.1101/2022.11.16.516610v2%0Ahttps://www.biorxiv.org/content/10.1101/2022.11.16.516610v2.abstract
  • Gabard-Durnam, L. J., O’Muircheartaigh, J., Dirks, H., Dean, D. C., Tottenham, N., & Deoni, S. (2018). Human amygdala functional network development: A cross-sectional study from 3 months to 5 years of age. Developmental Cognitive Neuroscience, 34(February), 63–74. https://doi.org/10.1016/j.dcn.2018.06.004
  • Gao, W., Alcauter, S., Elton, A., Hernandez-Castillo, C. R., Smith, J. K., Ramirez, J., & Lin, W. (2015). Functional network development during the first year: Relative sequence and socioeconomic correlations. Cerebral Cortex, 25(9), 2919–2928. https://doi.org/10.1093/cercor/bhu088
  • Graham, A. M., Marr, M., Buss, C., Sullivan, E. L., & Fair, D. A. (2021). Understanding vulnerability and adaptation in early brain development using network neuroscience. Trends in Neurosciences, 44(4), 276–288. https://pubmed.ncbi.nlm.nih.gov/33663814 https://doi.org/10.1016/j.tins.2021.01.008
  • Guo, C., He, P., Song, X., & Zheng, X. (2019). Long-term effects of prenatal exposure to earthquake on adult schizophrenia. The British Journal of Psychiatry: The Journal of Mental Science, 215(6), 730–735. https://doi.org/10.1192/bjp.2019.114
  • Karlsson, L., Tolvanen, M., Scheinin, N. M., Uusitupa, H.-M., Korja, R., Ekholm, E., Tuulari, J. J., Pajulo, M., Huotilainen, M., Paunio, T., & Karlsson, H. (2018). Cohort profile: The FinnBrain Birth Cohort Study (FinnBrain). International Journal of Epidemiology, 47(1), 15–16j. https://doi.org/10.1093/ije/dyx173
  • Kelsey, C. M., Farris, K., & Grossmann, T. (2021). Variability in infants’ functional brain network connectivity is associated with differences in affect and behavior. Frontiers in Psychiatry, 12(June), 685754. https://doi.org/10.3389/fpsyt.2021.685754
  • Khashan, A. S., Abel, K. M., McNamee, R., Pedersen, M. G., Webb, R. T., Baker, P. N., Kenny, L. C., & Mortensen, P. B. (2008). Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Archives of General Psychiatry, 65(2), 146–152. https://doi.org/10.1001/archgenpsychiatry.2007.20
  • Lautarescu, A., Craig, M. C., & Glover, V. (2020). Chapter Two – Prenatal stress: Effects on fetal and child brain development. International Review of Neurobiology, 150, 17–40. https://www.sciencedirect.com/science/article/pii/S0074774219301199
  • Lautarescu, A., Craig, M. C., & Glover, V. (2020). Prenatal stress: Effects on fetal and child brain development. International Review of Neurobiology, 150, 17–40. https://doi.org/10.1016/bs.irn.2019.11.002
  • Leonardi, N., & Van De Ville, D. (2015). On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage, 104, 430–436. https://www.sciencedirect.com/science/article/pii/S1053811914007496 https://doi.org/10.1016/j.neuroimage.2014.09.007
  • Loomans, E. M., van Dijk, A. E., Vrijkotte, T. G. M., van Eijsden, M., Stronks, K., Gemke, R. J. B. J., & Van den Bergh, B. R. H. (2013). Psychosocial stress during pregnancy is related to adverse birth outcomes: Results from a large multi-ethnic community-based birth cohort. European Journal of Public Health, 23(3), 485–491. https://doi.org/10.1093/eurpub/cks097
  • Lord, L.-D., Expert, P., Atasoy, S., Roseman, L., Rapuano, K., Lambiotte, R., Nutt, D. J., Deco, G., Carhart-Harris, R. L., Kringelbach, M. L., & Cabral, J. (2019). Dynamical exploration of the repertoire of brain networks at rest is modulated by psilocybin. NeuroImage, 199, 127–142. https://doi.org/10.1016/j.neuroimage.2019.05.060
  • O’Connor, T. G., Monk, C., & Fitelson, E. M. (2014). Practitioner review: Maternal mood in pregnancy and child development – implications for child psychology and psychiatry. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 55(2), 99–111. https://doi.org/10.1111/jcpp.12153
  • O’Donnell, K. J., Glover, V., Barker, E. D., & O’Connor, T. G. (2014). The persisting effect of maternal mood in pregnancy on childhood psychopathology. Development and Psychopathology, 26(2), 393–403. https://www.cambridge.org/core/article/persisting-effect-of-maternal-mood-in-pregnancy-on-childhood-psychopathology/E13852533BAB5648488004E36BA24C75 https://doi.org/10.1017/S0954579414000029
  • Posner, J., Cha, J., Roy, A. K., Peterson, B. S., Bansal, R., Gustafsson, H. C., Raffanello, E., Gingrich, J., & Monk, C. (2016). Alterations in amygdala-prefrontal circuits in infants exposed to prenatal maternal depression. Translational Psychiatry, 6(11), e935-8–e935. https://doi.org/10.1038/tp.2016.146
  • Pulli, E. P., Kumpulainen, V., Kasurinen, J. H., Korja, R., Merisaari, H., Karlsson, L., Parkkola, R., Saunavaara, J., Lähdesmäki, T., Scheinin, N. M., Karlsson, H., & Tuulari, J. J. (2019). Prenatal exposures and infant brain: Review of magnetic resonance imaging studies and a population description analysis. Human Brain Mapping, 40(6), 1987–2000. https://doi.org/10.1002/hbm.24480
  • Qiu, A., Anh, T. T., Li, Y., Chen, H., Rifkin-Graboi, A., Broekman, B. F. P., Kwek, K., Saw, S.-M., Chong, Y.-S., Gluckman, P. D., Fortier, M. V., & Meaney, M. J. (2015). Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants. Translational Psychiatry, 5(2), e508–e508. https://doi.org/10.1038/tp.2015.3
  • Rajasilta, O., Häkkinen, S., Björnsdotter, M., Scheinin, N. M., Lehtola, S. J., Saunavaara, J., Parkkola, R., Lähdesmäki, T., Karlsson, L., Karlsson, H., & Tuulari, J. J. (2022). Maternal psychological distress associates with alterations in resting-state low-frequency fluctuations and distali functional connectivity of the neonate prefrontal cortex. The European Journal of Neuroscience, 57(2), 242–257.
  • Rajasilta, O., Tuulari, J. J., Björnsdotter, M., Scheinin, N. M., Lehtola, S. J., Saunavaara, J., Häkkinen, S., Merisaari, H., Parkkola, R., Lähdesmäki, T., Karlsson, L., & Karlsson, H. (2020). Resting-state networks of the neonate brain identified using independent component analysis. Developmental Neurobiology, 80(3–4), 111–125. https://doi.org/10.1002/dneu.22742
  • Savva, A. D., Mitsis, G. D., & Matsopoulos, G. K. (2019). Assessment of dynamic functional connectivity in resting-state fMRI using the sliding window technique. Brain and Behavior, 9(4), e01255. https://doi.org/10.1002/brb3.1255
  • Scheinost, D., Kwon, S. H., Lacadie, C., Sze, G., Sinha, R., Constable, R. T., & Ment, L. R. (2016). Prenatal stress alters amygdala functional connectivity in preterm neonates. NeuroImage. Clinical, 12, 381–388. https://doi.org/10.1016/j.nicl.2016.08.010
  • Schultz, D. H., Ito, T., Solomyak, L. I., Chen, R. H., Mill, R. D., Anticevic, A., & Cole, M. W. (2018). Global connectivity of the fronto-parietal cognitive control network is related to depression symptoms in the general population. Network Neuroscience, 3(1), 107–123. https://doi.org/10.1162/netn_a_00056
  • Serpeloni, F., Radtke, K. M., Hecker, T., Sill, J., Vukojevic, V., de Assis, S. G., Schauer, M., Elbert, T., & Nätt, D. (2019). Does prenatal stress shape postnatal resilience? An epigenome-wide study on violence and mental health in humans. Frontiers in Genetics, 10(MAR), 269. https://doi.org/10.3389/fgene.2019.00269
  • Soe, N. N., Wen, D. J., Poh, J. S., Chong, Y.-S., Broekman, B. F., Chen, H., Shek, L. P., Tan, K. H., Gluckman, P. D., Fortier, M. V., Meaney, M. J., & Qiu, A. (2018). Perinatal maternal depressive symptoms alter amygdala functional connectivity in girls. Human Brain Mapping, 39(2), 680–690. https://doi.org/10.1002/hbm.23873
  • Stark, E. A., Cabral, J., Riem, M. M. E., Van IJzendoorn, M. H., Stein, A., & Kringelbach, M. L. (2020). The power of smiling: The adult brain networks underlying learned infant emotionality. Cerebral Cortex, 30(4), 2019–2029. https://doi.org/10.1093/cercor/bhz219
  • Thomason, M. E., Hect, J. L., Waller, R., & Curtin, P. (2021). Interactive relations between maternal prenatal stress, fetal brain connectivity, and gestational age at delivery. Neuropsychopharmacology, 46(10), 1839–1847. Available from https://doi.org/10.1038/s41386-021-01066-7
  • Vohryzek, J., Deco, G., Cessac, B., Kringelbach, M. L., & Cabral, J. (2020). Ghost attractors in spontaneous brain activity: recurrent excursions into functionally-relevant BOLD phase-locking states. Frontiers in Systems Neuroscience, 14, 20. https://doi.org/10.3389/fnsys.2020.00020
  • Walsh, K., McCormack, C. A., Webster, R., Pinto, A., Lee, S., Feng, T., Krakovsky, H. S., O’Grady, S. M., Tycko, B., Champagne, F. A., Werner, E. A., Liu, G., & Monk, C. (2019). Maternal prenatal stress phenotypes associate with fetal neurodevelopment and birth outcomes. Proceedings of the National Academy of Sciences of the United States of America, 116(48), 23996–24005. https://doi.org/10.1073/pnas.1905890116
  • Wang, Y., Tao, F., Zuo, C., Kanji, M., Hu, M., & Wang, D. (2019). Disrupted resting frontal–parietal attention network topology is associated with a clinical measure in children with attention-deficit/hyperactivity disorder. Frontiers in Psychiatry, 10(MAY), 300. https://doi.org/10.3389/fpsyt.2019.00300