Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 26, 2023 - Issue 1
780
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The importance of the circadian trough in glucocorticoid signaling: a variation on B-flat

, , &
Article: 2275210 | Received 24 Jun 2023, Accepted 28 Sep 2023, Published online: 30 Oct 2023

References

  • Adam, E. K., Quinn, M. E., Tavernier, R., McQuillan, M. T., Dahlke, K. A., & Gilbert, K. E. (2017). Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology, 83, 1–7. https://doi.org/10.1016/j.psyneuen.2017.05.018
  • Akana, S. F., & Dallman, M. F. (1997). Chronic cold in adrenalectomized, corticosterone (B)-treated rats: facilitated corticotropin responses to acute restraint emerge as B increases. Endocrinology, 138(8), 3249–3258. https://doi.org/10.1210/endo.138.8.5291
  • Akana, S. F., Scribner, K. A., Bradbury, M. J., Strack, A. M., Walker, C. D., & Dallman, M. F. (1992). Feedback sensitivity of the rat hypothalamo-pituitary-adrenal axis and its capacity to adjust to exogenous corticosterone. Endocrinology, 131(2), 585–594. https://doi.org/10.1210/endo.131.2.1322275
  • Astiz, M., Heyde, I., Fortmann, M. I., Bossung, V., Roll, C., Stein, A., Grüttner, B., Göpel, W., Härtel, C., Obleser, J., & Oster, H. (2020). The circadian phase of antenatal glucocorticoid treatment affects the risk of behavioral disorders. Nature Communications, 11(1), 3593. https://doi.org/10.1038/s41467-020-17429-5
  • Balsalobre, A., Brown, S. A., Marcacci, L., Tronche, F., Kellendonk, C., Reichardt, H. M., Schütz, G., & Schibler, U. (2000). Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science, 289(5488), 2344–2347. https://doi.org/10.1126/science.289.5488.2344
  • Birnie, M. T., Claydon, M. D. B., Troy, O., Flynn, B. P., Yoshimura, M., Kershaw, Y. M., Zhao, Z., Demski-Allen, R. C. R., Barker, G. R. I., Warburton, E. C., Bortolotto, Z. A., Lightman, S. L., & Conway-Campbell, B. L. (2023). Circadian regulation of hippocampal function is disrupted with corticosteroid treatment. Proceedings of the National Academy of Sciences of the United States of America, 120(15), e2211996120. https://doi.org/10.1073/pnas.2211996120
  • Bradbury, M. J., Akana, S. F., Cascio, C. S., Levin, N., Jacobson, L., & Dallman, M. F. (1991). Regulation of basal ACTH secretion by corticosterone is mediated by both type I (MR) and type II (GR) receptors in rat brain. The Journal of Steroid Biochemistry and Molecular Biology, 40(1-3), 133–142. https://doi.org/10.1016/0960-0760(91)90176-6
  • Buttgereit, F. (2021). Glucocorticoids: surprising new findings on their mechanisms of actions. Annals of the Rheumatic Diseases, 80(2), 137–139. https://doi.org/10.1136/annrheumdis-2020-218798
  • Caratti, G., Iqbal, M., Hunter, L., Kim, D., Wang, P., Vonslow, R. M., Begley, N., Tetley, A. J., Woodburn, J. L., Pariollaud, M., Maidstone, R., Donaldson, I. J., Zhang, Z., Ince, L. M., Kitchen, G., Baxter, M., Poolman, T. M., Daniels, D. A., Stirling, D. R., … Ray, D. W. (2018). REVERBa couples the circadian clock to hepatic glucocorticoid action. The Journal of Clinical Investigation, 128(10), 4454–4471. https://doi.org/10.1172/JCI96138
  • Cederroth, C. R., Albrecht, U., Bass, J., Brown, S. A., Dyhrfjeld-Johnsen, J., Gachon, F., Green, C. B., Hastings, M. H., Helfrich-Förster, C., Hogenesch, J. B., Lévi, F., Loudon, A., Lundkvist, G. B., Meijer, J. H., Rosbash, M., Takahashi, J. S., Young, M., & Canlon, B. (2019). Medicine in the fourth dimension. Cell Metabolism, 30(2), 238–250. https://doi.org/10.1016/j.cmet.2019.06.019
  • Dallman, M. F., Akana, S. F., Bhatnagar, S., Bell, M. E., & Strack, A. M. (2000). Bottomed out: metabolic significance of the circadian trough in glucocorticoid concentrations. International Journal of Obesity and Related Metabolic Disorders: journal of the International Association for the Study of Obesity, 24 Suppl 2(S2), S40–S46. https://doi.org/10.1038/sj.ijo.0801276
  • Dallman, M. F., Akana, S. F., Bhatnagar, S., Bell, M. E., Choi, S., Chu, A., Horsley, C., Levin, N., Meijer, O., Soriano, L. R., Strack, A. M., & Viau, V. (1999). Starvation: Early signals, sensors, and sequelae. Endocrinology, 140(9), 4015–4023. https://doi.org/10.1210/endo.140.9.7001
  • Dallman, M. F., Akana, S. F., Cascio, C. S., Darlington, D. N., Jacobson, L., & Levin, N. (1987). Regulation of ACTH secretion: Variations on a theme of B. Recent Progress in Hormone Research, 43, 113–173. https://doi.org/10.1016/b978-0-12-571143-2.50010-1
  • Dallman, M. F., Levin, N., Cascio, C. S., Akana, S. F., Jacobson, L., & Kuhn, R. W. (1989). Pharmacological evidence that the inhibition of diurnal adrenocorticotropin secretion by corticosteroids is mediated via type I corticosterone-preferring receptors. Endocrinology, 124(6), 2844–2850. https://doi.org/10.1210/endo-124-6-2844
  • Franco, L. M., Gadkari, M., Howe, K. N., Sun, J., Kardava, L., Kumar, P., Kumari, S., Hu, Z., Fraser, I. D. C., Moir, S., Tsang, J. S., & Germain, R. N. (2019). Glucocorticoids: Surprising new findings on their mechanisms of actions. The Journal of Experimental Medicine, 216(2), 384–406. https://doi.org/10.1084/jem.20180595
  • Havel, P. J., Busch, B. L., Curry, D. L., Johnson, P. R., Dallman, M. F., & Stern, J. S. (1996). Predominately glucocorticoid agonist actions of RU-486 in young specific-pathogen-free Zucker rats. The American Journal of Physiology, 271(3 Pt 2), R710–7. https://doi.org/10.1152/ajpregu.1996.271.3.R710
  • Heilman, F. R., & Kendall, E. C. (1956). The influence of the hormones of the adrenal cortex, compounds A, B, and E, on the deposition of fat in the mouse. Proceedings of the Staff Meetings. Mayo Clinic, 31(16), 454–459.
  • Henley, D., Lightman, S., & Carrell, R. (2016). Cortisol and CBG - Getting cortisol to the right place at the right time. Pharmacology & Therapeutics, 166, 128–135. https://doi.org/10.1016/j.pharmthera.2016.06.020
  • Herman, J. P., Figueiredo, H., Mueller, N. K., Ulrich-Lai, Y., Ostrander, M. M., Choi, D. C., & Cullinan, W. E. (2003). Central mechanisms of stress integration: Hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Frontiers in Neuroendocrinology, 24(3), 151–180. https://doi.org/10.1016/j.yfrne.2003.07.001
  • Jiang, Z., Chen, C., Weiss, G. L., Fu, X., Stelly, C. E., Sweeten, B. L. W., Tirrell, P. S., Pursell, I., Stevens, C. R., Fisher, M. O., Begley, J. C., Harrison, L. M., & Tasker, J. G. (2022). Stress-induced glucocorticoid desensitizes adrenoreceptors to gate the neuroendocrine response to somatic stress in male mice. Cell Reports, 41(3), 111509. https://doi.org/10.1016/j.celrep.2022.111509
  • Kachroo, P., Stewart, I. D., Kelly, R. S., Stav, M., Mendez, K., Dahlin, A., Soeteman, D. I., Chu, S. H., Huang, M., Cote, M., Knihtilä, H. M., Lee-Sarwar, K., McGeachie, M., Wang, A., Wu, A. C., Virkud, Y., Zhang, P., Wareham, N. J., Karlson, E. W., … Lasky-Su, J. A. (2022). Metabolomic profiling reveals extensive adrenal suppression due to inhaled corticosteroid therapy in asthma. Nature Medicine, 28(4), 814–822. https://doi.org/10.1038/s41591-022-01714-5
  • Karssen, A. M., Meijer, O. C., van der Sandt, I. C., Lucassen, P. J., de Lange, E. C., de Boer, A. G., & De Kloet, E. R. (2001). Multidrug resistance P-glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology, 142(6), 2686–2694. https://doi.org/10.1210/endo.142.6.8213
  • Kim, J. S., & Iremonger, K. J. (2019). Temporally tuned corticosteroid feedback regulation of the stress axis. Trends in Endocrinology and Metabolism 30(11), 783–792. https://doi.org/10.1016/j.tem.2019.07.005
  • Kroon, J., Schilperoort, M., In Het Panhuis, W., van den Berg, R., van Doeselaar, L., Verzijl, C. R. C., van Trigt, N., Mol, I. M., Sips, H. H. C. M., van den Heuvel, J. K., Koorneef, L. L., van der Sluis, R. J., Fenzl, A., Kiefer, F. W., Vettorazzi, S., Tuckermann, J. P., Biermasz, N. R., Meijer, O. C., Rensen, P. C. N., & Kooijman, S. (2021). A physiological glucocorticoid rhythm is an important regulator of brown adipose tissue function. Molecular Metabolism, 47, 101179. https://doi.org/10.1016/j.molmet.2021.101179
  • Lai, M., Horsburgh, K., Bae, S.-E., Carter, R. N., Stenvers, D. J., Fowler, J. H., Yau, J. L., Gomez-Sanchez, C. E., Holmes, M. C., Kenyon, C. J., Seckl, J. R., & Macleod, M. R. (2007). Forebrain mineralocorticoid receptor overexpression enhances memory, reduces anxiety and attenuates neuronal loss in cerebral ischaemia. The European Journal of Neuroscience, 25(6), 1832–1842. https://doi.org/10.1111/j.1460-9568.2007.05427.x
  • Laugesen, K., Jørgensen, J. O. L., Petersen, I., & Sørensen, H. T. (2019). Fifteen-year nationwide trends in systemic glucocorticoid drug use in Denmark. European Journal of Endocrinology, 181(3), 267–273. https://doi.org/10.1530/EJE-19-0305
  • Leeuwen, J. M. C., Vink, M., Fernández, G., Hermans, E. J., Joëls, M., Kahn, R. S., & Vinkers, C. H. (2018). At-risk individuals display altered brain activity following stress. Neuropsychopharmacology: official Publication of the American College of Neuropsychopharmacology, 43(9), 1954–1960. https://doi.org/10.1038/s41386-018-0026-8
  • Lightman, S. L., & Conway-Campbell, B. L. (2010). The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nature Reviews. Neuroscience, 11(10), 710–718. https://doi.org/10.1038/nrn2914
  • Limumpornpetch, P., Morgan, A. W., Tiganescu, A., Baxter, P. D., Nyawira Nyaga, V., Pujades-Rodriguez, M., & Stewart, P. M. (2022). The effect of endogenous cushing syndrome on all-cause and cause-specific mortality. The Journal of Clinical Endocrinology and Metabolism, 107(8), 2377–2388. https://doi.org/10.1210/clinem/dgac265
  • Mckenzie, R., Reynolds, J. C., OFallon, A., Dale, J., Deloria, M., Blackwalder, W., & Straus, S. E. (2000). Decreased bone mineral density during low dose glucocorticoid administration in a randomized, placebo controlled trial. Journal of Rheumatology, 27(9), 2222–2226.
  • Meijer, O. C. (2006). Understanding stress through the genome. Stress, 9(2), 61–67. https://doi.org/10.1080/10253890600799669
  • Meijer, O. C., Van Oosten, R. V., & De Kloet, E. R. (1997). Elevated basal trough levels of corticosterone suppress hippocampal 5-hydroxytryptamine(1A) receptor expression in adrenally intact rats: implication for the pathogenesis of depression. Neuroscience, 80(2), 419–426. https://doi.org/10.1016/s0306-4522(97)00008-0
  • Monczor, F., Chatzopoulou, A., Zappia, C. D., Houtman, R., Meijer, O. C., & Fitzsimons, C. P. (2019). A model of glucocorticoid receptor interaction with coregulators predicts transcriptional regulation of target genes. Frontiers in Pharmacology, 10, 214. https://doi.org/10.3389/fphar.2019.00214
  • Nader, N., Chrousos, G. P., & Kino, T. (2010). Interactions of the circadian CLOCK system and the HPA axis. Trends in Endocrinology and Metabolism, 21(5), 277–286. https://doi.org/10.1016/j.tem.2009.12.011
  • Nixon, M., Mackenzie, S. D., Taylor, A. I., Homer, N. Z. M., Livingstone, D. E., Mouras, R., Morgan, R. A., Mole, D. J., Stimson, R. H., Reynolds, R. M., Elfick, A. P. D., Andrew, R., & Walker, B. R. (2016). ABCC1 confers tissue-specific sensitivity to cortisol versus corticosterone: A rationale for safer glucocorticoid replacement therapy. Science Translational Medicine, 8(352), 352ra109. https://doi.org/10.1126/scitranslmed.aaf9074
  • Pace, T. W. W., & Heim, C. M. (2011). A short review on the psychoneuroimmunology of posttraumatic stress disorder: From risk factors to medical comorbidities. Brain, Behavior, and Immunity, 25(1), 6–13. https://doi.org/10.1016/j.bbi.2010.10.003
  • Pearce, D., & Yamamoto, K. R. (1993). Mineralocorticoid and glucocorticoid receptor activities distinguished by nonreceptor factors at a composite response element. Science, 259(5098), 1161–1165. https://doi.org/10.1126/science.8382376
  • Polman, J. A. E., De Kloet, E. R., & Datson, N. A. (2013). Two populations of glucocorticoid receptor-binding sites in the male rat hippocampal genome. Endocrinology, 154(5), 1832–1844. https://doi.org/10.1210/en.2012-2187
  • Ratka, A., Sutanto, W., Bloemers, M., & De Kloet, E. R. (1989). On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation. Neuroendocrinology, 50(2), 117–123. https://doi.org/10.1159/000125210
  • Reddy, T. E., Gertz, J., Crawford, G. E., Garabedian, M. J., & Myers, R. M. (2012). The hypersensitive glucocorticoid response specifically regulates period 1 and expression of circadian genes. Molecular and Cellular Biology, 32(18), 3756–3767. https://doi.org/10.1128/MCB.00062-12
  • Reddy, T. E., Pauli, F., Sprouse, R. O., Neff, N. F., Newberry, K. M., Garabedian, M. J., & Myers, R. M. (2009). Genomic determination of the glucocorticoid response reveals unexpected mechanisms of gene regulation. Genome Research, 19(12), 2163–2171. https://doi.org/10.1101/gr.097022.109
  • Reul, J. M., van den Bosch, F. R., & De Kloet, E. R. (1987). Relative occupation of type-I and type-II corticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications. The Journal of Endocrinology, 115(3), 459–467. https://doi.org/10.1677/joe.0.1150459
  • Rosmond, R., Dallman, M. F., & Björntorp, P. (1998). Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. Journal of Clinical Endocrinology & Metabolism, 83(6), 1853–1859. https://doi.org/10.1210/jc.83.6.1853
  • Sarabdjitsingh, R. A., Isenia, S., Polman, A., Mijalkovic, J., Lachize, S., Datson, N., de Kloet, E. R., & Meijer, O. C. (2010). Disrupted corticosterone pulsatile patterns attenuate responsiveness to glucocorticoid signaling in rat brain. Endocrinology, 151(3), 1177–1186. https://doi.org/10.1210/en.2009-1119
  • Schilperoort, M., Bravenboer, N., Lim, J., Mletzko, K., Busse, B., van Ruijven, L., Kroon, J., Rensen, P. C. N., Kooijman, S., & Winter, E. M. (2020). Circadian disruption by shifting the light-dark cycle negatively affects bone health in mice. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 34(1), 1052–1064. https://doi.org/10.1096/fj.201901929R
  • Schilperoort, M., Kroon, J., Kooijman, S., Smit, A. E., Gentenaar, M., Mletzko, K., Schmidt, F. N., van Ruijven, L., Busse, B., Pereira, A. M., Appelman-Dijkstra, N. M., Bravenboer, N., Rensen, P. C. N., Meijer, O. C., & Winter, E. M. (2021). Loss of glucocorticoid rhythm induces an osteoporotic phenotype in female mice. Aging Cell, 20(10), e13474. https://doi.org/10.1111/acel.13474
  • Schinkel, A. H., Smit, J. J., van Tellingen, O., Beijnen, J. H., Wagenaar, E., van Deemter, L., Mol, C. A., van der Valk, M. A., Robanus-Maandag, E. C., & Te Riele, H. P. (1994). Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell, 77(4), 491–502. https://doi.org/10.1016/0092-8674(94)90212-7
  • So, A. Y.-L., Bernal, T. U., Pillsbury, M. L., Yamamoto, K. R., & Feldman, B. J. (2009). Glucocorticoid regulation of the circadian clock modulates glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17582–17587. https://doi.org/10.1073/pnas.0909733106
  • Tholen, S., Patel, R., Agas, A., Kovary, K. M., Rabiee, A., Nicholls, H. T., Bielczyk-Maczyńska, E. Yang, W., Kraemer, F. B., & Teruel, M. N. (2022). Flattening of circadian glucocorticoid oscillations drives acute hyperinsulinemia and adipocyte hypertrophy. Cell Reports, 13(39), 111018. https://doi.org/10.1016/j.celrep.2022.111018
  • Upton, T. J., Zavala, E., Methlie, P., Kämpe, O., Tsagarakis, S., Øksnes, M., Bensing, S., Vassiliadi, D. A., Grytaas, M. A., Botusan, I. R., Ueland, G., Berinder, K., Simunkova, K., Balomenaki, M., Margaritopoulos, D., Henne, N., Crossley, R., Russell, G., Husebye, E. S., & Lightman, S. L. (2023). High-resolution daily profiles of tissue adrenal steroids by portable automated collection. Science Translational Medicine, 15(701), eadg8464. https://doi.org/10.1126/scitranslmed.adg8464
  • van Haarst, A. D., Oitzl, M. S., & De Kloet, E. R. (1997). Facilitation of feedback inhibition through blockade of glucocorticoid receptors in the hippocampus. Neurochemical Research, 22(11), 1323–1328. https://doi.org/10.1023/a:1022010904600
  • Van Staa, T. P., Leufkens, H. G. M., Abenhaim, L., Zhang, B., & Cooper, C. (2005). Use of oral corticosteroids and risk of fractures. Journal of Bone and Mineral Research, 20(8), 1486–1493. https://doi.org/10.1359/jbmr.2005.20.8.1486
  • Viho, E. M., Kroon, J., Feelders, R. A., Houtman, R., van den Dungen, E., Pereira Arias, A. M., Hunt, H., Hofland, L. J., & Meijer, O. C. (2022). Peripheral Glucocorticoid receptor antagonism by relacorilant with modest HPA axis disinhibition. Journal of Endocrinology, 256(2), 222063. https://doi.org/10.1530/JOE-22-0263
  • Walker, J. J., Spiga, F., Gupta, R., Zhao, Z., Lightman, S. L., & Terry, J. R. (2015). Rapid intra-adrenal feedback regulation of glucocorticoid synthesis. Journal of the Royal Society, Interface, 12(102), 20140875. https://doi.org/10.1098/rsif.2014.0875
  • Windle, R. J., Wood, S. A., Kershaw, Y. M., Lightman, S. L., Ingram, C. D., & Harbuz, M. S. (2001). Increased corticosterone pulse frequency during adjuvant-induced arthritis and its relationship to alterations in stress responsiveness. Journal of Neuroendocrinology, 13(10), 905–911. https://doi.org/10.1046/j.1365-2826.2001.00715.x
  • Wyrwoll, C. S., Holmes, M. C., & Seckl, J. R. (2011). 11β-hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress. Frontiers in Neuroendocrinology, 32(3), 265–286. https://doi.org/10.1016/j.yfrne.2010.12.001