Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 27, 2024 - Issue 1
691
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Accumbal μ-opioid receptors and salt taste-elicited hedonic responses in a rodent model of prenatal adversity, and their correlates using human functional genomics

, , , , , & show all
Article: 2294954 | Received 03 Jul 2023, Accepted 07 Dec 2023, Published online: 22 Dec 2023

References

  • Alves, M. B., Laureano, D. P., Dalle Molle, R., Machado, T. D., Salvador, A. P. D A., Miguel, P. M., Lupinsky, D., Dalmaz, C., & Silveira, P. P. (2019). Intrauterine growth restriction increases impulsive behavior and is associated with altered dopamine transmission in both medial prefrontal and orbitofrontal cortex in female rats. Physiology & Behavior, 204, 1–13. https://doi.org/10.1016/j.physbeh.2019.03.010
  • Alves, M., Dalle Molle, R., Desai, M., Ross, M., & Silveira, P. (2015). Increased palatable food intake and response to food cues in intrauterine growth-restricted rats are related to tyrosine hydroxylase content in the orbitofrontal cortex and nucleus accumbens. Behavioural Brain Research, 287, 73–81. https://doi.org/10.1016/j.bbr.2015.03.019
  • Ashorn, P., Ashorn, U., Muthiani, Y., Aboubaker, S., Askari, S., Bahl, R., Black, R. E., Dalmiya, N., Duggan, C. P., Hofmeyr, G. J., Kennedy, S. H., Klein, N., Lawn, J. E., Shiffman, J., Simon, J., & Temmerman, M, UNICEF–WHO Low Birthweight Estimates Group. (2023). Small vulnerable newborns-big potential for impact. Lancet (London, England), 401(10389), 1692–1706. https://doi.org/10.1016/S0140-6736(23)00354-9
  • Ayres, C., Agranonik, M., Portella, A. K., Filion, F., Johnston, C. C., & Silveira, P. P. (2012). Intrauterine growth restriction and the fetal programming of the hedonic response to sweet taste in newborn infants. International Journal of Pediatrics, 2012, 657379. https://doi.org/10.1155/2012/657379
  • Baker, H. J., Lindsey, J. R., & Wesibroth, S. H. (2013). The Laboratory Rat: Biology and Disease (Vol. 1). Academic Press.
  • Barbieri, M. A., Portella, A. K., Silveira, P. P., Bettiol, H., Agranonik, M., Silva, A. A., & Goldani, M. Z. (2009). Severe intrauterine growth restriction is associated with higher spontaneous carbohydrate intake in young women. Pediatric Research, 65(2), 215–220. https://doi.org/10.1203/PDR.0b013e31818d6850
  • Barth, B., Bizarro, L., Miguel, P. M., Dubé, L., Levitan, R., O’Donnell, K., Meaney, M. J., & Silveira, P. P. (2020). Genetically predicted gene expression of prefrontal DRD4 gene and the differential susceptibility to childhood emotional eating in response to positive environment. Appetite, 148, 104594. https://doi.org/10.1016/j.appet.2020.104594
  • Beauchamp, G. K., Cowart, B. J., Mennella, J. A., & Marsh, R. R. (1994). Infant salt taste: developmental, methodological, and contextual factors. Developmental Psychobiology, 27(6), 353–365. https://doi.org/10.1002/dev.420270604
  • Berridge, K. C. (2000). Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neuroscience and Biobehavioral Reviews, 24(2), 173–198. https://doi.org/10.1016/s0149-7634(99)00072-x
  • Berridge, K. C. (2009a). “Liking” and “wanting” food rewards: brain substrates and roles in eating disorders. Physiology & Behavior, 97(5), 537–550. https://doi.org/10.1016/j.physbeh.2009.02.044
  • Berridge, K. C. (2009b). Wanting and liking: Observations from the neuroscience and psychology laboratory. Inquiry (Oslo, Norway), 52(4), 378–398. https://doi.org/10.1080/00201740903087359
  • Bischoff, A. R., Portella, A. K., Paquet, C., Dalle Molle, R., Faber, A., Arora, N., Levitan, R. D., Silveira, P. P., & Dube, L. (2018). Low birth weight is associated with increased fat intake in school-aged boys. The British Journal of Nutrition, 119(11), 1295–1302. Jun https://doi.org/10.1017/S0007114518000892
  • Bischoff, A. R., Tomlinson, C., & Belik, J. (2016). Sodium Intake Requirements for Preterm Neonates: Review and Recommendations. Journal of Pediatric Gastroenterology and Nutrition, 63(6), e123–e129. Dec https://doi.org/10.1097/MPG.0000000000001294
  • Brion, M.-J., Ness, A. R., Davey Smith, G., Emmett, P., Rogers, I., Whincup, P., & Lawlor, D. A. (2008). Sodium intake in infancy and blood pressure at 7 years: Findings from the Avon Longitudinal Study of Parents and Children. European Journal of Clinical Nutrition, 62(10), 1162–1169. https://doi.org/10.1038/sj.ejcn.1602837
  • Campbell, C. P., Raubenheimer, D., Badaloo, A. V., Gluckman, P. D., Martinez, C., Gosby, A., Simpson, S. J., Osmond, C., Boyne, M. S., & Forrester, T. E. (2016). Developmental contributions to macronutrient selection: a randomized controlled trial in adult survivors of malnutrition. Evolution, Medicine, and Public Health, 2016(1), 158–169. https://doi.org/10.1093/emph/eov030
  • Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 4(1), 7. https://doi.org/10.1186/s13742-015-0047-8
  • Crume, T. L., Scherzinger, A., Stamm, E., McDuffie, R., Bischoff, K. J., Hamman, R. F., & Dabelea, D. (2014). The long-term impact of intrauterine growth restriction in a diverse U.S. cohort of children: the EPOCH study. Obesity (Silver Spring, Md.), 22(2), 608–615. https://doi.org/10.1002/oby.20565
  • Cunha, F. D S., Dalle Molle, R., Portella, A. K., Benetti, C. D S., Noschang, C., Goldani, M. Z., & Silveira, P. P. (2015). Both food restriction and high-fat diet during gestation induce low birth weight and altered physical activity in adult rat offspring: The “Similarities in the Inequalities” model. PloS One, 10(3), e0118586. https://doi.org/10.1371/journal.pone.0118586
  • Curtis, K. S., Krause, E. G., Wong, D. L., & Contreras, R. J. (2004). Gestational and early postnatal dietary NaCl levels affect NaCl intake, but not stimulated water intake, by adult rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 286(6), R1043–50. Jun https://doi.org/10.1152/ajpregu.00582.2003
  • Dadam, F., Zádor, F., Caeiro, X., Szűcs, E., Erdei, A. I., & Samavati, R. (2018). The effect of increased NaCl intake on rat brain endogenous μ-opioid receptor signalling. Journal of Neuroendocrinology. 30(4), e12585. https://doi.org/10.1111/jne.12585
  • D’Agostin, M., Di Sipio Morgia, C., Vento, G., & Nobile, S. (2023). Long-term implications of fetal growth restriction. World Journal of Clinical Cases, 11(13), 2855–2863. https://doi.org/10.12998/wjcc.v11.i13.2855
  • Dalle Molle, R., Bischoff, A. R., Portella, A. K., & Silveira, P. P. (2016). The fetal programming of food preferences: Current clinical and experimental evidence. Journal of Developmental Origins of Health and Disease, 7(3), 222–230. https://doi.org/10.1017/S2040174415007187
  • Dalle Molle, R., Laureano, D. P., Alves, M. B., Reis, T. M., Desai, M., Ross, M. G., & Silveira, P. P. (2015). Intrauterine growth restriction increases the preference for palatable foods and affects sensitivity to food rewards in male and female adult rats. Brain Research, 1618, 41–49. https://doi.org/10.1016/j.brainres.2015.05.019
  • de Onis, M., WHO Team. (2006). WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development (pp. 0–312). WHO Press.
  • Desai, M., Gayle, D., Babu, J., & Ross, M. G. (2005). Programmed obesity in intrauterine growth-restricted newborns: Modulation by. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 288(1), R91–6. https://doi.org/10.1152/ajpregu.00340.2004
  • Desai, M., Gayle, D., Babu, J., & Ross, M. G. (2007). The timing of nutrient restriction during rat pregnancy/lactation alters metabolic syndrome phenotype. American Journal of Obstetrics and Gynecology, 196(6), 555.e1-7. https://doi.org/10.1016/j.ajog.2006.11.036
  • Desai, M., Gayle, D., Han, G., & Ross, M. G. (2007). Programmed hyperphagia due to reduced anorexigenic mechanisms in intrauterine growth-restricted offspring. Reproductive Sciences (Thousand Oaks, Calif.), 14(4), 329–337. https://doi.org/10.1177/1933719107303983
  • Doornweerd, S., IJzerman, R. G., Weijs, P. J. M., Diamant, M., de Geus, E. J., & Boomsma, D. I. (2017). Lower birth weight is associated with alterations in dietary intake in adolescents independent of genetic factors: A twin study. Clinical Nutrition (Edinburgh, Scotland), 36(1), 179–185. https://doi.org/10.1016/j.clnu.2015.10.012
  • Durinck, S., Spellman, P. T., Birney, E., & Huber, W. (2009). Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols, 4(8), 1184–1191. https://doi.org/10.1038/nprot.2009.97
  • Eloranta, A.-M., Jääskeläinen, J., Venäläinen, T., Jalkanen, H., Kiiskinen, S., Mäntyselkä, A., Schwab, U., Lindi, V., & Lakka, T. A. (2018). Birth weight is associated with dietary factors at the age of 6-8 years: the Physical Activity and Nutrition in Children (PANIC) study. Public Health Nutrition, 21(7), 1278–1285. https://doi.org/10.1017/S1368980017004013
  • Emmerik, N. E., de Jong, F., & van Elburg, R. M. (2020). Dietary Intake of Sodium during Infancy and the Cardiovascular Consequences Later in Life: A Scoping Review. Annals of Nutrition & Metabolism, 76(2), 114–121. https://doi.org/10.1159/000507354
  • Ervina, E., Berget, I., & Almli, V. L. (2020). Investigating the relationships between basic tastes sensitivities, fattiness sensitivity, and food liking in 11-year-old children. Foods (Basel, Switzerland), 9(9), 1315. https://doi.org/10.3390/foods9091315
  • Ester, W. A., Jansen, P. W., Hoek, H. W., Verhulst, F. C., Jaddoe, V. W., Marques, A. H., Tiemeier, H., Susser, E. S., & Roza, S. J. (2019). Fetal size and eating behaviour in childhood: a prospective cohort study. International Journal of Epidemiology, 48(1), 124–133. https://doi.org/10.1093/ije/dyy256
  • Formaker, B. K., & Hill, D. L. (1990). Alterations of salt taste perception in the developing rat. Behavioral Neuroscience, 104(2), 356–364. https://doi.org/10.1037//0735-7044.104.2.356
  • Fortin, S. M., & Roitman, M. F. (2018). Challenges to body fluid homeostasis differentially recruit phasic dopamine signaling in a taste-selective manner. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 38(31), 6841–6853. https://doi.org/10.1523/JNEUROSCI.0399-18.2018
  • Franchini, L. F., Rubinstein, M., & Vivas, L. (2003). Reduced sodium appetite and increased oxytocin gene expression in mutant mice lacking β-endorphin. Neuroscience, 121(4), 875–881. https://doi.org/10.1016/s0306-4522(03)00485-8
  • Fry Vennerød, F. F., Nicklaus, S., Lien, N., & Almli, V. L. (2018). The development of basic taste sensitivity and preferences in children. Appetite, 127, 130–137. https://doi.org/10.1016/j.appet.2018.04.027
  • Georges, F., Normand, E., Bloch, B., & Le Moine, C. (1998). Opioid receptor gene expression in the rat brain during ontogeny, with special reference to the mesostriatal system: an in situ hybridization study. Developmental Brain Research, 109(2), 187–199. https://doi.org/10.1016/s0165-3806(98)00082-0
  • Grill, H. J., & Bernstein, I. L. (1988). Strain differences in taste reactivity to NaCl. The American Journal of Physiology, 255(3 Pt 2), R424–R430.
  • Gugusheff, J. R., Ong, Z. Y., & Muhlhausler, B. S. (2015). The early origins of food preferences: targeting the critical windows of development. FASEB Journal: official Publication of the Federation of American Societies for Experimental Biology, 29(2), 365–373. https://doi.org/10.1096/fj.14-255976
  • Haycock, G. B. (1993). The influence of sodium on growth in infancy. Pediatric Nephrology (Berlin, Germany), 7(6), 871–875. https://doi.org/10.1007/BF01213376
  • Hvelplund, C., Hansen, B. M., Koch, S. V., Andersson, M., & Skovgaard, A. M. (2016). Perinatal Risk Factors for Feeding and Eating Disorders in Children Aged 0 to 3 Years. Pediatrics, 137(2), e20152575. https://doi.org/10.1542/peds.2015-2575
  • Jelks, A., Belkacemi, L., Han, G., Chong, W. L., Ross, M. G., & Desai, M. (2009). Paradoxical increase in maternal plasma leptin levels in food-restricted gestation: contribution by placental and adipose tissue. Reproductive Sciences (Thousand Oaks, Calif.), 16(7), 665–675. https://doi.org/10.1177/1933719109334257
  • Johnson, S., Matthews, R., Draper, E. S., Field, D. J., Manktelow, B. N., Marlow, N., Smith, L. K., & Boyle, E. M. (2016). Eating difficulties in children born late and moderately preterm at 2 y of age: a prospective population-based cohort study. The American Journal of Clinical Nutrition, 103(2), 406–414. https://doi.org/10.3945/ajcn.115.121061
  • Kampmann, F. B., Grunnet, L. G., Halldorsson, T. I., Bjerregaard, A. A., Granstrøm, C., Pires, S. M., Strøm, M., Vaag, A. A., Tetens, I., & Olsen, S. F. (2019). Being born small-for-gestational-age is associated with an unfavourable dietary intake in Danish adolescent girls: findings from the Danish National Birth Cohort. Journal of Developmental Origins of Health and Disease, 10(4), 488–496. https://doi.org/10.1017/S2040174418000910
  • Kaseva, N., Wehkalampi, K., Hemiö, K., Hovi, P., Järvenpää, A.-L., Andersson, S., Eriksson, J. G., Lindström, J., & Kajantie, E. (2013). Diet and nutrient intake in young adults born preterm at very low birth weight. The Journal of Pediatrics, 163(1), 43–48. https://doi.org/10.1016/j.jpeds.2012.12.076
  • Khorram, O., Keen-Rinehart, E., Chuang, T., Der, Ross, M. G., & Desai, M. (2015). Maternal undernutrition induces premature reproductive senescence in adult female rat offspring. Fertility and Sterility, 103(1), 291–298.e2. https://doi.org/10.1016/j.fertnstert.2014.09.026
  • Khorram, O., Khorram, N., Momeni, M., Han, G., Halem, J., Desai, M., & Ross, M. G. (2007). Maternal undernutrition inhibits angiogenesis in the offspring: a potential mechanism of programmed hypertension. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 293(2), R745–R753. https://doi.org/10.1152/ajpregu.00131.2007
  • Kramer, M. S. (2000). Invited commentary: association between restricted fetal growth and adult chronic disease: is it causal? is it important? American Journal of Epidemiology, 152(7), 605–608. https://doi.org/10.1093/aje/152.7.605
  • Kramer, M. S., Platt, R. W., Wen, S. W., Joseph, K. S., Allen, A., Abrahamowicz, M., Blondel, B., & Bréart, G, Fetal/Infant Health Study Group of the Canadian Perinatal Surveillance System. (2001). A new and improved population-based Canadian reference for birth weight for gestational age. Pediatrics, 108(2), E35. https://doi.org/10.1542/peds.108.2.e35
  • Kramer, M. S., Platt, R., Yang, H., McNamara, H., & Usher, R. H. (1999). Are all growth-restricted newborns created equal(ly)? Pediatrics, 103(3), 599–602. https://doi.org/10.1542/peds.103.3.599
  • Krause, E. G., & Sakai, R. R. (2007). Richter and sodium appetite: from adrenalectomy to molecular biology. Appetite, 49(2), 353–367. https://doi.org/10.1016/j.appet.2007.01.015
  • Lakshmy, R. (2013). Metabolic syndrome: role of maternal undernutrition and fetal programming. Reviews in Endocrine & Metabolic Disorders, 14(3), 229–240. https://doi.org/10.1007/s11154-013-9266-4
  • Laureano, D. P., Alves, M. B., Miguel, P. M., Machado, T. D., Reis, A. R., Mucellini, A. B., Cunha, F. S., Lampert, C., Salvador, A. P. A., Dalle Molle, R., Mosca, P. R., Pokhvisneva, I., Desai, M., Ross, M. G., & Silveira, P. P. (2019). Intrauterine growth restriction modifies the accumbal dopaminergic response to palatable food intake. Neuroscience, 400, 184–195. https://doi.org/10.1016/j.neuroscience.2018.12.036
  • Laureano, D. P., Dalle Molle, R., Alves, M. B., Luft, C., Desai, M., Ross, M. G., & Silveira, P. P. (2016). Intrauterine growth restriction modifies the hedonic response to sweet taste in newborn pups - Role of the accumbal mu-opioid receptors. Neuroscience, 322, 500–508. https://doi.org/10.1016/j.neuroscience.2016.02.033
  • Laureano, D. P., Dalle Molle, R., Portella, A. K., & Silveira, P. P. (2016). Facial expressions in small for gestational age newborns. Journal of Child Neurology, 31(3), 398–399. https://doi.org/10.1177/0883073815592225
  • Lawn, J. E., Ohuma, E. O., Bradley, E., Idueta, L. S., Hazel, E., Okwaraji, Y. B., Erchick, D. J., Yargawa, J., Katz, J., Lee, A. C. C., Diaz, M., Salasibew, M., Requejo, J., Hayashi, C., Moller, A.-B., Borghi, E., Black, R. E., & Blencowe, H, Subnational Vulnerable Newborn Measurement Group. (2023). Small babies, big risks: global estimates of prevalence and mortality for vulnerable newborns to accelerate change and improve counting. Lancet (London, England), 401(10389), 1707–1719. https://doi.org/10.1016/S0140-6736(23)00522-6
  • Leshem, M. (1999). The ontogeny of salt hunger in the rat. Neuroscience and Biobehavioral Reviews, 23(5), 649–659. https://doi.org/10.1016/s0149-7634(98)00059-1
  • Levitan, R. D., Rivera, J., Silveira, P. P., Steiner, M., Gaudreau, H., Hamilton, J., Kennedy, J. L., Davis, C., Dube, L., Fellows, L., Wazana, A., Matthews, S., & Meaney, M. J, MAVAN Study Team. (2015). Gender differences in the association between stop-signal reaction times, body mass indices and/or spontaneous food intake in pre-school children: an early model of compromised inhibitory control and obesity. International Journal of Obesity (2005), 39(4), 614–619. https://doi.org/10.1038/ijo.2014.207
  • Liem, D. (2017). Infants’ and Children’s Salt Taste Perception and Liking: A Review. Nutrients, 9(9), 1011. https://doi.org/10.3390/nu9091011
  • Lucas, L. R., Grillo, C. A., & McEwen, B. S. (2003). Involvement of mesolimbic structures in short-term sodium depletion: in situ hybridization and ligand-binding analyses. Neuroendocrinology, 77(6), 406–415. https://doi.org/10.1159/000071312
  • Lucas, L. R., Grillo, C. A., & McEwen, B. S. (2007). Salt appetite in sodium-depleted or sodium-replete conditions: possible role of opioid receptors. Neuroendocrinology, 85(3), 139–147. https://doi.org/10.1159/000102536
  • Lussana, F., Painter, R. C., Ocke, M. C., Buller, H. R., Bossuyt, P. M., & Roseboom, T. J. (2008). Prenatal exposure to the Dutch famine is associated with a preference for fatty foods and a more atherogenic lipid profile. The American Journal of Clinical Nutrition, 88(6), 1648–1652. https://doi.org/10.3945/ajcn.2008.26140
  • McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A. R., Teumer, A., Kang, H. M., Fuchsberger, C., Danecek, P., Sharp, K., Luo, Y., Sidore, C., Kwong, A., Timpson, N., Koskinen, S., Vrieze, S., Scott, L. J., Zhang, H., Mahajan, A., … Durbin, R, Haplotype Reference Consortium. (2016). A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 48(10), 1279–1283.
  • Mennella, J. A., Finkbeiner, S., Lipchock, S. V., Hwang, L.-D., & Reed, D. R. (2014). Preferences for salty and sweet tastes are elevated and related to each other during childhood. PloS One, 9(3), e92201. https://doi.org/10.1371/journal.pone.0092201
  • Migraine, A., Nicklaus, S., Parnet, P., Lange, C., Monnery-Patris, S., Des Robert, C., Darmaun, D., Flamant, C., Amarger, V., & Rozé, J.-C. (2013). Effect of preterm birth and birth weight on eating behavior at 2 y of age. The American Journal of Clinical Nutrition, 97(6), 1270–1277. https://doi.org/10.3945/ajcn.112.051151
  • Na, E. S., Morris, M. J., & Johnson, A. K. (2012). Opioid mechanisms that mediate the palatability of and appetite for salt in sodium replete and deficient states. Physiology & Behavior, 106(2), 164–170. May https://doi.org/10.1016/j.physbeh.2012.01.019
  • O’Donnell, K. A., Gaudreau, H., Colalillo, S., Steiner, M., Atkinson, L., Moss, E., Goldberg, S., Karama, S., Matthews, S. G., Lydon, J. E., Silveira, P. P., Wazana, A. D., Levitan, R. D., Sokolowski, M. B., Kennedy, J. L., Fleming, A., & Meaney, M. J, MAVAN Research Team. (2014). The maternal adversity, vulnerability and neurodevelopment project: theory and methodology. Canadian Journal of Psychiatry. Revue Canadienne de Psychiatrie, 59(9), 497–508. https://doi.org/10.1177/070674371405900906
  • Patterson, N., Price, A. L., & Reich, D. (2006). Population Structure and Eigenanalysis. PLoS Genetics, 2(12), e190. https://doi.org/10.1371/journal.pgen.0020190
  • Perälä, M.-M., Männistö, S., Kaartinen, N. E., Kajantie, E., Osmond, C., Barker, D. J. P., Valsta, L. M., & Eriksson, J. G. (2012). Body size at birth is associated with food and nutrient intake in adulthood. PloS One, 7(9), e46139. https://doi.org/10.1371/journal.pone.0046139
  • Pilgaard, K., Hammershaimb Mosbech, T., Grunnet, L., Eiberg, H., Van Hall, G., Fallentin, E., Larsen, T., Larsen, R., Poulsen, P., & Vaag, A. (2011). Differential nongenetic impact of birth weight versus third-trimester growth velocity on glucose metabolism and magnetic resonance imaging abdominal obesity in young healthy twins. The Journal of Clinical Endocrinology and Metabolism, 96(9), 2835–2843. https://doi.org/10.1210/jc.2011-0577
  • Portella, A. K., Paquet, C., Bischoff, A. R., Molle, R. D., Faber, A., Moore, S., Arora, N., Levitan, R., Silveira, P. P., & Dube, L. (2019). Multi-behavioral obesogenic phenotypes among school-aged boys and girls along the birth weight continuum. PloS One, 14(2), e0212290. https://doi.org/10.1371/journal.pone.0212290
  • Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38(8), 904–909. https://doi.org/10.1038/ng1847
  • R Core Team. (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/
  • Reis, R. S., Dalle Molle, R., Machado, T. D., Mucellini, A. B., Rodrigues, D. M., Bortoluzzi, A., Bigonha, S. M., Toazza, R., Salum, G. A., Minuzzi, L., Buchweitz, A., Franco, A. R., Pelúzio, M. C. G., Manfro, G. G., & Silveira, P. P. (2016). Impulsivity-based thrifty eating phenotype and the protective role of n-3 PUFAs intake in adolescents. Translational Psychiatry, 6(3), e755. https://doi.org/10.1038/tp.2016.16
  • Rubio-Navarro, L., Torrero, C., Regalado, M., & Salas, M. (2014). Analysis of the Sensory and Hedonic Impacts of Sweet and Bitter Tastes in Perinatally Underfed Rats. Journal of Behavioral and Brain Science, 04(09), 423–431. https://doi.org/10.4236/jbbs.2014.49041
  • Schwartz, C., Issanchou, S., & Nicklaus, S. (2009). Developmental changes in the acceptance of the five basic tastes in the first year of life. The British Journal of Nutrition, 102(9), 1375–1385. https://doi.org/10.1017/S0007114509990286
  • Serirukchutarungsee, S., Watari, I., Narukawa, M., Podyma-Inoue, K. A., Sangsuriyothai, P., & Ono, T. (2023). Two-generation exposure to a high-fat diet induces the change of salty taste preference in rats. Scientific Reports, 13(1), 5742. https://doi.org/10.1038/s41598-023-31662-0
  • Sharafi, M., Duffy, V. B., Miller, R. J., Winchester, S. B., Huedo-Medina, T. B., & Sullivan, M. C. (2016). Dietary behaviors of adults born prematurely may explain future risk for cardiovascular disease. Appetite, 99, 157–167. https://doi.org/10.1016/j.appet.2016.01.007
  • Shirazki, A., Weintraub, Z., Reich, D., Gershon, E., & Leshem, M. (2007). Lowest neonatal serum sodium predicts sodium intake in low birth weight children. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 292(4), R1683–9. https://doi.org/10.1152/ajpregu.00453.2006
  • Silveira, P. P., & Meaney, M. J. (2023). Examining the biological mechanisms of human mental disorders resulting from gene-environment interdependence using novel functional genomic approaches. Neurobiology of Disease, 178, 106008. https://doi.org/10.1016/j.nbd.2023.106008
  • Silveira, P. P., Agranonik, M., Faras, H., Portella, A. K., Meaney, M. J., & Levitan, R. D, Maternal Adversity, Vulnerability and Neurodevelopment Study Team. (2012). Preliminary evidence for an impulsivity-based thrifty eating phenotype. Pediatric Research, 71(3), 293–298. https://doi.org/10.1038/pr.2011.39
  • Silveira, P. P., Pokhvisneva, I., Gaudreau, H., Atkinson, L., Fleming, A. S., Sokolowski, M. B., Steiner, M., Kennedy, J. L., Dubé, L., Levitan, R. D., & Meaney, M. J, MAVAN research team. (2018). Fetal growth interacts with multilocus genetic score reflecting dopamine signaling capacity to predict spontaneous sugar intake in children. Appetite, 120, 596–601. https://doi.org/10.1016/j.appet.2017.10.021
  • Silveira, P. P., Pokhvisneva, I., Parent, C., Cai, S., Rema, A. S. S., Broekman, B. F. P., Rifkin-Graboi, A., Pluess, M., O’Donnell, K. J., & Meaney, M. J. (2017). Cumulative prenatal exposure to adversity reveals associations with a broad range of neurodevelopmental outcomes that are moderated by a novel, biologically informed polygenetic score based on the serotonin transporter solute carrier family C6, member 4. Development and Psychopathology, 29(5), 1601–1617. https://doi.org/10.1017/S0954579417001262
  • Silveira, P. P., Portella, A. K., Kennedy, J. L., Gaudreau, H., Davis, C., Steiner, M., Soares, C. N., Matthews, S. G., Sokolowski, M. B., Dubé, L., Loucks, E. B., Hamilton, J., Meaney, M. J., & Levitan, R. D, MAVAN Study Team. (2014). Association between the seven-repeat allele of the dopamine-4 receptor gene (DRD4) and spontaneous food intake in pre-school children. Appetite, 73, 15–22. https://doi.org/10.1016/j.appet.2013.10.004
  • Sorge, R. E., Fudge, M. A., & Parker, L. A. (2002). Effect of sodium deprivation on morphine-and lithium-induced conditioned salt avoidance and taste reactivity. Psychopharmacology, 160(1), 84–91. https://doi.org/10.1007/s00213-001-0956-3
  • Stein, L. J., Cowart, B. J., & Beauchamp, G. K. (2006). Salty taste acceptance by infants and young children is related to birth weight: longitudinal analysis of infants within the normal birth weight range. European Journal of Clinical Nutrition, 60(2), 272–279. https://doi.org/10.1038/sj.ejcn.1602312
  • Tandon, S., Simon, S. A., & Nicolelis, M. A. (2012). Appetitive changes during salt deprivation are paralleled by widespread neuronal adaptations in nucleus accumbens, lateral hypothalamus, and central amygdala. Journal of Neurophysiology, 108(4), 1089–1105. https://doi.org/10.1152/jn.00236.2012
  • Wassner, S. J. (1989). Altered Growth and Protein Turnover in Rats Fed Sodium-Deficient Diets. Pediatric Research, 26(6), 608–613. Dec https://doi.org/10.1203/00006450-198912000-00019
  • Wassner, S. J. (1991). The effect of sodium repletion on growth and protein turnover in sodium-depleted rats. Pediatric Nephrology (Berlin, Germany), 5(4), 501–504. Jul https://doi.org/10.1007/BF01453690
  • Weber, S. C., Beck-Schimmer, B., Kajdi, M.-E., Müller, D., Tobler, P. N., & Quednow, B. B. (2016). Dopamine D2/3- and μ-opioid receptor antagonists reduce cue-induced responding and reward impulsivity in humans. Translational Psychiatry, 6(7), e850. https://doi.org/10.1038/tp.2016.113
  • Wu, Q., Burley, G., Li, L., Lin, S., & Shi, Y. (2023). The role of dietary salt in metabolism and energy balance: Insights beyond cardiovascular disease. Diabetes, Obesity & Metabolism, 25(5), 1147–1161. https://doi.org/10.1111/dom.14980
  • Wyvell, C. L., & Berridge, K. C. (2000). Intra-Accumbens Amphetamine Increases the Conditioned Incentive Salience of Sucrose Reward: Enhancement of Reward “Wanting” without Enhanced “Liking” or Response Reinforcement. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(21), 8122–8130. https://doi.org/10.1523/JNEUROSCI.20-21-08122.2000
  • Yee, J. K., Lee, W. N. P., Han, G., Ross, M. G., & Desai, M. (2011). Organ-specific alterations in fatty acid de novo synthesis and desaturation in a rat model of programmed obesity. Lipids in Health and Disease, 10, 72. https://doi.org/10.1186/1476-511X-10-72