Publication Cover
Stress
The International Journal on the Biology of Stress
Volume 27, 2024 - Issue 1
765
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Behavior, synaptic mitochondria, and microglia are differentially impacted by chronic adolescent stress and repeated endotoxin exposure in male and female rats

, , , , , , & show all
Article: 2299971 | Received 05 Sep 2023, Accepted 16 Dec 2023, Published online: 05 Jan 2024

References

  • Antonucci, F., Corradini, I., Fossati, G., Tomasoni, R., Menna, E., & Matteoli, M. (2016). SNAP-25, a Known presynaptic protein with emerging postsynaptic functions. Frontiers in Synaptic Neuroscience, 8(MAR), 1. https://doi.org/10.3389/fnsyn.2016.00007
  • Basilico, B., Pagani, F., Grimaldi, A., Cortese, B., Di Angelantonio, S., Weinhard, L., Gross, C., Limatola, C., Maggi, L., & Ragozzino, D. (2019). Microglia shape presynaptic properties at developing glutamatergic synapses. Glia, 67(1), 53–18. https://doi.org/10.1002/glia.23508
  • Bekhbat, M., Howell, P. A., Rowson, S. A., Kelly, S. D., Tansey, M. G., & Neigh, G. N. (2019). Chronic adolescent stress sex-specifically alters central and peripheral neuro-immune reactivity in rats. Brain, Behavior, and Immunity, 76, 248–257. https://doi.org/10.1016/j.bbi.2018.12.005
  • Bekhbat, M., Merrill, L., Kelly, S. D., Lee, V. K., & Neigh, G. N. (2016). Brief anesthesia by isoflurane alters plasma corticosterone levels distinctly in male and female rats: Implications for tissue collection methods. Behavioural Brain Research, 305(404), 122–125. https://doi.org/10.1016/j.bbr.2016.03.003
  • Bekhbat, M., Mukhara, D., Dozmorov, M., Stansfield, J., Benusa, S., Hyer, M. M., Rowson, S. A., Kelly, S., Qin, Z., Dupree, J., Tharp, G., Tansey, M. G., & Neigh, G. N. (2020). Adolescent stress sensitizes the adult neuroimmune transcriptome and leads to sex-specific microglial and behavioral phenotypes. Neuropsychopharmacology, 46(5), 949–958. https://doi.org/10.1038/s41386-021-00970-2
  • Biswas, S. K., & Lopez-Collazo, E. (2009). Endotoxin tolerance: New mechanisms, molecules and clinical significance. Trends in Immunology, 30(10), 475–487. https://doi.org/10.1016/j.it.2009.07.009
  • Bollinger, J. L., Collins, K. E., Patel, R., & Wellman, C. L. (2017). Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner. PloS One, 12(12), e0187631. https://doi.org/10.1371/journal.pone.0187631
  • Bourgognon, J.-M., & Cavanagh, J. (2020). The role of cytokines in modulating learning and memory and brain plasticity. Brain and Neuroscience Advances, 4, 2398212820979802. https://doi.org/10.1177/2398212820979802
  • Bourke, C. H., & Neigh, G. N. (2011). Behavioral effects of chronic adolescent stress are sustained and sexually dimorphic. Hormones and Behavior, 60(1), 112–120. https://doi.org/10.1016/j.yhbeh.2011.03.011
  • Brown, G. C. (2019). The endotoxin hypothesis of neurodegeneration. Journal of Neuroinflammation, 16(1), 180. https://doi.org/10.1186/s12974-019-1564-7
  • Brzdak, P., Wójcicka, O., Zareba-Koziol, M., Minge, D., Henneberger, C., Wlodarczyk, J., Mozrzymas, J. W., & Wójtowicz, T. (2019). Synaptic potentiation at basal and apical dendrites of hippocampal pyramidal neurons involves activation of a distinct set of extracellular and intracellular molecular cues. Cerebral Cortex (New York, N.Y.: 1991), 29(1), 283–304. https://doi.org/10.1093/cercor/bhx324
  • Chaby, L. E., Sheriff, M. J., Hirrlinger, A. M., Lim, J., Fetherston, T. B., & Braithwaite, V. A. (2015). Does chronic unpredictable stress during adolescence affect spatial cognition in adulthood? PloS One, 10(11), e0141908. https://doi.org/10.1371/journal.pone.0141908
  • Chaloner, A., & Greenwood-Van Meerveld, B. (2013). Early life adversity as a risk factor for visceral pain in later life: Importance of sex differences. Frontiers in Neuroscience, 7(7 FEB), 13. https://doi.org/10.3389/fnins.2013.00013
  • Cohen, S., Janicki-Deverts, D., Doyle, W. J., Miller, G. E., Frank, E., Rabin, B. S., & Turner, R. B. (2012). Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proceedings of the National Academy of Sciences of the United States of America, 109(16), 5995–5999. https://doi.org/10.1073/pnas.1118355109
  • Cora, M. C., Kooistra, L., & Travlos, G. (2015). Vaginal cytology of the laboratory rat and mouse: Review and criteria for the staging of the estrous cycle using stained vaginal smears. Toxicologic Pathology, 43(6), 776–793. https://doi.org/10.1177/0192623315570339
  • Dunkley, P. R., Jarvie, P. E., & Robinson, P. J. (2008). A rapid percoll gradient procedure for preparation of synaptosomes. Nature Protocols, 3(11), 1718–1728. https://doi.org/10.1038/nprot.2008.171
  • Eagleson, K. L., Villaneuva, M., Southern, R. M., & Levitt, P. (2020). Proteomic and mitochondrial adaptations to early-life stress are distinct in juveniles and adults. Neurobiology of Stress, 13, 100251. https://doi.org/10.1016/j.ynstr.2020.100251
  • Engeland, C. G., Kavaliers, M., & Ossenkopp, K.-P. (2006). Influence of the estrous cycle on tolerance development to LPS-induced sickness behaviors in rats. Psychoneuroendocrinology, 31(4), 510–525. https://doi.org/10.1016/j.psyneuen.2005.11.007
  • Fanselow, M. S., & Dong, H.-W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65(1), 7–19. https://doi.org/10.1016/j.neuron.2009.11.031
  • File, S. E., & Hyde, J. R. G. (1978). Can social interaction be used to measure anxiety? British Journal of Pharmacology, 62(1), 19–24. https://doi.org/10.1111/j.1476-5381.1978.tb07001.x
  • Fraker, D. L., Stovroff, M. C., Merino, M. J., & Norton, J. A. (1988). Tolerance to tumor necrosis factor in rats and the relationship to endotoxin tolerance and toxicity. The Journal of Experimental Medicine, 168(1), 95–105. https://doi.org/10.1084/jem.168.1.95
  • Frank, M. G., Baratta, M. V., Sprunger, D. B., Watkins, L. R., & Maier, S. F. (2007). Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain, Behavior, and Immunity, 21(1), 47–59. https://doi.org/10.1016/j.bbi.2006.03.005
  • Frank-Cannon, T. C., Tran, T., Ruhn, K. A., Martinez, T. N., Hong, J., Marvin, M., Hartley, M., Treviño, I., O’Brien, D. E., Casey, B., Goldberg, M. S., & Tansey, M. G. (2008). Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(43), 10825–10834. https://doi.org/10.1523/JNEUROSCI.3001-08.2008
  • Fronza, M. G., Baldinotti, R., Fetter, J., Rosa, S. G., Sacramento, M., Nogueira, C. W., Alves, D., Praticò, D., & Savegnago, L. (2022). Beneficial effects of QTC-4-MeOBnE in an LPS-induced mouse model of depression and cognitive impairments: The role of blood-brain barrier permeability, NF-κB signaling, and microglial activation. Brain, Behavior, and Immunity, 99, 177–191. https://doi.org/10.1016/j.bbi.2021.10.002
  • Gaignard, P., Liere, P., Thérond, P., Schumacher, M., Slama, A., & Guennoun, R. (2017). Role of sex hormones on brain mitochondrial function, with special reference to aging and neurodegenerative diseases. Frontiers in Aging Neuroscience, 9(DEC), 406. https://doi.org/10.3389/fnagi.2017.00406
  • Galea, L. A. M., McEwen, B. S., Tanapat, P., Deak, T., Spencer, R. L., & Dhabhar, F. S. (1997). Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neuroscience, 81(3), 689–697. https://doi.org/10.1016/S0306-4522(97)00233-9
  • Gawel, K., Gibula, E., Marszalek-Grabska, M., Filarowska, J., & Kotlinska, J. H. (2019). Assessment of spatial learning and memory in the Barnes maze task in rodents—methodological consideration. Naunyn-Schmiedeberg’s Archives of Pharmacology, 392(1), 1–18. https://doi.org/10.1007/s00210-018-1589-y
  • Gu, Y., Ye, T., Tan, P., Tong, L., Ji, J., Gu, Y., Shen, Z., Shen, X., Lu, X., & Huang, C. (2021). Tolerance-inducing effect and properties of innate immune stimulation on chronic stress-induced behavioral abnormalities in mice. Brain, Behavior, and Immunity, 91, 451–471. https://doi.org/10.1016/j.bbi.2020.11.002
  • Guo, L., Tian, J., & Du, H. (2017). Mitochondrial dysfunction and synaptic transmission failure in Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD, 57(4), 1071–1086. https://doi.org/10.3233/JAD-160702
  • Han, S., He, Z., Jacob, C., Hu, X., Liang, X., Xiao, W., Wan, L., Xiao, P., D’Ascenzo, N., Ni, J., Liu, Q., & Xie, Q. (2021). Effect of increased il-1β on expression of hk in Alzheimer’s disease. International Journal of Molecular Sciences, 22(3), 1–17. https://doi.org/10.3390/ijms22031306
  • Haroon, E., Miller, A. H., & Sanacora, G. (2017). Inflammation, glutamate, and glia: A trio of trouble in mood disorders. Neuropsychopharmacology: official Publication of the American College of Neuropsychopharmacology, 42(1), 193–215. https://doi.org/10.1038/npp.2016.199
  • Hauss-Wegrzyniak, B., Vraniak, P. D., & Wenk, G. L. (2000). LPS-induced neuroinflammatory effects do not recover with time. Neuroreport, 11(8), 1759–1763. https://doi.org/10.1097/00001756-200006050-00032
  • Heim, C., Newport, D. J., Mletzko, T., Miller, A. H., & Nemeroff, C. B. (2008). The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology, 33(6), 693–710. https://doi.org/10.1016/j.psyneuen.2008.03.008
  • Hellwig, S., Brioschi, S., Dieni, S., Frings, L., Masuch, A., Blank, T., & Biber, K. (2016). Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice. Brain, Behavior, and Immunity, 55, 126–137. https://doi.org/10.1016/j.bbi.2015.11.008
  • Harland, M., Torres, S., Liu, J., & Wang, X. (2020). Neuronal mitochondria modulation of LPS-induced neuroinflammation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 40(8), 1756–1765. https://doi.org/10.1523/JNEUROSCI.2324-19.2020
  • Hinwood, M., Morandini, J., Day, T. A., & Walker, F. R. (2012). Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cerebral Cortex (New York, N.Y.: 1991), 22(6), 1442–1454. https://doi.org/10.1093/cercor/bhr229
  • Hodes, G. E., Kana, V., Menard, C., Merad, M., & Russo, S. J. (2015). Neuroimmune mechanisms of depression. Nature Neuroscience, 18(10), 1386–1393. https://doi.org/10.1038/nn.4113
  • Horowitz, M. A., & Zunszain, P. A. (2015). Neuroimmune and neuroendocrine abnormalities in depression: Two sides of the same coin. Annals of the New York Academy of Sciences, 1351(1), 68–79. https://doi.org/10.1111/nyas.12781
  • Hyer, M. M., Wegener, A. J., Targett, I., Dyer, S. K., & Neigh, G. N. (2023). Chronic stress beginning in adolescence decreases spatial memory following an acute inflammatory challenge in adulthood. Behavioural Brain Research, 442, 114323. https://doi.org/10.1016/j.bbr.2023.114323
  • Hyer, M. M., Shaw, G. A., Goswamee, P., Dyer, S. K., Burns, C. M., Soriano, E., Sanchez, C. S., Rowson, S. A., McQuiston, A. R., & Neigh, G. N. (2021). Chronic adolescent stress causes sustained impairment of cognitive flexibility and hippocampal synaptic strength in female rats. Neurobiology of Stress, 14, 100303. https://doi.org/10.1016/j.ynstr.2021.100303
  • Ivens, S., Çalışkan, G., Papageorgiou, I., Cesetti, T., Malich, A., Kann, O., Heinemann, U., Stork, O., & Albrecht, A. (2019). Persistent increase in ventral hippocampal long-term potentiation by juvenile stress: A role for astrocytic glutamine synthetase. Glia, 67(12), 2279–2293. https://doi.org/10.1002/glia.23683
  • Kanczkowski, W., Chatzigeorgiou, A., Samus, M., Tran, N., Zacharowski, K., Chavakis, T., & Bornstein, S. R. (2013). Characterization of the LPS-induced inflammation of the adrenal gland in mice. Molecular and Cellular Endocrinology, 371(1-2), 228–235. https://doi.org/10.1016/j.mce.2012.12.020
  • Keirns, B. H., Keirns, N. G., Tsotsoros, C. E., Layman, H. M., Stout, M. E., Medlin, A. R., Sciarrillo, C. M., Teague, T. K., Emerson, S. R., & Hawkins, M. A. W. (2023). Adverse childhood experiences and obesity linked to indicators of gut permeability and inflammation in adult women. Physiology & Behavior, 271, 114319. https://doi.org/10.1016/j.physbeh.2023.114319
  • Kessler, R. C., McGonagle, K. A., Zhao, S., Nelson, C. B., Hughes, M., Eshleman, S., Wittchen, H. U., & Kendler, K. S. (1994). Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Archives of General Psychiatry, 51(1), 8–19. https://doi.org/10.1001/archpsyc.1994.03950010008002
  • Kim, J. D., Yoon, N. A., Jin, S., & Diano, S. (2019). Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding. Cell Metabolism, 30(5), 952–962.e5. https://doi.org/10.1016/j.cmet.2019.08.010
  • Kitazawa, M., Oddo, S., Yamasaki, T. R., Green, K. N., & LaFerla, F. M. (2005). Lipopolysaccharide-induced inflammation exacerbates Tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25(39), 8843–8853. https://doi.org/10.1523/JNEUROSCI.2868-05.2005
  • Kloster, A., Hyer, M. M., Dyer, S., Salome-Sanchez, C., & Neigh, G. N. (2020). High fructose diet induces sex-specific modifications in synaptic respiration and affective-like behaviors in rats. Neuroscience, 454, 40–50. https://doi.org/10.1016/j.neuroscience.2019.11.039
  • Kraeuter, A.-K., Guest, P. C., & Sarnyai, Z. (2019). The Y-maze for assessment of spatial working and reference memory in mice. In Methods in molecular biology (Clifton, N.J.) (pp. 105–111). https://doi.org/10.1007/978-1-4939-8994-2_10
  • Laffer, B., Bauer, D., Wasmuth, S., Busch, M., Jalilvand, T. V., Thanos, S., Meyer zu Hörste, G., Loser, K., Langmann, T., Heiligenhaus, A., & Kasper, M. (2019). Loss of IL-10 promotes differentiation of microglia to a M1 phenotype. Frontiers in Cellular Neuroscience, 13(October), 430. https://doi.org/10.3389/fncel.2019.00430
  • Laroche, J., Gasbarro, L., Herman, J. P., & Blaustein, J. D. (2009). Reduced behavioral response to gonadal hormones in mice shipped during the peripubertal/adolescent period. Endocrinology, 150(5), 2351–2358. https://doi.org/10.1210/en.2008-1595
  • Laukova, M., Vargovic, P., Rokytova, I., Manz, G., & Kvetnansky, R. (2018). Repeated stress exaggerates lipopolysaccharide-induced inflammatory response in the rat spleen. Cellular and Molecular Neurobiology, 38(1), 195–208. https://doi.org/10.1007/s10571-017-0546-5
  • La-Vu, M., Tobias, B. C., Schuette, P. J., & Adhikari, A. (2020). To approach or avoid: An introductory overview of the study of anxiety using rodent assays. Frontiers in Behavioral Neuroscience, 14, 145. https://doi.org/10.3389/fnbeh.2020.00145
  • Liddelow, S. A., & Barres, B. A. (2017). Reactive astrocytes: Production, function, and therapeutic potential. Immunity, 46(6), 957–967. https://doi.org/10.1016/j.immuni.2017.06.006
  • Liu, Y.-Z., Wang, Y.-X., & Jiang, C.-L. (2017). Inflammation: The common pathway of stress-related diseases. Frontiers in Human Neuroscience, 11, 316. https://doi.org/10.3389/fnhum.2017.00316
  • Liu, T., Lu, J., Lukasiewicz, K., Pan, B., & Zuo, Y. (2021). Stress induces microglia-associated synaptic circuit alterations in the dorsomedial prefrontal cortex. Neurobiology of Stress, 15(May), 100342. https://doi.org/10.1016/j.ynstr.2021.100342
  • Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2(1), 17023–17023. https://doi.org/10.1038/sigtrans.2017.23
  • Mamunur, R., Hashioka, S., Azis, I. A., Jaya, M. A., Jerin, S. J. F., Kimura-Kataoka, K., Fujihara, J., Inoue, K., Inagaki, M., & Takeshita, H. (2023). Systemic administration of porphyromonas gingivalis lipopolysaccharide induces glial activation and depressive-like behavior in rats. Journal of Integrative Neuroscience, 22(5), 120. https://doi.org/10.31083/j.jin2205120
  • Miller, G. E., Cohen, S., & Ritchey, A. K. (2002). Chronic psychological stress and the regulation of pro-inflammatory cytokines: A glucocorticoid-resistance model. Health Psychology: official Journal of the Division of Health Psychology, American Psychological Association, 21(6), 531–541. https://doi.org/10.1037/0278-6133.21.6.531
  • Nasca, C., Bigio, B., Zelli, D., de Angelis, P., Lau, T., Okamoto, M., Soya, H., Ni, J., Brichta, L., Greengard, P., Neve, R. L., Lee, F. S., & McEwen, B. S. (2017). Role of the astroglial glutamate exchanger xCT in ventral hippocampus in resilience to stress. Neuron, 96(2), 402–413.e5. https://doi.org/10.1016/j.neuron.2017.09.020
  • Noailles, A., Maneu, V., Campello, L., Lax, P., & Cuenca, N. (2018). Systemic inflammation induced by lipopolysaccharide aggravates inherited retinal dystrophy. Cell Death & Disease, 9(3), 350. https://doi.org/10.1038/s41419-018-0355-x
  • Ogawa, T., Kuwagata, M., Hori, Y., & Shioda, S. (2007). Valproate-induced developmental neurotoxicity is affected by maternal conditions including shipping stress and environmental change during early pregnancy. Toxicology Letters, 174(1–3), 18–24. https://doi.org/10.1016/j.toxlet.2007.08.006
  • Olesen, M. A., Torres, A. K., Jara, C., Murphy, M. P., & Tapia-Rojas, C. (2020). Premature synaptic mitochondrial dysfunction in the hippocampus during aging contributes to memory loss. Redox Biology, 34(May), 101558. https://doi.org/10.1016/j.redox.2020.101558
  • Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates. Elsevier. https://books.google.com/books?id=Tp5QlAEACAAJ
  • Picard, M., McManus, M. J., Gray, J. D., Nasca, C., Moffat, C., Kopinski, P. K., Seifert, E. L., McEwen, B. S., & Wallace, D. C. (2015). Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proceedings of the National Academy of Sciences of the United States of America, 112(48), E6614–E6623. https://doi.org/10.1073/pnas.1515733112
  • Piccinelli, M., & Wilkinson, G. (2000). Gender differences in depression. The British Journal of Psychiatry: The Journal of Mental Science, 177(6), 486–492. https://doi.org/10.1192/bjp.177.6.486
  • Pyter, L. M., Kelly, S. D., Harrell, C. S., & Neigh, G. N. (2013). Sex differences in the effects of adolescent stress on adult brain inflammatory markers in rats. Brain, Behavior, and Immunity, 30, 88–94. https://doi.org/10.1016/j.bbi.2013.01.075
  • Raetz, C. R. H., & Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annual Review of Biochemistry, 71(1), 635–700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
  • Robey, R. B., & Hay, N. (2006). Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene, 25(34), 4683–4696. https://doi.org/10.1038/sj.onc.1209595
  • Rohleder, N., Schommer, N. C., Hellhammer, D. H., Engel, R., & Kirschbaum, C. (2001). Sex differences in glucocorticoid sensitivity of proinflammatory cytokine production after psychosocial stress. Psychosomatic Medicine, 63(6), 966–972. https://doi.org/10.1097/00006842-200111000-00016
  • Rowson, S. A., Bekhbat, M., Kelly, S. D., Binder, E. B., Hyer, M. M., Shaw, G., Bent, M. A., Hodes, G., Tharp, G., Weinshenker, D., Qin, Z., & Neigh, G. N. (2019). Chronic adolescent stress sex-specifically alters the hippocampal transcriptome in adulthood. Neuropsychopharmacology: official Publication of the American College of Neuropsychopharmacology, 44(7), 1207–1215. https://doi.org/10.1038/s41386-019-0321-z
  • Rudzki, L., & Szulc, A. (2018). “Immune Gate” of psychopathology—the role of gut derived immune activation in major psychiatric disorders. Frontiers in Psychiatry, 9, 205. https://doi.org/10.3389/fpsyt.2018.00205
  • Sampath, D., Sathyanesan, M., & Newton, S. S. (2017). Cognitive dysfunction in major depression and Alzheimer’s disease is associated with hippocampal–prefrontal cortex dysconnectivity. Neuropsychiatric Disease and Treatment, 13, 1509–1519. https://doi.org/10.2147/NDT.S136122
  • Sanguino-Gómez, J., Buurstede, J. C., Abiega, O., Fitzsimons, C. P., Lucassen, P. J., Eggen, B. J. L., Lesuis, S. L., Meijer, O. C., & Krugers, H. J. (2021). An emerging role for microglia in stress-effects on memory. The European Journal of Neuroscience, 55(9–10), 2491–2518. https://doi.org/10.1111/ejn.15188
  • Schindler, A., & Foley, E. (2013). Hexokinase 1 blocks apoptotic signals at the mitochondria. Cellular Signalling, 25(12), 2685–2692. https://doi.org/10.1016/j.cellsig.2013.08.035
  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 Years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
  • Shaw, G. A., Hyer, M. M., Dustin, E., Dyer, S. K., Targett, I. L., & Neigh, G. N. (2021). Acute LPS exposure increases synaptosomal metabolism during estrus but not diestrus. Physiology & Behavior, 239, 113523. https://doi.org/10.1016/j.physbeh.2021.113523
  • Shaw, G. A. (2021). Mitochondria as the target for disease related hormonal dysregulation. Brain, Behavior, & Immunity - Health, 18(September), 100350. https://doi.org/10.1016/j.bbih.2021.100350
  • Shaw, G. A., Hyer, M. M., Targett, I., Council, K. R., Dyer, S. K., Turkson, S., Burns, C. M., & Neigh, G. N. (2020). Traumatic stress history interacts with sex and chronic peripheral inflammation to alter mitochondrial function of synaptosomes. Brain, Behavior, and Immunity, 88, 203–219. https://doi.org/10.1016/j.bbi.2020.05.021
  • Shemer, A., Scheyltjens, I., Frumer, G. R., Kim, J. S., Grozovski, J., Ayanaw, S., Dassa, B., Van Hove, H., Chappell-Maor, L., Boura-Halfon, S., Leshkowitz, D., Mueller, W., Maggio, N., Movahedi, K., & Jung, S. (2020). Interleukin-10 prevents pathological microglia hyperactivation following peripheral endotoxin challenge. Immunity, 53(5), 1033–1049.e7. https://doi.org/10.1016/j.immuni.2020.09.018
  • Shin, W. H., Lee, D. Y., Park, K. W., Kim, S. U., Yang, M. S., Joe, E. H., & Jin, B. K. (2004). Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia, 46(2), 142–152. https://doi.org/10.1002/glia.10357
  • Shors, T. J., Chua, C., & Falduto, J. (2001). Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 21(16), 6292–6297. https://doi.org/10.1523/jneurosci.21-16-06292.2001
  • Sierra, A., Gottfried-Blackmore, A., Milner, T. A., McEwen, B. S., & Bulloch, K. (2008). Steroid hormone receptor expression and function in microglia. Glia, 56(6), 659–674. https://doi.org/10.1002/glia.20644
  • Tagliari, B., Noschang, C. G., Ferreira, A. G. K., Ferrari, O. A., Feksa, L. R., Wannmacher, C. M. D., Dalmaz, C., & Wyse, A. T. S. (2010). Chronic variable stress impairs energy metabolism in prefrontal cortex and hippocampus of rats: Prevention by chronic antioxidant treatment. Metabolic Brain Disease, 25(2), 169–176. https://doi.org/10.1007/s11011-010-9194-x
  • Tata, D. A., Marciano, V. A., & Anderson, B. J. (2006). Synapse loss from chronically elevated glucocorticoids: Relationship to neuropil volume and cell number in hippocampal area CA3. The Journal of Comparative Neurology, 498(3), 363–374. https://doi.org/10.1002/cne.21071
  • Tynan, R. J., Naicker, S., Hinwood, M., Nalivaiko, E., Buller, K. M., Pow, D. V., Day, T. A., & Walker, F. R. (2010). Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain, Behavior, and Immunity, 24(7), 1058–1068. https://doi.org/10.1016/j.bbi.2010.02.001
  • Ulrich-Lai, Y. M., Figueiredo, H. F., Ostrander, M. M., Choi, D. C., Engeland, W. C., & Herman, J. P. (2006). Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. American Journal of Physiology. Endocrinology and Metabolism, 291(5), E965–973. https://doi.org/10.1152/ajpendo.00070.2006
  • Vakharia, K., & Hinson, J. P. (2005). Lipopolysaccharide directly stimulates cortisol secretion by human adrenal cells by a cyclooxygenase-dependent mechanism. Endocrinology, 146(3), 1398–1402. https://doi.org/10.1210/en.2004-0882
  • Walker, F., Nilsson, M., & Jones, K. (2013). Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Current Drug Targets, 14(11), 1262–1276. https://doi.org/10.2174/13894501113149990208
  • Wohleb, E. S., Terwilliger, R., Duman, C. H., & Duman, R. S. (2018). Stress-induced neuronal colony stimulating factor 1 provokes microglia-mediated neuronal remodeling and depressive-like behavior. Biological Psychiatry, 83(1), 38–49. https://doi.org/10.1016/j.biopsych.2017.05.026
  • Woodburn, S. C., Bollinger, J. L., & Wohleb, E. S. (2021). The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. Journal of Neuroinflammation, 18(1), 258. https://doi.org/10.1186/s12974-021-02309-6
  • Woolley, C. S., Gould, E., & McEwen, B. S. (1990). Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Research, 531(1–2), 225–231. https://doi.org/10.1016/0006-8993(90)90778-A
  • Xin, Y. R., Jiang, J. X., Hu, Y., Pan, J. P., Mi, X. N., Gao, Q., Xiao, F., Zhang, W., & Luo, H. M. (2019). The immune system drives synapse loss during lipopolysaccharide-induced learning and memory impairment in mice. Frontiers in Aging Neuroscience, 11(November), 279. https://doi.org/10.3389/fnagi.2019.00279
  • Yan, S., & Kentner, A. C. (2017). Mechanical allodynia corresponds to Oprm1 downregulation within the descending pain network of male and female rats exposed to neonatal immune challenge. Brain, Behavior, and Immunity, 63, 148–159. https://doi.org/10.1016/j.bbi.2016.10.007
  • Yang, M. S., Park, E. J., Sohn, S., Kwon, H. J., Shin, W. H., Pyo, H. K., Jin, B., Choi, K. S., Jou, I., & Joe, E. H. (2002). Interleukin-13 and -4 induce death of activated microglia. Glia, 38(4), 273–280. https://doi.org/10.1002/glia.10057
  • Zhao, W., Xu, Z., Cao, J., Fu, Q., Wu, Y., Zhang, X., Long, Y., Zhang, X., Yang, Y., Li, Y., & Mi, W. (2019). Elamipretide (SS-31) improves mitochondrial dysfunction, synaptic and memory impairment induced by lipopolysaccharide in mice. Journal of Neuroinflammation, 16(1), 230. https://doi.org/10.1186/s12974-019-1627-9
  • Zisook, S., Planeta, B., Hicks, P. B., Chen, P., Davis, L. L., Villarreal, G., Sapra, M., Johnson, G. R., & Mohamed, S. (2022). Childhood adversity and adulthood major depressive disorder. General Hospital Psychiatry, 76(February), 36–44. https://doi.org/10.1016/j.genhosppsych.2022.03.008